香蕉(Musa nana Lour.)是热带和亚热带地区重要的水果,同时也是世界贸易的大宗鲜果。我国作为香蕉的原产地之一,具有上千年的栽培历史[1-2],在香蕉种植和消费方面位居世界前列。国家统计局数据显示,2022年我国香蕉收获面积达32.69万hm2,2023年产量达1170.28万t。香蕉产业已发展成为我国热带地区的支柱性产业,对促进农民增收和热区乡村振兴乃至世界热区农业经济发展都具有深远意义。近年来,随着国民经济的发展,香蕉进出口日益频繁,我国已成为第三大香蕉净进口国[3-4],香蕉种植和需求不断增加,引进、遴选和储备农艺性状优良和适合大面积种植的香蕉种质资源对香蕉产业的可持续发展具有战略性意义[5-6]。输华香蕉种苗传带有害生物入侵我国并扩散成灾的风险增加,一些有害生物如雷尔氏菌(Ralstonia sp.)和尖孢镰刀菌(Fusarium oxysporum)等危害严重[6-7],严重制约香蕉产业的可持续发展。
有害生物入侵是经济全球化过程的必然问题,造成输入国(地区)经济损失和生态破坏,甚至影响社会稳定。采取有效措施避免、减少外来有害生物入境,其成本远低于外来有害生物入境后的控制。世界各国(地区)越来越重视有害生物分析(pest risk analysis, PRA)工作。当前PRA是制定检疫制度的前提,也是维持安全贸易的首要保障[7]。目前仅报道香蕉种苗上的单一有害生物香蕉枯萎病和香蕉穿孔线虫的风险分析[8⇓-10]。随着种业的加速发展,输华植物种质资源也急剧增加,实时开展PRA对我国采取有效检疫措施,防止外来有害生物传入,保护我国农作物产业具有重要意义[11⇓⇓-14]。本研究采用有害生物风险分析方法,综合评价输华香蕉种苗传带有害生物造成的风险,以期为香蕉种苗等进境物品有害生物检疫措施和综合防控策略的制订提供理论依据。
1.1 材料
输华香蕉种苗的有害生物种类主要通过查阅国内外文献资料,包括中国国家有害生物检疫信息系统(http://www.pestchina.com)等收集,列出香蕉种苗可能携带的有害生物大名单68种。
1.2 方法
1.2.1 潜在检疫性有害生物的筛选
根据有害生物在中国的分布情况(未分布或分布未广)、是否官方管制、随香蕉种苗携带的可能性进行评估,确定需要进一步评估的潜在检疫性有害生物(quarantine pests, QP)。
1.2.2 潜在检疫性有害生物风险评估
(1)定性风险评估。参考刘福秀等[11]的方法对确定的潜在检疫性有害生物从其入境、定殖、扩散的可能性及其对经济的影响进行评估,按高、中、低进行判别。
(2)定量风险评估。参照蒋青等[15]建立的多指标综合评价方法,对确定的潜在检疫性有害生物进行定量风险分析。按以下公式计算风险指标值(R):R=,其中,P2= 0.6P21+0.2P22+0.2P23;P3=Max(P31, P32, P33);P4=;P5=(P51+P52+P53)/3,其中一级指标P1,二级指标P21、P22、P23、P31、P32、P33、P41、P42、P43、P44、P45、P51、P52、P53均为根据定量风险评估指标的评判标准所得的赋值分。计算出R值后,按照有害生物危险程度标准进行分级[16],R<1.0,无风险为I级;1.0≤R<1.5,低风险为II级;1.5≤R<2.0,中风险为III级;2.0≤R<2.5,高风险为IV级;2.5≤R<3.0,极高风险为V级。
1.2.3 风险评估结论
依据1.2.2的结果,将中风险及以上等级的有害生物列为我国需要关注的检疫性有害生物。
1.2.4 提出风险管理措施
依据风险分析结果,针对不同等级的有害生物提出相应的风险管理措施。
2.1 确定香蕉种苗有害生物大名单
通过查阅国内外相关文献资料,确定了全球输华香蕉种苗上可能携带的有害生物种类共68种,其中昆虫33种,真菌19种,线虫9种,细菌3种,软体动物1种,螨类(包括蜘蛛)3种。
2.2 筛选潜在的检疫性有害生物
