首页 > 分享 > 中国果园植保机械化技术与装备研究进展

中国果园植保机械化技术与装备研究进展

摘要: 果园植保是果园管理关键环节,其机械化发展水平直接影响水果种植的经济效益。为明确中国果园植保机械化技术与装备未来发展方向,该研究首先介绍了中国果园的主要种植方式、植保机械化发展水平及发展制约的因素,然后重点阐述了管道喷雾、风力辅助喷雾、静电喷雾、循环喷雾、变量喷雾和航空施药等植保机械化关键技术与装备的研究进展,概括分析了上述植保装备的农药利用率情况,最后结合中国果园种植特点提出了推广标准化果园种植方式、发展立体植保施药技术、推广专业化机械植保服务模式和研发智能植保机器人4个方面的建议,以期为中国果园植保机械化发展提供参考。

关键词: 喷雾  /  机械化  /  农药  /  果园  /  植保机械  /  农药利用率  /  研究进展  

Abstract: Abstract: Orchard spray is a key link to orchard production, due to it occupied nearly 25% of the total workload of orchard management. Moreover, the degree of plant protection mechanization directly affects the economic benefits of fruits. In this review, the orchard characteristic, the general situation of plant protection mechanization and the reasons restricting its development were introduced briefly, in order to clarify the future progress of mechanization technology and equipment for the orchard plant protection in China. The main reason impeding the development of plant protection mechanization can be a large proportion of hilly orchards, including gradient, slope and flat orchard, together with a very complex planting environment. Since the standardized modern orchards are being promoted, the scale is still small, due partly to the extensive management in traditional orchards the high price. Currently, the plant protection mechanization level of flat orchard was 15%, whereas, the hilly orchard was only 7.5%. Therefore, the progress of key plant protection mechanization technologies and equipment was presented in detail, further to improve the mechanization level of plant protection. For example, the pipeline spraying technology and equipment brought good benefits and spraying effects to the hilly orchard, while, the application of air-assisted spraying technology and equipment improved the mechanized operation level of the flat orchard. Electrostatic spraying technology and equipment were especially used to enhance the droplet coverage rate on the back of leaves. While the tunnel spraying technology and equipment increased the droplet density on the canopies, to recovery the droplet that left the target, indicating that it can effectively improve the pesticide utilization. Variable rate spraying technology and equipment were becoming a hot research topic, particularly on the precise control of spray on demand. The core technology of variable rate spraying was target detection, such as ultrasonic detection, laser detection, infrared detection, machine vision methods. The ultrasonic and laser detection methods have achieved the best application. Since 2010, the great development and application of aerial spraying technology and equipment have been widely recognized. Especially, the unmanned aerial vehicle (UAV) of rotor plant protection has become one of the most popular machines with small size, fast flight speed and strong terrain adaptability among the agricultural aerial equipment. In this review, the research state of rotor plant protection UAV in orchard was introduced from three aspects: operation model, downwash flow field, and working parameters. Plant protection equipment can offer some suggestions for the development of plant protection mechanization from these aspects: promoting standardized models of orchard plant, developing stereo spraying technology, promoting specialized and mechanical service model of plant protection, thereby for the intelligent robots of plant protection.

