首页 > 分享 > 基于国内外期刊论文分析全球猕猴桃研究与应用进展

基于国内外期刊论文分析全球猕猴桃研究与应用进展

摘要:

依据科瑞唯安公司Web of Science 核心合集和中国知网平台(CNKI)期刊数据库,重点对2003 -2022年期间的SCI 和CNKI 核心期刊收录的猕猴桃(Actinidia)研究论文5 320篇,采用文献计量分析方法,从论文发表年限、发表国家或地区分布、学科领域等方面进行统计分析,并对各学科领域的研究进展进行归纳总结。结果显示,20年内SCI 和CNKI核心期刊文献数量总体呈增长趋势,SCI 论文收录量最多的国家是中国,其次是新西兰、意大利等;CNKI核心期刊收录论文数量最多的机构是西北农林科技大学,其次是中国科学院武汉植物园和江西农业大学。猕猴桃研究涉及植物科学、园艺学、植物病理学和昆虫学、果品贮藏与加工学、分子生物学、生物化学、药物学、生物信息学等131个学科,很多论文来自跨学科研究。近5年发展最快的学科是分子生物学、植物病理学以及果品贮藏与加工学。本文通过对期刊论文的分析,旨在为我国科研人员了解全球猕猴桃研究动态、确立未来研究方向、开展学术交流提供信息和借鉴。

关键词: 猕猴桃  /  期刊论文  /  研究进展  

Abstract:

Based on the Web of Science core collection and the CNKI journal database of the China Knowledge Network platform, this study focused on 5 320 kiwifruit (Actinidia) research papers included in SCI and CNKI core journals from 2003 to 2022. Bibliometric analysis was used to examine the publications by year, geographic region, and subject area. Results revealed a consistent upward trend in the quantity of publications in both SCI and CNKI core journals over the past two decades. China emerged as the most prolific contributor to SCI articles, followed by New Zealand and Italy. The institutions contributing the highest number of papers included Northwest Agriculture and Forestry University, Wuhan Botanical Garden of Chinese Academy of Sciences, and Jiangxi Agricultural University. Kiwifruit research involved 131 disciplines, as such plant science, horticulture, plant pathology and entomology, fruit storage and processing, molecular biology, biochemistry, pharmacology, and bioinformatics, as well as interdisciplinary research papers. The fastest-growing disciplines over the past 5 years include molecular biology, plant pathology, and fruit storage. This bibliometric analysis serves as a resource for researchers to understand global kiwifruit research dynamics, establish research directions, and conduct academic exchange.

图  1   1957-2022年国内外猕猴桃研究论文数量的变化

Figure  1.   Number of domestic and international research papers on kiwifruit from 1957-2022

图  2   2003–2022年SCI 和CNKI核心期刊论文分阶段比较

Figure  2.   Phased comparison of SCI and CNKI core journal papers from 2003 to 2022

图  3   猕猴桃研究领域主要国家SCI论文发表趋势

Figure  3.   Trends in SCI publications in main countries in the field of kiwifruit research

图  4   2003-2023年3月发表论文的学科领域分布

Figure  4.   Distribution of published papers by subject area from 2003 to March 2023

表  1   猕猴桃研究领域重点国家SCI论文数量排名(1957-2023年)

Table  1   Ranking of number of SCI papers from main countries in the field of kiwifruit research (1957-2023)

国家
CountrySCI论文数量
No. of SCI papers 中国1 089新西兰991意大利378韩国212日本198美国156西班牙135伊朗86土耳其76希腊76法国63

表  2   CNKI核心期刊论文数量排名前20的第一作者单位发表数量(1993-2022年)

Table  2   Number of articles from the top 20 institutes based on CNKI core journal article numbers of first authors (1993-2022)