根据在中国的分布情况(未分布或分布未广)、是否官方管制、随香蕉种苗携带的可能性等对确定的香蕉种苗可能携带的68种有害生物进行评估,确定需要进一步评估的9种潜在检疫性有害生物(QP),包括7种真菌,2种细菌(表1)。
表1 需进一步评估的潜在检疫性有害生物(QP)Tab. 1 Potential quarantine pests (QP) to be further assessed
编号2.3 潜在检疫性有害生物风险评估
根据相关文献[17⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-30],对9种潜在的检疫性有害生物进行定性与定量风险分析。
2.3.1 定性分析
对9种潜在的检疫性有害生物从其入境、定殖、扩散的可能性和经济影响4个方面进行分析,判定高风险有害生物4种,其中细菌1种,真菌3种,包括富氏葡萄孢盘菌、甘蔗凋萎病菌、蒲桃雷尔氏菌、古巴尖镰孢;判定中风险有害生物5种,其中细菌1种,真菌4种,包括假弯孢菌、桃色欧文氏菌、松树脂溃疡病菌、香蕉小球腔菌、枝孢斑点菌(表2)。
表2 潜在的检疫性有害生物(QP)定性风险评估Tab. 2 Qualitative risk assessment of potential quarantine pests (QP)
编号2.3.2 定量分析
本研究构建的9种潜在的检疫性有害生物的风险综合评估指标体系包括5个一级指标15个二级指标,从国内外分布、经济影响、寄主植物、传播与扩散、风险管理方面等方面对二级指标分别赋值(表3)。根据有害生物风险分析相关公式,分别计算风险指标值(R),根据中国有害生物危险程度标准[16],判定高风险有害生物4种(2.0≤R<2.5),包括富氏葡萄孢盘菌、甘蔗凋萎病菌、蒲桃雷尔氏菌和古巴尖镰孢;中风险有害生物5种(1.5≤R<2.0),包括假弯孢菌、桃色欧文氏菌、松树脂溃疡病菌、香蕉小球腔菌和枝孢斑点菌(表3)。
表3 潜在的检疫性有害生物(QP)定量风险评估Tab.3 Quantitative risk assessment of potential quarantine pests (QP)
综合9种潜在的检疫性有害生物的定量和定性风险分析结果,以所有检疫性有害生物中风险水平最高者作为该植物种苗的检疫风险,因此,判定香蕉种苗的检疫风险为高。
2.4 风险管理措施
依据潜在检疫性有害生物风险分析的结论提出相应的风险管理措施,通过实施风险管理措施可将输华香蕉种苗风险降低到适宜的风险保护水平之下。
2.4.1 加强封锁与检疫
建议加强封锁与检疫。少量引进(特别应考虑所需隔离检疫设施的实际承载能力),与植物检疫部门合作,加强检疫封锁;做好香蕉种植大国及病虫害发生严重国家入境的检疫工作,阻止病原菌或害虫随寄主材料入境。
2.4.2 进境要求
(1)检疫审批:香蕉种苗进口前,规定进口商应向海关总署申请办理《进境动植物检疫许可证》。
(2)进境检疫:香蕉种苗到达进境种苗指定监管场地(指定口岸)后,海关人员将根据有关规定对种苗实施检疫,特别对需关注的潜在检疫性有害生物实施针对性检疫。包装、铺垫材料、集装箱不得黏附土壤、害虫及杂草籽等,经检疫合格的,准予入境。
(3)隔离种植:根据风险分析结果,进境香蕉种苗须按每批每品种约15%的比例进行抽样检查,在具备相应资质、硬件和管理条件的植物隔离检疫圃实施隔离检疫,其余种苗应封存保管,待隔离检疫期满合格后,方可运往引种企业进行种植。
2.4.3 不符合要求的处理
(1)如口岸查验中发现有检疫性有害生物,则该批种苗作退回、销毁或检疫处理;(2)如隔离检疫或种植期间发现检疫性有害生物,根据有关检疫法规对该批种苗进行退回或销毁处理。
2.4.4 有害生物监测
在海关部门的监管下,生产者应在香蕉种苗的生长期和收获期对有害生物进行监测,证明需要关注的检疫性有害生物是否传入。
2.4.5 检疫处理技术研究