[1] 2020年果园面积要稳定在2亿亩. [2020-10-17] https://news. cnhnb.com/rdzx/detail/384719/ [2] 常有宏,吕晓兰,蔺经,等. 我国果园机械化现状与发展思路[J]. 中国农机化学报,2013,34(6):21-26. Chang Youhong, Lü Xiaolan, Lin Jing, et al. Present state and thinking about development of orchard mechanization in China[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 21-26. (in Chinese with English abstract) [3] 赵映,肖宏儒,梅松,等. 我国果园机械化生产现状与发展策略[J]. 中国农业大学学报,2017,22(6):116-127. Zhao Ying, Xiao Hongru, Mei Song, et al. Current status and development strategies of orchard mechanization production in China[J]. Journal of China Agricultural University, 2017, 22(6): 116-127. (in Chinese with English abstract) [4] 何雄奎. 高效施药技术与机具[M]. 北京:中国农业大学出版社,2012. [5] 齐鹏. 常用植保机械简介[J]. 科学种养,2017,12(8):61-62. Qi Peng. Introduction to common plant protection machinery[J]. Scientific planting and nursing, 2017, 12(8): 61-62. (in Chinese with English abstract) [6] 宋淑然,李琨,孙道宗,等. 山地果园植保技术与装备研究进展[J]. 现代农业装备,2019,40(5):2-9. Song Shuran, Li Kun, Sun Daozong, et al. Research progress on plant protection technology and equipment in mountainous orchard[J]. Modern Agricultural Equipment, 2019, 40(5): 2-9. (in Chinese with English abstract) [7] 杨鹏. 郁闭型果园遥控弥雾机的研制与试验[D]. 杨凌:西北农林科技大学,2016. Yang Peng. Development and Experimental Research of Canopy Type Remote Orchard Mist Sprayer[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract) [8] 卢营蓬,易文裕,庹洪章,等. 果园喷雾机械现状及发展趋势[J]. 中国农机化学报,2018,39(1):36-41. Lu Yingpeng, Yi Wenyu, Tuo Hongzhang, et al. Present state and trends of orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(1): 36-41. (in Chinese with English abstract) [9] Wertheim S J. Intensive apple orchards with slender spindles[J]. Acta Horticulturae, 1978(65): 209-216. [10] Weber M S, Fokkema N J, Beek M A, et al. The super spindle system[C]. XXV International Horticultural Congress, 2000. [11] 张林森,马锋旺,李丙智,等. 国外苹果高纺锤形整形技术与应用[J]. 中国果树,2007,31(6):69-70. Zhang Linsen, Ma Fengwang, Li Bingzhi, et al. Technology and application of apple high spindle shaping in foreign countries[J]. China Fruits, 2007, 31(6): 69-70. (in Chinese with English abstract) [12] 赵芳. 日本的果园管理[J]. 西北园艺,2003,16(4):54-55. Zhao Fang. Orchard management in Japan[J]. Northwest Horticulture, 2003, 16(4): 54-55. (in Chinese with English abstract) [13] 高东升. 中国设施果树栽培的现状与发展趋势[J]. 落叶果树,2016,48(1):1-4. Gao Dongsheng. Current situation and development trend of fruit tree protected cultivation in China[J]. Deciduous Fruits, 2016, 48(1): 1-4. (in Chinese with English abstract) [14] 李民宇. 果园管道自动顺序喷雾的喷雾装置设计及试验[D]. 广州:华南农业大学,2019. Li Minyu. Design and Experiment of Automatic Sequence Spray Device for Orchard Pipeline Spray[D]. Guangzhou: South China Agricultural University. (in Chinese with English abstract) [15] 王辉,石昌飞,宋淑然,等. 果园管道自动顺序喷雾控制系统设计[J]. 广东农业科学,2015,42(11):148-153. Wang Hui, Shi Changfei, Song Shuran, et al. Design of automatic sequence control system for orchard pipeline spray[J]. Guangdong Agricultural Sciences, 2015, 42(11): 148-153. (in Chinese with English abstract) [16] 于绍夫,贾伯卿. 苹果园管道输液喷药新设施[J]. 中国果树,1980,3(12):36-38. Yu Shaofu, Jia Boqing. New facilities for pipeline spraying in apple orchard[J]. China Fruit, 1980, 3(12): 36-38. (in Chinese with English abstract) [17] 刘学文. 果园管道喷药技术的应用[C]. 北京昆虫学会成立四十周年学术讨论会,北京,1990:148-149. [18] 万欣. 果园管道喷药技术[J]. 北京农业,1994,1(5):27. Wan Xin. Technology for orchard pipeline spray[J]. Beijing Agriculture, 1994, 1(5): 27. (in Chinese with English abstract) [19] 田文龙,钱玉军,胡文利,等. 密植果园微喷灌与管道喷药试验[J]. 山西果树,2000,21(2):23-24. Tian Wenlong, Qian Yujun, Hu Wenli, et al. Experiment on micro irrigation and pipeline spray in dense orchard[J]. Shanxi Fruits, 2000, 21(2): 23-24. (in Chinese with English abstract) [20] 王飞高,张大伟,林昌礼,等. 山地果园机械管道施药设施建设及其效益分析[J]. 