第一作者所在单位
First author’s unit年份 Year总计
Total1993-20022003-20122013-2022 西北农林科技大学48130213391中国科学院武汉植物园173648104江西农业大学22177100吉首大学16541787贵阳学院056166贵州大学275665四川农业大学1105364中国农业科学院郑州果树研究所14113763陕西师范大学3114256沈阳农业大学0342054湖北省农业科学院21171250安徽农业大学1522946浙江大学1228545广西壮族自治区、中国科学院广西植物研究所12151341仲恺农业工程学院029736福建省农业科学院果树研究所1901433四川大学062935湖南农业大学1151632西南林业大学002525四川省农业科学院122023

表  3   2003年以来猕猴桃各研究领域SCI和CNKI核心期刊文章数量

Table  3   Number of SCI and CNKI core journal articles in each field since 2003

研究领域
Research field涉及方向
Direction数据库
Database年份 Year2018-2023.032013-20172008-20122003-2007 分子生物学基因组SCI24400CNKI4100基因挖掘SCI17241217CNKI4716135分子标记SCI21659CNKI2125129其他SCI3221CNKI0440总计292995731植物保护学细菌病害SCI9865264CNKI282172真菌病害SCI42191910CNKI421735其他病害SCI28652CNKI12222防治方法SCI932276CNKI442873虫害及其他SCI3815107CNKI161335抗性种质挖掘CNKI11365总计4522119551食品科学与技术果品加工工艺SCI102593014CNKI113845951果品加工产品SCI18972CNKI61494460其他SCI12966CNKI4002总计310210146135药物学和植物化学果实SCI24811415682CNKI61465128根SCI2516172CNKI21274417其他部位SCI38172511CNKI12101513检测方法SCI11651总计416236313154植物科学种质评价SCI58241917CNKI55223222新品种SCI3251CNKI41212432其他SCI3877CNKI1010149总计 1708710188

表  4   2003年以来各阶段园艺领域猕猴桃SCI和CNKI核心期刊论文数量

Table  4   Number of SCI and CNKI core journal papers in horticulture at various stages since 2003

涉及方向
Direction数据库
Database年份 Year2018-2023.032013-20172008-20122003-2007 土肥水SCI40171312CNKI64362510树体管理SCI42171313CNKI37271713繁殖SCI2041115CNKI24363323果园生态SCI13630CNKI256101采摘机器人SCI23100CNKI121240其他SCI59324825CNKI74553513总计 433249212125

表  5   2003年以来各阶段采后贮藏领域SCI论文和CNKI核心期刊论文数量

Table  5   SCI and CNKI core journal papers in the field of postharvest storage during different periods since 2003

涉及方向
Direction数据库
Database年份 Year2018-2023.032013-20172008-20122003-2007 无损检测SCI5919115CNKI2012101药剂保鲜SCI5926138CNKI41472718果实采后变化SCI3918183CNKI278118低温贮藏SCI20833CNKI241152气调 + 物理贮藏SCI13754CNKI161433采收运输包装SCI2210116CNKI22452其他SCI8794CNKI10741总计 38019813568 [1] 黄宏文, 钟彩虹, 姜正旺, 李新伟, 姚小洪, 等. 猕猴桃属: 分类 资源 驯化 栽培[M]. 北京: 科学出版社, 2012: 3-330. [2] 钟彩虹,黄文俊,李大卫,张琼,李黎. 世界猕猴桃产业发展及鲜果贸易动态分析[J]. 中国果树,2021(7):101−108. doi: 10.16626/j.cnki.issn1000-8047.2021.07.025

Zhong CH,Huang WJ,Li DW,Zhang Q,Li L. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021 (7):101−108. doi: 10.16626/j.cnki.issn1000-8047.2021.07.025

[3]

Huang SX,Ding J,Deng DJ,Tang W,Sun HH,et al. Draft genome of the kiwifruit Actinidia chinensis[J]. Nat Commun,2013,4 (1):2640. doi: 10.1038/ncomms3640

[4]

Wu HL,Ma T,Kang MH,Ai FD,Zhang JL,et al. A high-quality Actinidia chinensis (kiwifruit) genome[J]. Hortic Res,2019,6 (1):117. doi: 10.1038/s41438-019-0202-y

[5]

Yue JY,Chen QY,Wang YZ,Zhang L,Ye C,et al. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis[J]. Hortic Res,2023,10 (2):uhac264. doi: 10.1093/hr/uhac264

[6]

Tang W,Sun XP,Yue JY,Tang XF,Jiao C,et al. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping[J]. GigaScience,2019,8 (4):giz027.