加强有害生物检疫处理技术的研究工作。研究有害生物多目标检测技术,以及以微生物菌剂等为核心的绿色靶向检疫处理技术对有害生物去除效率、植株生长和抗病(虫)能力的影响,为检疫部门开展政策制定、有害生物快速检测、检疫处理等工作提供理论依据和技术保障。
2.4.6 加大宣传及与国外的沟通力度
积极开展香蕉种苗传带有害生物危害严重性的科普宣传工作,发现疫情及时上报,同时加强与发现有害生物的国家的沟通,建立相应的监测网络、检疫处理技术规程,做到精准识别和有效防除。
有害生物风险分析是植物检疫领域中的重要基础性工作,是国家制定有害生物风险管理策略的理论依据[7,10]。本研究通过查询中国国家有害生物检疫信息系统等数据库和有关文献,根据在中国的分布情况(未分布或分布未广)、是否官方管制、随香蕉种苗携带的可能性进行评估,确定了输华香蕉种苗上需要进一步评估的9种潜在检疫性有害生物,经定性和定量风险分析表明,高风险有害生物有4种,其中富氏葡萄孢盘菌(B. fuckeliana)分布在美国、加拿大、巴西、西班牙、日本和印度等国;甘蔗凋萎病菌(G. sacchari)分布于洪都拉斯、波兰、美国和孟加拉国等多个国家;蒲桃雷尔氏菌(R. syzygii)分布在印度尼西亚;古巴尖镰孢(F. oxysporum f. sp. cubense)分布在巴拿马、古巴、美国和澳大利亚等多个国家。中风险有害生物有5种,其中假弯孢菌(C. fallax)分布在加纳和印度;桃色欧文氏菌(E. persicina)分布在美国、澳大利亚、西班牙和日本等多个国家;松树脂溃疡病菌(F. circinatum)分布洪都拉斯、美国、澳大利亚和南非等多个国家;香蕉小球腔菌(L. musarum)分布在中国台湾;枝孢斑点菌(M. musae)分布在古巴、洪都拉斯、加拿大、美国、马来西亚和越南等多个国家。上述有害生物均属于微生物、个体小,肉眼难于观察,不仅为害香蕉种苗,还为害多种寄主植物,早期为害隐蔽性强,潜伏和为害香蕉育苗基质、根、茎和叶等多个部位,难以精准识别,同时香蕉种苗的跨国运输,容易引起输入地有害生物爆发成灾,应该引起足够的重视.
随着经济全球化的不断发展,我国香蕉种植人员和企业与赴越南、柬埔寨等国开展香蕉生产、贸易,以及香蕉种苗资源的引进等活动日益频繁[8]。本研究中的9种潜在检疫性有害生物入侵我国并传播扩散的可能性极大,应严格限制从疫区引进的种苗和带基质的寄主植物,入境后需隔离检疫,同时需高度重视对传病介质昆虫的严格检疫。
风险分析涉及的因素多而复杂,需要有效丰富的数据[7],常用方法为定性和定量方法相结合用于1~2种有害生物的分析,冼晓青等[31]分析发现番茄潜麦蛾的R值为2.64,属于极高风险性农业有害生物。杨腊英等[8]分析发现香蕉细菌性枯萎病病原菌(Ralstonia solanacearum race 2)的综合R值为2.32,属于高度危险的农业植物有害生物。谢梅琼等[10]分析发现香蕉枯萎病菌[尖孢镰刀菌古巴专化型(F. oxysporum f. sp. cubense)]的R值为2.12,属于高度危险的检疫性有害生物。姚卫民等[9]分析发现香蕉穿孔线虫的R值为2.7,在广西属高度危险的有害生物。徐永红等[32]分析发现柑橘轮斑病菌(Pseudofabraea citricarpa)的R值为2.08,处于高度风险等级。陈志云等[33]分析发现红树林的2种有害生物薇甘菊、星天牛最为严重,R值分别为1.63和1.61,均属中度危险的林业有害生物。
本研究应用定性和定量方法对输华香蕉种苗上传带的假弯孢菌等9种潜在检疫性有害生物开展风险分析,为检疫部门监测预警和检验检疫提供了理论依据。由于香蕉种苗传带的潜在检疫性有害生物仍缺乏全面和深入的研究,部分指标仍存在一定程度的主观性。总之,香蕉种苗传带有害生物风险评估体系将随着其传带的有害生物生物学、流行学、成灾机理、检疫处理技术、田间防控技术和风险评估方法等领域取得新进展而更加完善和科学。
陈柳, 张焱, 起建凌. 我国香蕉主产区可持续发展能力评价研究[J]. 云南农业大学学报(社会科学), 2024, 18(4): 108-115.