中国南方果树,2005,34(5):73-74. Wang Feigao, Zhang Dawei, Lin Changli, et al. Facilities construction and benefit analysis for mountainous orchard pipeline spray[J]. South China Fruits, 2005, 34(5): 73-74. (in Chinese with English abstract) [21] 迟志广,方昭,林涛,等. 广西规模化蕉园机械化现状分析[J]. 热带农业科学,2015,35(8):37-41. Chi Zhiguang, Fang Zhao, Lin Tao, et al. Analysis on mechanization of large-scale banana plantation in Guangxi[J]. Chinese Journal of Tropical Agriculture, 2015, 35(8): 37-41. (in Chinese with English abstract) [22] 董祥,张铁,燕明德,等. 3WPZ-4型风送式葡萄喷雾机设计与试验[J]. 农业机械学报,2018,49(S):205-213. Dong Xiang, Zhang Tie, Yan Mingde, et al. Design and experiment of 3WPZ-4 type air-assisted grape sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S): 205-213. (in Chinese with English abstract) [23] 王荣,党革荣,祁正梅,等. 葡萄园喷雾机风机蜗壳结构改进与性能试验[J]. 农机化研究,2015,37(8):170-173. Wang Rong, Dang Gerong, Qi Zhengmei, et al. Structure improving and performance experimenting of sprayer fan for vineyard orchard[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 170-173. (in Chinese with English abstract) [24] 刘青,傅泽田,祁力钧,等. 9WZCD-25型风送式超低量喷雾机性能优化试验[J]. 农业机械学报, 2005,36(9):44-47. Liu Qing, Fu Zetian, Qi Lijun, et al. Characteristics optimization experiments of 9WZCD-25 air-blast and ultralow volume sprayer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(9): 44-47. (in Chinese with English abstract) [25] 祁力钧,赵亚青,王俊,等. 基于CFD的果园风送式喷雾机雾滴分布特性分析[J]. 农业机械学报,2010,41(2):62-67. Qi Lijun, Zhao Yaqing, Wang Jun, et al. CFD simulation and experimental verification of droplet dispersion of air-assisted orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(2): 62-67. (in Chinese with English abstract) [26] 张晓辛,吕晓兰,丁素明,等. 果园风送式喷雾机仿形喷雾试验研究[J]. 中国农机化,2011,32(3):68-72. Zhang Xiaoxin, Lü Xiaolan, Ding Suming, et al. Experimental research on profiling spray of air-assisted orchard sprayer[J]. Chinese Agricultural Mechanization, 2011, 32(3): 68-72. (in Chinese with English abstract) [27] Zhang Wei, Hou Yongrui, Liu Xin, et al. Wind tunnel experimental study on droplet drift reduction by a conical electrostatic nozzle for pesticide spraying[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):87-94. [28] 周良富,张玲,薛新宇,等. 农药静电喷雾技术研究进展及应用现状分析[J]. 农业工程学报,2018,34(18):1-11. Zhou Liangfu, Zhang Ling, Xue Xinyu, et al. Research progress and application status of electrostatic pesticide spray technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 1-11. (in Chinese with English abstract) [29] 舒朝然,詹敏,盛茂领,等. 果树树冠静电喷雾的空间电荷效应分析[J]. 沈阳农业大学学报,2007,38(1):59-64. Shu Chaoran, Zhan Min, Sheng Maoling, et al. Analysis on the space charge effects in tree canopy electrostatic spraying[J]. Journal of Shenyang Agricultural University, 2007, 38(1): 59-64. (in Chinese with English abstract) [30] 周良富,张玲,丁为民,等. 风送静电喷雾覆盖率响应面模型与影响因素分析[J]. 农业工程学报,2015,31(S2):52-59. Zhou Liangfu, Zhang Ling, Ding Weimin, et al. Droplet coverage response surface models and influencing factors of air-assisted electrostatic spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(S2): 52-59. (in Chinese with English abstract) [31] 周良富,张玲,薛新宇,等. 双气流道辅助静电喷头设计与试验[J]. 江苏农业科学,2017,45(24):192-196. Zhou Liangfu, Zhang Ling, Xue Xinyu, et al. Design and experiment of double air-assisted electrostatic nozzle[J]. Jiangsu Agricultural Sciences 2017, 45(24): 192-196. (in Chinese with English abstract) [32] 宫少俊,宋坚利. 隧道式循环喷雾机发展研究[J]. 