[7]

Yue JY,Liu JC,Tang W,Wu YQ,Tang XF,et al. Kiwifruit Genome Database (KGD):a comprehensive resource for kiwifruit genomics[J]. Hortic Res,2020,7 (1):117. doi: 10.1038/s41438-020-0338-9

[8]

Pilkington SM,Crowhurst R,Hilario E,Nardozza S,Fraser L,et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants[J]. BMC Genomics,2018,19 (1):257. doi: 10.1186/s12864-018-4656-3

[9]

Yao XH,Wang SB,Wang ZP,Li DW,Jiang Q,et al. The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha[J]. Mol Horticulture,2022,2 (1):13. doi: 10.1186/s43897-022-00034-z

[10]

Han X,Zhang YL,Zhang Q,Ma N,Liu XY,et al. Two haplotype-resolved,gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit[J]. Mol Plant,2023,16 (2):452−470. doi: 10.1016/j.molp.2022.12.022

[11]

Akagi T,Varkonyi-Gasic E,Shirasawa K,Catanach A,Henry IM,et al. Recurrent neo-sex chromosome evolution in kiwifruit[J]. Nat Plants,2023,9 (3):393−402. doi: 10.1038/s41477-023-01361-9

[12]

Xia H,Deng HH,Li MZ,Xie Y,Lin LJ,et al. Chromosome-scale genome assembly of a natural diploid kiwifruit (Actinidia chinensis var. deliciosa)[J]. Sci Data,2023,10 (1):92. doi: 10.1038/s41597-023-02006-4

[13]

Pratima P,Sharma N,Sharma DP. Canopy temperature and water relations of kiwifruit cultivar allison in response to deficit irrigation and in situ moisture conservation[J]. Curr Sci,2016,111 (2):375−379. doi: 10.18520/cs/v111/i2/375-379

[14]

Santoni F,Paolini J,Barboni T,Costa J. Relationships between the leaf and fruit mineral compositions of Actinidia deliciosa var. Hayward according to nitrogen and potassium fertilization[J]. Food Chem,2014,147:269−271. doi: 10.1016/j.foodchem.2013.09.154

[15]

Goodwin RM,McBrydie HM,Taylor MA,et al. Wind and honey bee pollination of kiwifruit (Actinidia chinensis ‘HORT16A’)[J]. New Zealand J Bot,2013,51 (3):229−240. doi: 10.1080/0028825X.2013.806934

[16]

Liao GL,Xu XB,Liu Q,Zhong M,Huang CH,et al. A special summer pruning method significantly increases fruit weight,ascorbic acid,and dry matter of kiwifruit (‘Jinyan’,Actinidia eriantha × A. chinensis)[J]. HortScience Horts,2020,55 (10):1698−1702. doi: 10.21273/HORTSCI15158-20

[17]

Akbaş H,Özcan M. Effects of fruit/leaf ratios on fruit characteristics in Kiwifruit[J]. Erwerbs-Obstbau,2020,62 (3):369−375. doi: 10.1007/s10341-020-00511-z

[18]

Li DW,Han F,Liu XL,Lv HY,Li LL,et al. Localized graft incompatibility in kiwifruit:analysis of homografts and heterografts with different rootstock & scion combinations[J]. Sci Hortic,2021,283:110080. doi: 10.1016/j.scienta.2021.110080

[19]

Suo R,Gao FF,Zhou ZX,Fu LS,Song ZZ,et al. Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking[J]. Comput Electron Agric,2021,182:106052. doi: 10.1016/j.compag.2021.106052