CHEN L,
ZHANG Y,
QI J L. Evaluation of sustainable development ability in China’s banana main production areas[J]. Journal of Yunnan Agricultural University (Social Sciences), 2024, 18(4): 108-115. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[2]苏祖祥, 许娟, 石云平, 青钟准, 陈河, 陆卫群, 李贤高, 陈霞, 覃永嫒, 李丽, 李小泉. 我国特色蕉产业发展现状与建议[J]. 农业研究与应用, 2022, 35(4): 56-59.
SU Z X,
XU J,
SHI Y P,
QING Z J,
CHEN H,
LU W Q,
LI X G,
CHEN X,
QIN Y A,
LI L,
LI X Q. Development status and suggestions of characteristic banana industry in China[J]. Agricultural Research and Application, 2022, 35(4): 56-59. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[3]王芳, 谢江辉. 我国香蕉产业“十三五”回顾与“十四五”展望[J]. 中国热带农业, 2022(3): 15-22.
WANG F,
XIE J H. Review of Chinese banana industry during the 13th Five-Year Plan period and outlook of this industry during the 14th Five-Year Plan period[J]. China Tropical Agriculture, 2022(3): 15-22. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[4]胡从九. 浅析世界香蕉市场变化及趋势[J]. 中国热带农业, 2020(6): 39-41, 11.
HU C J. Analysis on the change and trend of banana market in the world[J]. Tropical Agriculture in China, 2020(6): 39-41, 11. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[5]刘立娜, 杨宝明, 王永芬, 曾莉, 黄玉玲, 李永平, 尹可锁, 李迅东, 彭学彬, 徐胜涛, 番华彩, 白亭亭, 张晶, 李舒, 郑泗军. 引进的香蕉种质资源对云南枯萎病菌株的抗性评价[J]. 中国南方果树, 2021, 50(6): 63-68, 73.
LIU L N,
YANG B M,
WANG Y F,
ZENG L,
HUANG Y L,
LI Y P,
YIN K S,
LI X D,
PENG X B,
XU S T,
FAN H C,
BAI T T,
ZHANG J,
LI S,
ZHENG S J. Evaluation of resistance of introduced banana germplasm resources to Yunnan blight strains[J]. Fruit Tree in Southern China, 2021, 50(6): 63-68, 73. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[6]冯慧敏, 张俊, 王志双, 徐小雄, 陈友, 王沛政, 武耀廷. INIBAP引进香蕉种质资源对枯萎病的抗性评价[J]. 热带农业科学, 2014, 34(8): 37-42.
FENG H M,
ZHANG J,
WANG Z S,
XU X X,
CHEN Y,
WANG P Z,
WU Y T. Fusarium wilt resistance of banana germplasm introduced from INIBAP[J]. Chinese Journal of Tropical Agriculture, 2014, 34(8): 37-42. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[7]吕飞, 杜予州, 周奕景, 杨文晏. 有害生物风险分析研究概述[J]. 植物检疫, 2016, 30(2): 7-12.
LYU F,
DU Y Z,
ZHOU Y J,
YANG W Y. Overview of pest risk analysis research[J]. Plant Quarantine, 2016, 30(2): 7-12. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[8]杨腊英, 林培群, 周游, 郭立佳, 汪军, 梁昌聪, 黄俊生. 香蕉细菌性枯萎病(Moko病)入侵对我国香蕉产业的风险分析[J]. 热带农业科学, 2020, 40(增刊1): 17-23.