北京农业,2007,14(9):55-58. Gong Shaojun, Song Jianli. Research on the development of tunnel circulating sprayer[J]. Beijing Agriculture, 2007, 14(9): 55-58. (in Chinese with English abstract) [33] Beasley E, Rohrbach R, Mainland C, et al. Saturation spraying of blueberries with partial spray recovery[J]. Transactions of the ASAE, 1983, 26(3): 732-736. [34] Ade G, Molari G, Rondelli V. Vineyard evaluation of a recycling tunnel sprayer[J]. Transactions of the ASAE, 2005, 48(6): 2105-2112. [35] Peterson D L, Hogmire H W. Tunnel sprayer for dwarf fruit-trees[J]. Transactions of the ASAE, 1994, 37(3): 709-715. [36] 周良富,薛新宇,周立新,等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报,2017,33(23):80-92. Zhou Liangfu, Xue Xinyu, Zhou Lixin, et al. Research situation and progress analysis on orchard variable rate spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 80-92. (in Chinese with English abstract) [37] Hong Y, Zhu H P, Richard D, et al. Evaluation of ultrasonic sensor for variable-rate spray applications[J]. Computers and Electronics in Agriculture, 2011, 75(5): 36, 173-191. [38] Rosell J, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Computers and Electronics in Agriculture, 2012, 81(9): 124-141. [39] 许林云,张昊天,张海峰,等. 果园喷雾机自动对靶喷雾控制系统研制与试验[J]. 农业工程学报,2014,30(22):1-9. Xu Linyun, Zhang Haotian, Zhang Haifeng, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 1-9. (in Chinese with English abstract) [40] Francisco J, Jaime S, Pablo A, et al. LiDAR and thermal images fusion for ground-based 3D characterisation of fruit trees[J]. Biosysterm Engineering, 2016, 151(11): 479-494. [41] Cai Jichen, Wang Xiu, Song Jian, et al. Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6):155-163. [42] Francisco R, Zhang Q, John F, et al. Stereo vision three dimensional terrain maps for precision agriculture[J]. Computers and Electronics in Agriculture, 2008, 60(5):133-143. [43] Qiu Wei, Zhao Sanqin, Ding Weimin, et al. Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4):53-62. [44] 李丽,李恒,何雄奎,等. 红外靶标自动探测器的研制及试验[J]. 农业工程学报,2012,28(12):159-163. Li Li, Li Heng, He Xiongkui, et al. Development and experiment of automatic detection device for infrared target[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 159-163. (in Chinese with English abstract) [45] Gonzalez R, Pawlowski A, Rodriguez C, et al. Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications[J]. Spanish Journal of Agricultural research, 2012, 10(4): 939-949. [46] Womac A, Bui Q D. Design and tests of a variable-flow fan nozzle[J]. Transactions of the ASAE, 2002, 45(2): 287-295. [47] 魏新华,蒋杉,孙宏伟,等. PWM间歇喷雾式变量喷施控制器设计与测试[J]. 农业机械学报,2012,43(12):87-93,129. Wei Xinhua, Jiang Shan, Sun Hongwei, et al. Design and test of variable rate application controller of intermittent spray based on PWM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 87-93, 129. (in Chinese with English abstract) [48] 邱威,丁为民,傅锡敏,等. 果园喷雾机圆环双流道风机的设计与试验[J]. 农业工程学报,2012,28(12):13-17. Qiu Wei, Ding Weimin, Fu Ximin, et al. Design and experiment of ring double-channel fan for spraying machine in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 13-17. (in Chinese with English abstract) [49] 丁天航,曹曙明,薛新宇,等. 果园喷雾机单双风机风道气流场仿真与试验[J]. 农业工程学报,2016,32(14):62-68. Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 62-68. (in Chinese with English abstract) [50] Aljaz O, Tone G, Marko H, et al. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer[J]. Computers and Electronics in Agriculture, 2013, 98(8):175-182. [51] He Xiongkui, Bonds Jane, Herbst Andreas, et al. Recent development of unmanned aerial vehicle for plant protection in East Asia[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):18. [52] Wang Shilin, Song Jianli, He Xiongkui, et al. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4):22-31. [53] Wang Linhui, Lan Yubin, Yue Xuejun, et al. Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3):18-26. [54] Qin Weicai, Xue Xinyu, Zhang Shaoming, et al. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2):27-32. [55] Meng Yanhua, Lan Yubin, Mei Guiying, et al. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5):46-53. [56] Zheng Yongjun, Yang Shenghui, Zhao Chunjiang, et al. Modelling operation parameters of UAV on spray effects at different growth stages of corns[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):57. [57] 秦维彩,薛新宇,周立新,等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报,2014,30(5):50-56. Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract) [58] Liao Juan, Zang Ying, Luo Xiwen, et al. Optimization of variables for maximizing efficacy and efficiency in aerial spray application to cotton using unmanned aerial systems[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(2):10-17. [59] 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业,2020,2(1):133-146. He Xiongkui. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. (in Chinese with English abstract) [60] 傅锡敏,吕晓兰,丁为民,等. 我国果园植保机械现状与技术需求[J]. 中国农机化,2009,16(6):10-13. Fu Ximin, Lü Xiaolan, Ding Weimin, et al. Present state and technical requirement about orchard plant protection machinery in China[J]. Journal of Chinese Agricultural Mechanization, 2009, 16(6): 10-13. (in Chinese with English abstract) [61] WS-16D背负式电动喷雾器[EB/OL]. [2020-10-02] https://www. nongjitong. com/product/1522_ws-16d_ spray_machine. html. [62] 3WF-960背负式机动喷雾喷粉机[EB/OL]. [2020-10-02] https://item. jd. com/25147383035. html. [63] TS-35A背负式热力烟雾机[EB/OL]. [2020-10-02] https://item. jd. com/68984797912. html. [64] HD-22D担架式机动喷雾机[EB/OL]. [2020-10-02] https://item. jd. com/1713681083. html. [65] HD100T推车式机动喷雾机[EB/OL]. [2020-10-02] https://item. jd. com/26021986433. html. [66] 马锞,李建国,赖旭辉,等. 果园管道喷药系统建设及效益分析[J]. 中国南方果树,2018,47(2):165-166. Ma Ke, Li Jianguo, Lai Xuhui, et al. System construction and benefit analysis for orchard pipeline spray[J]. South China Fruits, 2018, 47(2): 165-166. (in Chinese with English abstract) [67] 宋淑然,洪添胜,孙道宗,等. 基于微机的管道恒压喷雾控制装置:CN101690923A[P]. 2010-04-07. [68] 宋淑然,阮耀灿,洪添胜,等. 果园管道喷雾系统药液压力的自整定模糊PID控制[J]. 农业工程学报,2011,27(6):157-161. Song Shuran, Ruan Yaocan, Hong Tiansheng, et al. Self-adjustable fuzzy PID control for pressure of pipeline spray system in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 157-161. (in Chinese with English abstract) [69] 吴伟锋,洪添胜,代秋芳,等. 基于Zigbee的多节点管道喷雾压力控制系统研究[J]. 农机化研究, 2019,41(10):52-57. Wu Weifeng, Hong Tiansheng, Dai Qiufang, et al. Research of multi-node pressure control system for pipeline spray based on ZigBee[J]. Journal of Agricultural Mechanization Research, 2019, 41(10): 52-57. (in Chinese with English abstract) [70] 李致. 基于管道喷雾的在线混药技术及装置[D]. 广州:华南农业大学,2018. Li Zhi. On-line Mixing Pesticide Technology and Device Based on Pipeline Spraying[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract) [71] 李民宇,宋淑然,代秋芳,等. 管道自动顺序喷雾架设计及喷雾有效性试验[J]. 农机化研究,2020,42(1):153-160. Li Minyu, Song Shuran, Dai Qiufang, et al. Design and experiment of automatic sequential pipeline spray frame and spraying validity[J]. Journal of Agricultural Mechanization Research, 2020, 42(1): 153-160. (in Chinese with English abstract) [72] 施鹏,薛新宇,王振龙,等. 果园动力底盘喷雾机的发展现状[J]. 中国农机化学报,2013,34(6):27-31. Shi Peng, Xue Xinyu, Wang Zhenlong, et al. Present situation of development on the dynamic chassis orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 27-31. (in Chinese with English abstract) [73] 王艳红. 2018意大利EIMA农机展上的植保机械[J]. 农业工程,2018,8(11):2-3. Wang Yanhong. Plant protection machinery showed in Italy agricultural machinery exhibition 2018[J]. Agricultural Engineering, 2018, 8(11):2-3. (in Chinese with English abstract) [74] MUNCKHOF制造导流板式风送喷雾机[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/munckhof/product-184798-82698.html. [75] HARDI制造轴流风送喷雾机[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/hardi/product-169215-13149.html. [76] HARDI制造加农炮式风送喷雾机[EB/OL]. [2020-10-02] https://hardi-international.com/sprayers/mistblowers/zenit-orchard/cannon#nav. [77] ASIA TECH公司制造自走式风送喷雾机[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/asia-technology- co-ltd/product-180444-55544.html. [78] 张晓辉,郭清南,李法德,等. 3MG30型果园弥雾机的研制与试验[J]. 