[20]

Fu LS,Feng YL,Wu JZ,Liu ZH,Gao FF,et al. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model[J]. Precision Agric,2021,22 (3):754−776. doi: 10.1007/s11119-020-09754-y

[21]

Barnett J,Duke M,Au CK,Lim SH. Work distribution of multiple Cartesian robot arms for kiwifruit harvesting[J]. Comput Electron Agric,2020,169:105202. doi: 10.1016/j.compag.2019.105202

[22]

Williams H,Ting C,Nejati M,Jones MH,Penhall N,et al. Improvements to and large-scale evaluation of a robotic kiwifruit harvester[J]. J Field Robot,2020,37 (2):187−201. doi: 10.1002/rob.21890

[23]

Williams HAM,Jones MH,Nejati M,Seabright MJ,Bell J,et al. Robotic kiwifruit harvesting using machine vision,convolutional neural networks,and robotic arms[J]. Biosyst Eng,2019,181:140−156. doi: 10.1016/j.biosystemseng.2019.03.007

[24]

Donati I,Cellini A,Sangiorgio D,Vanneste JL,Scortichini M,et al. Pseudomonas syringae pv. actinidiae:ecology,infection dynamics and disease epidemiology[J]. Microb Ecol,2020,80 (1):81−102. doi: 10.1007/s00248-019-01459-8

[25] 钟彩虹,李黎,潘慧,邓蕾,陈美艳. 猕猴桃细菌性溃疡病的发生规律及综合防治技术[J]. 中国果树,2020(1):9−13,18.

Zhong CH,Li L,Pan H,Deng L,Chen MY. Occurrence rule and comprehensive control of kiwifruit bacterial canker disease[J]. China Fruits,2020 (1):9−13,18.

[26]

Scortichini M,Marcelletti S,Ferrante P,Petriccione M,Firrao G. Pseudomonas syringae pv. actinidiae:a re-emerging,multi-faceted,pandemic pathogen[J]. Mol Plant Pathol,2012,13 (7):631−640. doi: 10.1111/j.1364-3703.2012.00788.x

[27]

McCann HC,Li L,Liu YF,Li DW,Pan H,et al. Origin and evolution of the kiwifruit canker pandemic[J]. Genome Biol Evol,2017,9 (4):932−944. doi: 10.1093/gbe/evx055

[28]

Zhao ZB,Chen JL,Gao XN,Zhang D,Zhang JL,et al. Comparative genomics reveal pathogenicity-related loci in Pseudomonas syringae pv. actinidiae biovar 3[J]. Mol Plant Pathol,2019,20 (7):923−942. doi: 10.1111/mpp.12803

[29]

Gao XN,Huang QL,Zhao ZB,Han QM,Ke XW,et al. Studies on the Infection,colonization,and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labeled strain[J]. PLoS One,2016,11 (3):e0151169. doi: 10.1371/journal.pone.0151169

[30]

Balestra GM,Taratufolo MC,Vinatzer BA,Mazzaglia A. A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin[J]. Plant Dis,2013,97 (4):472−478. doi: 10.1094/PDIS-06-12-0590-RE

[31]

Cimmino A,Iannaccone M,Petriccione M,Masi M,Evidente M,et al. An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides:a tool for rapid immunochemical detection of kiwifruit bacterial canker[J]. Phytochem Lett,2017,19:136−140. doi: 10.1016/j.phytol.2016.12.027

[32]

Zhi TH,Liu QH,Xie T,Ding Y,Hu RJ,et al. Identification of genetic and chemical factors affecting type Ⅲ secretion system expression in Pseudomonas syringae pv. actinidiae biovar 3 using a luciferase reporter construct[J]. Phytopathology,2022,112 (8):1610−1619. doi: 10.1094/PHYTO-09-21-0404-R

[33]