YANG L Y,
LIN P Q,
ZHOU Y,
GUO L J,
WANG J,
LIANG C C,
HUANG J S. Risk analysis of banana bacterial wilt disease (Moko disease) in China[J]. Chinese Journal of Tropical Agriculture, 2020, 40(Suppl. 1): 17-23. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[9]姚卫民, 刘铮, 韦斌. 香蕉穿孔线虫入侵广西的风险分析[J]. 植物检疫, 2011, 25(6): 43-44.
YAO W M,
LIU Z,
WEI B. Risk analysis of Radopholus similis invading Guangxi[J]. Plant Quarantine, 2011, 25(6): 43-44. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[10]谢梅琼, 杨媚, 杨迎青, 姜子德, 周而勋. 香蕉枯萎病菌的风险性分析[J]. 果树学报, 2011, 28(2): 284-289.
XIE M Q,
YANG M,
YANG Y Q,
JIANG Z D,
ZHOU E X. Risk analysis of Fusarium oxysporum f. sp. cubense the causal agent of banana Fusarium wilt[J]. Journal of Fruit Science, 2011, 28(2): 284-289. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[11]刘福秀, 杨祖江, 蔡波, 李伟东, 李娜, 林明光. 输华去皮毛椰子传带有害生物的风险分析研究[J]. 植物检疫, 2015, 29(2): 65-68.
LIU F X,
YANG Z J,
CAI B,
LI W D,
LI N,
LIN M G. Pest risk analysis for the importation of dehusked coconut[J]. Plant Quarantine, 2015, 29(2): 65-68. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[12]刘慧, 赵守歧, 马晨. 我国农业植物有害生物风险分析工作探讨[J]. 中国植保导刊, 2023, 43(1): 84-86, 43.
LIU H,
ZHAO S Q,
MA C. Discussion on risk analysis of agricultural plant pests in China[J]. China Plant Protection, 2023, 43(1): 84-86, 43. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[13]孙双艳, 周明华, 白娟, 王振华, 王建东, 马菲. 欧洲和地中海植物保护组织有害生物风险分析工作介绍[J]. 植物检疫, 2022, 36(3): 54-59. (in Chinese)
SUN S Y,
ZHOU M H,
BAI J,
WANG Z H,
WANG J D,
MA F. Introduction to the pest risk analysis work of the European and Mediterranean Plant Protection Organization[J]. Plant Quarantine, 2022, 36(3): 54-59. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[14]管旭芳, 于晓云, 王英华, 范栋, 赵洪德, 赵黎明, 封立平. 进口蓝莓有害生物风险分析及风险管理措施[J]. 浙江农业科学, 2018, 59(4): 613-616. (in Chinese)
摘要
依据FAO制定的国际植物检疫措施标准有害生物风险分析准则,对墨西哥蓝莓上主要有害生物的发生情况进行了全面收集整理,开展有害生物风险分析,确定了蓝莓上的潜在检疫性有害生物名单和风险等级,提出有效降低有害生物传入的风险管理对策。
GUAN X F,
YU X Y,
WANG Y H,
FAN D,
ZHAO H D,
ZHAO L M,
FENG L P. Risk analysis and risk management measures for imported blueberry pests[J]. Zhejiang Agricultural Sciences, 2018, 59(4): 613-616. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[15]蒋青, 梁忆冰, 王乃扬, 姚文国. 有害生物危险性评价的定量分析方法研究[J]. 植物检疫, 1995, 9(4): 208-211.
JIANG Q,
LIANG Y B,
WANG N Y,
YAO W G. Study on the quantitative analysis methods of pest hazard assessment[J]. Plant Quarantine, 1995, 9(4): 208-211. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[16]董丹丹, 刘崇怀, 樊秀彩, 孙海生, 张国海, 王忠跃. 葡萄根瘤蚜在中国的风险性分析[J]. 植物检疫, 2011, 25(1): 21-26.