农业机械学报,2002,33(3):30-33. Zhang Xiaohui, Guo Qingnan, Li Fade, et al. Development of 3MG-30 orchard mist sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(3): 30-33. (in Chinese with English abstract) [79] 邱威,丁为民,汪小旵,等. 3WZ-700型自走式果园风送定向喷雾机[J]. 农业机械学报,2012,43(4):26-30. Qiu Wei, Ding Weimin, Wang Xiaochan, et al. 3WZ-700 self-propelled air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 26-30. (in Chinese with English abstract) [80] 徐莎,翟长远,朱瑞祥,等. 喷雾高度可调的果园风送喷雾机的设计[J]. 西北农林科技大学学报:自然科学版,2013,41(11):229-234. Xu Sha, Zhai Changyuan, Zhu Ruixiang, et al. Design of an orchard air-assisted sprayer with adjustable spray height[J]. Journal of Northwest A&F university (Natural Science Edition), 2013, 41(11): 229-234. (in Chinese with English abstract) [81] 李超,张晓辉,姜建辉,等. 葡萄园立管风送式喷雾机的研制与试验[J]. 农业工程学报,2013,29(4):71-78. Li Chao, Zhang Xiaohui, Jiang Jianhui, et al. Development and experiment of riser air-blowing sprayer in vineyard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 71-78. (in Chinese with English abstract) [82] 张晓辉,姜宗月,范国强,等. 履带自走式果园定向风送喷雾机[J]. 农业机械学报,2014,45(8):117-122. Zhang Xiaohui, Jiang Zongyue, Fan Guoqiang, et al. Self-propelled crawler directional air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 117-122. (in Chinese with English abstract) [83] 荣喃喃,王冉冉,郭鹏军,等. 微型自走式电动果园弥雾机的研制与试验[J]. 农机化研究,2016,38(10):92-95. Rong Nannan, Wang Ranran, Guo Pengjun, et al. Design and experiment of the micro self-propelled electric sprayer in orchard[J]. Journal of Agricultural Mechanization Research, 2016, 38(10): 92-95. (in Chinese with English abstract) [84] 丁素明,薛新宇,张玲,等. 自走式果园风送喷雾机的研制[J]. 中国农机化学报,2016,37(4):54-58. Ding Suming, Xue Xinyu, Zhang Ling, et al. Design on self-propelled air-blowing orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(4): 54-58. (in Chinese with English abstract) [85] 樊桂菊,王永振,仉利,等. 履带风送式喷雾机的设计与试验[J]. 农机化研究,2018,40(5):117-120. Fan Guiju, Wang Yongzhen, Zhang Li, et al. Design and experiment of caterpillar air-assisted orchard sprayer[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 117-120. (in Chinese with English abstract) [86] 3WF-80F风送喷雾机[EB/OL]. [2020-10-02] http://www. sprayerchina.com/product/26.html. [87] 3WFG-400X风送喷雾机[EB/OL]. [2020-10-02] http://www. sprayerchina.com/product/28.html. [88] 3WZ-500L自走式风送喷雾机[EB/OL]. [2020-10-02] https://www.nongjitong.com/product/604_3wz_500l_spray_machine.html. [89] Duo wing jet静电喷雾机[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/martignani-srl/product-179347-86640.html. [90] 100SR静电喷雾机[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/electrostatic-spraying-systems/product-173798-55984.html. [91] 何雄奎,严苛荣,储金宇,等. 果园自动对靶静电喷雾机设计与试验研究[J]. 农业工程学报,2003,19(6):78-80. He Xiongkui, Yan Kerong, Chu Jinyu, et al. Design and testing of the automatic target detecting, electrostatic, air assisted, orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 78-80. (in Chinese with English abstract) [92] 周艳,祁力钧,贾首星,等. 果园气力式静电喷雾机的开发及应用前景[J]. 安徽农业科学,2012,40(7):4429-4430. Zhou Yan, Qi Lijun, Jia Shouxing, et al. The development of pneumatic electrostatic spraying in orchard and the application prospect[J]. Anhui Agricultural Science, 2012, 40(7): 4429-4430. (in Chinese with English abstract) [93] 杨洲,牛萌萌,李君,等. 果园在线混药型静电喷雾机的设计与试验[J]. 农业工程学报,2015,31(21):60-67. Yang Zhou, Niu Mengmeng, Li Jun, et al. Design and experiment of an electrostatic sprayer with on-line mixing system for orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 60-67. (in Chinese with English abstract) [94] 周良富,张玲,薛新宇,等. 3WQ-400型双气流辅助静电果园喷雾机设计与试验[J]. 