Wang FM,Mo QH,Ye KY,Gong HJ,Qi BB,et al. Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae[J]. Plant Pathol,2020,69 (6):979−989. doi: 10.1111/ppa.13184

[34]

Tahir J,Brendolise C,Hoyte S,Lucas M,Thomson S,et al. QTL mapping for resistance to cankers induced by Pseudomonas syringae pv. actinidiae (Psa) in a tetraploid Actinidia chinensis kiwifruit population[J]. Pathogens,2020,9 (11):967. doi: 10.3390/pathogens9110967

[35]

Nunes da Silva M,Vasconcelos MW,Gaspar M,Balestra GM,Mazzaglia A,Carvalho SMP. Early pathogen recognition and antioxidant system activation contributes to Actinidia arguta tolerance against Pseudomonas syringae pathovars actinidiae and actinidifoliorum[J]. Front Plant Sci,2020,11:1022. doi: 10.3389/fpls.2020.01022

[36]

Rheinländer PA,Sutherland PW,Elmer PAG. Visualisation of the mode of action of a biological control agent,Aureobasidium pullulans (strain YBCA5) against Pseudomonas syringae pv. actinidiae biovar 3 on the kiwifruit phylloplane[J]. Australasian Plant Pathol,2021,50 (4):379−388. doi: 10.1007/s13313-021-00783-3

[37]

Nie S,Al Riza DF,Ogawa Y,Suzuki T,Kuramoto M,et al. Potential of a double lighting imaging system for characterization of 'Hayward' kiwifruit harvest indices[J]. Postharvest Biol Technol,2020,162:111113. doi: 10.1016/j.postharvbio.2019.111113

[38]

Benelli A,Cevoli C,Fabbri A,Ragni L. Ripeness evaluation of kiwifruit by hyperspectral imaging[J]. Biosyst Eng,2022,223:42−52. doi: 10.1016/j.biosystemseng.2021.08.009

[39]

Berardinelli A,Benelli A,Tartagni M,Ragni L. Kiwifruit flesh firmness determination by a NIR sensitive device and image multivariate data analyses[J]. Sens Actuator A Phys,2019,296:265−271. doi: 10.1016/j.sna.2019.07.027

[40]

Santagapita PR,Tylewicz U,Panarese V,Rocculi P,Dalla Rosa M. Non-destructive assessment of kiwifruit physico-chemical parameters to optimise the osmotic dehydration process:a study on FT-NIR spectroscopy[J]. Biosyst Eng,2016,142:101−109. doi: 10.1016/j.biosystemseng.2015.12.011

[41]

McGlone VA,Jordan RB,Seelye R,Martinsen PJ. Comparing density and NIR methods for measurement of kiwifruit dry matter and soluble solids content[J]. Postharvest Biol Technol,2002,26 (2):191−198. doi: 10.1016/S0925-5214(02)00014-5

[42]

Ma T,Xia Y,Inagaki T,Tsuchikawa S. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach[J]. Postharvest Biol Technol,2021,174:111440. doi: 10.1016/j.postharvbio.2020.111440

[43]

Wang Z,Künnemeyer R,McGlone A,Sun J,Burdon J. Comparison of a dual-laser and a Vis-NIR spectroscopy system for detection of chilling injury in kiwifruit[J]. Postharvest Biol Technol,2021,175:111418. doi: 10.1016/j.postharvbio.2020.111418

[44]

Lü Q,Tang MJ. Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification[J]. Procedia Environ Sci,2012,12:1172−1179. doi: 10.1016/j.proenv.2012.01.404

[45]

Torkashvand AM,Ahmadi A,Gómez PA,Maghoumi M. Using artificial neural network in determining postharvest LIFE of kiwifruit[J]. J Sci Food Agric,2019,99 (13):5918−5925. doi: 10.1002/jsfa.9866

[46]

Ye LX,Tan B,Niu YX,Wang Y,Wang D,Luo AW. The nondestructive testing of Hayward kiwifruit quality treated with CPPU based on the electrical characteristics[J]. J Food Meas Charact,2023,17 (3):3005−3018. doi: 10.1007/s11694-023-01842-7

[47]

Xu LJ,Chen YJ,Wang XH,Chen H,Tang ZL,et al. Non-destructive detection of kiwifruit soluble solid content based on hyperspectral and fluorescence spectral imaging[J]. Front Plant Sci,2022,13:1075929.