DONG D D,
LIU C H,
FAN X C,
SUN H S,
ZHANG G H,
WANG Z Y. Risk analysis of grape phylloxera Viteus vitifoliae Fitch in China[J]. Plant Quarantine, 2011, 25(1): 21-26. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[17]DA SILVA RIPARDO-FILHO H,
COCA RUÍZ V,
SUÁREZ I,
MORAGA J,
ALEU J,
COLLADO I G. From genes to molecules, secondary metabolism in Botrytis cinerea: new insights into anamorphic and teleomorphic stages[J]. Plants, 2023, 12: 553.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[18]张传清, 张雅, 魏方林, 刘少颖, 朱国念. 设施蔬菜灰霉病菌对不同类型杀菌剂的抗性检测[J]. 农药学学报, 2006, 8(3): 245-249.
ZHANG C Q,
ZHANG Y,
WEI F L,
LIU S Y,
ZHU G N. Detection of resistance of Botryotinia fuckeliana from protected vegetables to different classes of funggicides[J]. Chinese Journal of Pesticide Science, 2006, 8(3): 245-249. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[19]巫锡奎, 刘志均, 陈君志. 一种假弯孢菌引起的香蕉叶斑病[J]. 广西农业科学, 1991(2): 88-89.
WU X K,
LIU Z J,
CHEN J Z. A banana leaf spot disease caused by Curvularia fallax Boedijin[J]. Guangxi Agricultural Sciences. 1991(2): 88-89. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[20]孙正祥, 纪春艳, 李云锋, 王振中. 香蕉枯萎病拮抗细菌的分离筛选与鉴定[J]. 中国生物防治学报, 2008, 24(2): 143-147.
SUN Z X,
JI C Y,
LI Y F,
WANG Z, Z.Antagonistic rhizobacteria strain Bacillus subtilis S-1 against banana Fusarium wilt[J]. Chinese Journal of Biological Control, 2008, 24(2): 143-147. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[21]ZHANG Z F,
NAN Z B. Erwinia persicina, a possible new necrosis and wilt threat to forage or grain legumes production[J]. European Journal of Plant Pathology, 2014, 139: 349-358.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[22]刘建锋. 松树脂溃疡病菌的风险分析及应对策略[J]. 广东林业科技, 2006(3): 96-99.
LIU J F. Pest risk analysis of Fusarium circinatum[J]. Guangdong Forestry Science and Technology, 2006(3): 96-99. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[23]刘跃庭, 崔铁军, 牛春敬, 罗加凤. 关注甘蔗上的检疫性真菌——甘蔗凋萎病菌[J]. 植物检疫, 2013(2): 76-79.
LIU Y T,
CUI T J,
NIU C J,
LUO J F. Pay attention to the quarantine fungus on sugarcane: sugarcane wilt disease[J]. Plant Quarantine, 2013(2): 76-79. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[24]桑利伟, 郑服丛. 我国香蕉的主要病害及防治[J]. 安徽农业科学, 2006(9): 1841-1845.
SANG L W,
ZHENG F C. Main diseases of banana in China and its control[J]. Anhui Agricultural Sciences, 2006(9): 1841-1845. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[25]CROUS P W,
SCHROERS H J,
GROENEWALD J Z,
BRAUN U,
SCHUBERT K. Metulocladosporiella gen. nov. for the causal organism of Cladosporium speckle disease of banana[J]. Mycological Research, 2006, 110(3): 264-275.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[26]JONES D R. Handbook of Diseases of Banana, Abacá and Enset[M]. CAB International, 2019: 152-153.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[27]RAY J D,
SUBANDIYAH S,
RINCON-FLOREZ V A,
PRAKOSO A B,
MUDITA I W,
CARVALHAIS L C,
DRENTH A. Geographic expansion of banana blood disease in Southeast Asia[J]. Plant Disease, 2021, 105(10): 2792-2800.