农业工程学报,2016,32(16):45-53. Zhou Liangfu, Zhang Ling, Xue Xinyu, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 45-53. (in Chinese with English abstract) [95] 王志强,郝志强,刘凤之,等. 气力雾化风送式果园静电弥雾机的研制与试验[J]. 果树学报,2017,34(9):1161-1169. Wang Zhiqiang, Hao Zhiqiang, Liu Fengzhi, et al. Design and experiment of an air-atomized, air-assisted and electrostatic orchard sprayer[J]. Journal of Fruit Science, 2017, 34(9): 1161-1169. (in Chinese with English abstract) [96] Nestor循环喷雾机[EB/OL]. [2020-10-02] https://www. agriexpo. cn/prod/weremczuk-fmr-sp-z-o-o/product-170611- 17417. html. [97] 宋坚利,何雄奎,张京,等. "Π"型循环喷雾机设计[J]. 农业机械学报,2012,43(4):31-36. Song jianli, He Xiongkui, Zhang Jing, et al. Design of Π-type recycling tunnel sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 31-36. (in Chinese with English abstract) [98] 张京,宋坚利,何雄奎,等. "Π"型循环喷雾机防飘性能试验[J]. 农业机械学报,2012,43(4):37-39. Zhang Jing, Song Jianli, He Xiongkui, et al. Anti-drift performance experiment of Π-type recycling tunnel sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 37-39. (in Chinese with English abstract) [99] 牛萌萌,方会敏,乔璐,等. 高地隙隧道式循环喷雾机设计与试验[J]. 中国农机化学报,2019,40(11):41-48. Niu Mengmeng, Fang Huimin, Qiao Lu, et al. Design and experiment of high clearance type recycling tunnel sprayer[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 41-48. (in Chinese with English abstract) [100] Sun Hong, Li Minzan, Zhang Qin. Detection system of smart sprayers: Status, challenges, and perspectives[J]. International Journal of Agricultural and Biological Engineering, 2012, 5(3):10-23. [101] 邱白晶,闫润,马靖,等. 变量喷雾技术研究进展分析[J]. 农业机械学报,2015,46(3):59-72. Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72. (in Chinese with English abstract) [102] Berk P, Bel?ak A, Stajnko D, et al. Intelligent automated system based on a fuzzy logic system for plant protection product control in orchards[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3):92-102 [103] Gil E, Llorens J, Llop J, et al. Variable rate sprayer Part 2-Vineyard prototype: Design, implementation, and validation[J]. Computers and Electronics in Agriculture, 2013, 95(3): 136-150. [104] 葛玉峰,周宏平,郑加强,等. 基于机器视觉的室内农药自动精确喷雾系统[J]. 农业机械学报,2005,36(3):86-89. Ge Yufeng, Zhou Hongping, Zheng Jiaqiang, et al. Indoor pesticide smart spraying system based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(3): 86-89. (in Chinese with English abstract) [105] 宋淑然,陈建泽,洪添胜,等. 果园柔性对靶喷雾装置设计与试验[J]. 农业工程学报,2015,31(10):57-63. Song Shuran, Chen Jianze, Hong Tiansheng, et al. Design and experiment of orchard flexible targeted spray device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 57-63. (in Chinese with English abstract) [106] 金鑫,董祥,杨学军,等. 3WGZ-500型喷雾机对靶喷雾系统设计与试验[J]. 农业机械学报,2016,47(7):21-27. Jin Xin, Dong Xiang, Yang Xuejun, et al. Design and experiment of target spraying system of 3WGZ-500 sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 21-27. (in Chinese with English abstract) [107] 姜红花,白鹏,刘理民,等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报,2016,47(S1):189-195. Jiang Honghua, Bai Peng, Liu Limin, et al. Caterpillar self-propelled and air-assisted orchard sprayer with automatic target spray system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 189-195. (in Chinese with English abstract) [108] Qiu Wei, Zhao Sanqin, Ding Weimin, et al. Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4):53-62. [109] 李龙龙,何雄奎,宋坚利,等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报,2017,33(1):70-76. Li Longlong, He Xiongkui, Song Jianli, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 70-76. (in Chinese with English abstract) [110] 兰玉彬,陈盛德,邓继忠,等. 中国植保无人机发展形势及问题分析[J]. 