Blood disease in bananas caused by subsp. is a bacterial wilt causing significant crop losses in Indonesia and Malaysia. Disease symptoms include wilting of the plant and red brown vascular staining, internal rot, and discoloration of green banana fruit. There is no known varietal resistance to this disease in the genus, although variation in susceptibility has been observed, with the popular Indonesian cooking banana variety Kepok being highly susceptible. This study established the current geographic distribution of Blood disease in Indonesia and confirmed the pathogenicity of isolates by Koch's Postulates. The long-distance distribution of the disease followed an arbitrary pattern indicative of human-assisted movement of infected banana materials. In contrast, local or short distance spread radiated from a single infection source, indicative of dispersal by insects and possibly contaminated tools, water or soil. The rapid expansion of its geographical range makes Blood disease an emerging threat to banana production in Southeast Asia and beyond.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[28]HO J S,
KRISHNEN G,
JAFFAR N S,
YEAP S K,
HO W Y. Pathogenesis study of blood disease bacterium in local bananas of Malaysia[J]. Physiological and Molecular Plant Pathology, 2023, 127: 1-10.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[29]RODRÍGUEZ-YZQUIERDO G,
OLIVARES B O,
GONZÁLEZ-ULLOA A,
LEÓN-PACHECO R,
GÓMEZ-CORREA J C,
YACOMELO-HERNÁNDEZ M,
BETANCOURT-VÁSQUEZ M. Soil predisposing factors to Fusarium oxysporum f. sp cubense tropical race 4 on banana crops of La Guajira, Colombia[J]. Agronomy, 2023, 13(10): 2588.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[30]MARYANI N,
LOMBARD L,
POERBA Y S,
SUBANDIYAH S,
CROUS P W,
KEMA G H J. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin[J]. Studies in Mycology, 2019, 92(1): 155-194.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]冼晓青, 张桂芬, 刘万学, 万方浩. 世界性害虫番茄潜麦蛾入侵我国的风险分析[J]. 植物保护学报, 2019, 46(1): 49-55.
XIAN X Q,
ZHANG G F,
LIU W X,
WAN F H. Risk assessment of the invasion of the tomato leafminer Tuta absoluta (Meyrick) into China[J]. Journal of Plant Protection, 2019, 46(1): 49-55. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]徐永红, 陈力, 唐松, 丁德宽, 杨宇衡. 柑橘轮斑病的适生区预测及风险分析[J]. 中国农业科学, 2020, 53(21): 4430-4439.
摘要
【目的】 柑橘轮斑病(citrus target spot)作为一种新发柑橘病害,造成发病果园严重的经济损失。本研究针对该病害进行适生区预测及风险分析,以便对该病采取及时、有效的管控措施,最终达到降低其流行风险等级,防止病害传播扩展的目的。【方法】 基于环境变量数据和柑橘轮斑病发生分布数据,运用MaxEnt生态位模型模拟预测柑橘轮斑病菌(Pseudofabraea citricarpa)在中国的潜在适生区分布。并通过ROC(receiver operating characteristic)曲线下面积(area under the curve,AUC)评估预测模型的精度,运用正规化训练增益刀切法(regularized training gain)获取气候因子与分布概率间的关系。同时采用有害生物风险分析理论,以有害生物风险分析的规定程序为依据探索柑橘轮斑病病害的风险分析体系和评价值的计算方法,对评价指标进行定性分析,进而量化评价值。在建立综合评价模型的基础上,计算柑橘轮斑病风险性危害值,最后对病害的风险性危害值进行评价。【结果】 柑橘轮斑病菌MaxEnt模型预测结果的平均AUC值为0.998,表明预测结果精度高。柑橘轮斑病菌的潜在适生区面积约占全国面积12.19%,高适生区、中适生区、低适生区各占全国面积约2.85%、3.99%、5.35%。高、中适生区主要集中于长江中上游柑橘优势区及其周边。其中,高适生区主要集中在四川、重庆、陕西南部,以及贵州、湖北等少量地区。中、低适生区是高适生区的外围扩展。通过MaxEnt模型正规化训练增益刀切法获取的环境变量重要性分析结果表明,最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)是影响柑橘轮斑病菌分布的3个关键环境因子,这意味着低温、干冷季节柑橘轮斑病发生可能性大。风险分析最终创建出5个准则层、13个指标层的多指标综合评价体系,并对各指标层定量与定性分析,柑橘轮斑病在我国的风险性危害值(R值)为2.08,处于高度风险等级,对长江中上游及湖北西部-湖南西部两大柑橘产区的潜在危害最大。【结论】 柑橘轮斑病风险性较高,需要尽快建立监测体系,针对病害采取有效控制措施,阻止病害在长江中上游柑橘优势区及相邻柑橘产区传播。
XU Y H,
CHEN L,
TANG S,
DING D K,
YANG Y H. Prediction of suitable area and risk analysis for citrus target spot[J]. Scientia Agricultura Sinica, 2020, 53(21): 4430-4439. (in Chinese)