华南农业大学学报,2019,40(5):217-225. Lan Yubin, Chen Shengde, Deng Jizhong, et al. Development situation and problem analysis of plant protection unmanned aerial vehicle in China[J]. Journal of South China Agricultural University, 2019, 40(5): 217-225. (in Chinese with English abstract) [111] 水星一号单旋翼植保无人机[EB/OL]. [2020-10-02] http://www.hanhe-aviation.com/sxyh.html [112] 极飞P20植保无人机[EB/OL]. [2020-10-02] https://www. xa.com/p20-2018. [113] 大疆T16植保无人机[EB/OL]. [2020-10-02] https://www.dji.com/cn/t16?site=brandsite&from=nav. [114] 韦加JF01-20植保无人机[EB/OL]. [2020-10-02] http://www.vigauav.com/index.php/product-product-dataId-20.html. [115] Yang Fengbo, Xue Xinyu, Zhang Ling, et al. Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4):41-53. [116] Hou Chaojun, Tang Yu, Luo Shaoming, et al. Optimization of control parameters of droplet density in citrus trees using UAVs and the Taguchi method[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(4):1-9. [117] Zhou Qingqing, Xue Xinyu, Qin Weicai, et al. Optimization and test for structural parameters of UAV spraying rotary cup atomizer[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):78-86. [118] 杨风波,薛新宇,蔡晨,等. 多旋翼植保无人机悬停下洗气流对雾滴运动规律的影响[J]. 农业工程学报,2018,34(2):64-73. Yang Fengbo, Xue Xinyu, Cai Chen, et al. Effect of down wash airflow in hover on droplet motion law for multi-rotor unmanned plant protection machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 64-73. (in Chinese with English abstract) [119] Zheng Y, Yang S, Liu X, et al. The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV[J]. Frontiers of Agricultural Science and Engineering, 2018. [120] 张豪,祁力钧,吴亚垒,等. 基于Porous模型的多旋翼植保无人机下洗气流分布研究[J]. 农业机械学报,2019,50(2):112-122. Zhang Hao, Qi Lijun, Wu Yalei, et al. Spatio-temporal distribution of down wash airflow for multi-rotor plant protection UAV based on porous model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 112-122. (in Chinese with English abstract) [121] 王娟,兰玉彬,姚伟祥,等. 单旋翼无人机作业高度对槟榔雾滴沉积分布与飘移影响[J]. 农业机械学报,2019,50(7):1-14. Wang Juan, Lan Yubin, Yao Weixiang, et al. Effects of working height of single-rotor unmanned aerial vehicle on drift and droplets deposition distribution of areca canopies[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 1-14. (in Chinese with English abstract) [122] 张盼,吕强,易时来,等. 小型无人机对柑橘园的喷雾效果研究[J]. 果树学报,2016,33(1):34-42. Zhang Pan, Lü Qiang, Yi Shilai, et al. Evaluation of spraying effect using small unmanned aerial vehicle (UAV) in citrus orchard[J]. Journal of Fruit Science, 2016, 33(1): 34-42. (in Chinese with English abstract) [123] Lü Meiqiao, Xiao Shupei, Tang Yu, et al. Influence of UAV flight speed on droplet deposition characteristics with the application of infrared thermal imaging[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3):10-17. [124] 陈盛德,兰玉彬,周志艳,等. 小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响[J]. 华南农业大学学报,2017,38(5):97-102. Chen Shengde, Lan Yubin, Zhou Zhiyan, et al. Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102. (in Chinese with English abstract) [125] Zhang Yanliang, Lian Qi, Zhang Wei. Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6):68-76. [126] Zhang Pan, Deng Lie, Lü Qiang, et al. Effects of citrus tree shape and spraying height of small unmanned aerial vehicle on droplet distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4): 45-52. [127] Tang Y, Hou C J, Luo S M, et al. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle[J]. Computers and Electronics in Agriculture, 2018, 148: 1-7.

相关知识

中国植保机械与施药技术研究进展
果园机械化疏花技术与装备综述,Agronomy
何雄奎教授 || 中国植保机械与施药技术研究进展
何雄奎:机械化打开果园新面貌,智能装配与技术提升梨品质
植保装备技术.docx
国内外园艺除草机械化技术研究现状和发展趋势
果树机械化疏花装备
果树枝条修剪机械化及自动化研究进展
江苏省园艺机械化推广应用现状与建议
全国设施园艺机械化率平均仅33%,装备升级需求很大!

网址: 中国果园植保机械化技术与装备研究进展 https://m.huajiangbk.com/newsview710504.html

所属分类:花卉
上一篇: 植保机械公司黄页
下一篇: 植保机械有哪些?