【Objective】Citrus target spot, a new disease reported in China, has caused serious economic losses in the local orchards. Therefore, it is necessary to carry out the prediction of the suitable area and risk analysis of the disease, so as to take timely and effective control measures for the disease, and finally achieve the purpose of reducing the risk level and preventing the spread of this disease.【Method】Combined the environmental data and the occurrence and distribution data of the disease areas, MaxEnt ecological niche models were used to predict the potential suitable area of citrus target spot pathogen (Pseudofabraea citricarpa) in China. The area under the curve (AUC) of receiver operating characteristic (ROC) was used to evaluate the accuracy of the prediction model, and the relationship between the climate factor and the distribution probability was obtained using the regularized training gain method. Additionally, the theory of pest risk analysis was used to explore the risk analysis system and calculation method of citrus target spot based on the prescribed procedures of pest risk analysis. Qualitative analysis of the evaluation indicators was conducted to quantify the evaluation values. Based on establishing a comprehensive evaluation model, the risk hazard value of citrus target spot was calculated, and finally the risk hazard value of the disease was evaluated.【Result】The average AUC value of the predicted result of MaxEnt model was 0.998, which indicated that the predicted result was highly accurate. The area of potential suitable areas for P. citricarpa accounts for 12.19% of the national area. Among them, the areas of high suitability, medium suitability, and low suitability account for about 2.85%, 3.99%, and 5.35% of the national area, respectively. The high and middle suitable areas are mainly concentrated in the citrus dominant area in the upper and middle reaches of the Yangtze River. Among them, high suitable area is mainly concentrated in Sichuan, Chongqing, southern Shaanxi, and a few areas in Guizhou and Hubei. The middle and low suitable areas are the peripheral expansion of the high suitable area. The analysis results of the importance of environmental variables obtained by the MaxEnt model normalization training gain knife-cut method show that the mean temperature in the coldest quarter (Bio11), the mean temperature in the driest quarter (Bio9), and the minimum temperature of the coldest month (Bio6) are the key factors affecting the distribution of P. citricarpa, which means that there is a high possibility of citrus target spot in low temperature and dry and cold seasons. The risk analysis finally created a multi-index comprehensive evaluation system of 5 criterion layers and 13 indicator layers, and quantitative and qualitative analyses of each indicator layer. The risk index value (R) of the disease was up to 2.08. This disease has the greatest potential harm to the two major citrus-producing areas in the Yangtze River Basin and in western Hubei and western Hunan.【Conclusion】In view of the high risk of citrus target spot, it is necessary to establish a monitoring system as soon as possible, and take effective control measures against the disease to prevent the spread between the citrus dominant area and adjacent citrus-producing areas in the upper and middle reaches of the Yangtze River.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[33]陈志云, 李东文, 王玲, 莫羡, 孔达卿, 陆建康, 杨华. 广东省中山市2种红树林有害生物风险分析及防控策略[J]. 生物安全学报, 2020, 29(2): 148-156.
CHEN Z Y,
LI D W,
WANG L,
MO X,
KONG D Q,
LU J K,
YANG H. Hazard risk analysis and prevention strategy of two forest pests in mangrove forest in Zhongshan city, Guangdong province[J]. Journal of Biosafety, 2020, 29(2): 148-156. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}相关知识
进境兰花有害生物风险分析与检疫
外来入侵生物香蕉穿孔线虫的管理对策
兰科花卉有害生物风险分析及检疫防控
植物检疫性有害生物相关术语梳理及规范
外来入侵生物香蕉穿孔线虫管理对策
有害生物风险分析(PRA)及其在输华马铃薯上的应用
中华人民共和国海关总署公告2019年第187号
《关于印度芒果输华植物卫生条件的议定书》 – 根盆网
进境花卉种子有害生物风险初析
有害生物风险评价方法商榷——以林业有害生物为例
网址: 输华香蕉种苗传带有害生物的风险分析研究 https://m.huajiangbk.com/newsview773790.html
上一篇: 玫瑰花的病虫害怎么防治 4种玫瑰 |
下一篇: 2024年大学英语四六级词汇表. |