[48]

Cobus LA,van Wijk K. Non-contact acoustic method to measure depth-dependent elastic properties of a kiwifruit[J]. Wave Motion,2023,119:103126. doi: 10.1016/j.wavemoti.2023.103126

[49]

Song SJ,Huang X,Li YC. Vibrational bruise prediction of harvested kiwifruits under transportation based on the BP neural network[J]. J Internet Technol,2022,23 (2):391−396. doi: 10.53106/160792642022032302017

[50]

Yang YY,Peng JZ,Fan PH. A non-destructive dropped fruit impact signal imaging-based deep learning approach for smart sorting of kiwifruit[J]. Comput Electron Agric,2022,202:107380. doi: 10.1016/j.compag.2022.107380

[51]

Lin XC,Yang R,Dou Y,Zhang W,Du HY,et al. Transcriptome analysis reveals delaying of the ripening and cell‐wall degradation of kiwifruit by hydrogen sulfide[J]. J Sci Food Agric,2020,100 (5):2280−2287. doi: 10.1002/jsfa.10260

[52]

Zheng XL,Hu B,Song LJ,Pan J,Liu MM. Changes in quality and defense resistance of kiwifruit in response to nitric oxide treatment during storage at room temperature[J]. Sci Hortic,2017,222:187−192. doi: 10.1016/j.scienta.2017.05.010

[53]

Jiao JQ,Jin MJ,Liu H,Suo JT,Yin XR,et al. Application of melatonin in kiwifruit (Actinidia chinensis) alleviated chilling injury during cold storage[J]. Sci Hortic,2022,296:110876. doi: 10.1016/j.scienta.2022.110876

[54]

Huan C,Du XJ,Wang LF,Kebbeh M,Li HH,et al. Transcriptome analysis reveals the metabolisms of starch degradation and ethanol fermentation involved in alcoholic off-flavour development in kiwifruit during ambient storage[J]. Postharvest Biol Technol,2021,180:111621. doi: 10.1016/j.postharvbio.2021.111621

[55]

Chen Y,Shu P,Wang RC,Du XF,Xie Y,et al. Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit[J]. Plant Sci,2021,313:111063. doi: 10.1016/j.plantsci.2021.111063

[56]

Li BQ,Xia YX,Wang YY,Qin GZ,Tian SP. Characterization of genes encoding key enzymes involved in anthocyanin metabolism of kiwifruit during storage period[J]. Front Plant Sci,2017,8:341.

[57]

Chen YJ,Feng XP,Ren H,Yang HK,Liu Y,et al. Changes in physicochemical properties and volatiles of kiwifruit pulp beverage treated with high hydrostatic pressure[J]. Foods,2020,9 (4):485. doi: 10.3390/foods9040485

[58]

Xu SJ,He WY,Yan JT,Zhang RG,Wang P,et al. Volatomics-assisted characterization of aroma and off-flavor contributors in fresh and thermally treated kiwifruit juice[J]. Food Res Int,2023,167:112656. doi: 10.1016/j.foodres.2023.112656

[59]

Huang JT,Li HC,Wang YQ,Wang XN,Ren YC,et al. Evaluation of the quality of fermented kiwi wines made from different kiwifruit cultivars[J]. Food Biosci,2021,42:101051. doi: 10.1016/j.fbio.2021.101051

[60]

Cairone F,Garzoli S,Menghini L,Simonetti G,Casadei MA,et al. Valorization of kiwi peels:fractionation,bioactives analyses and hypotheses on complete peels recycle[J]. Foods,2022,11 (4):589. doi: 10.3390/foods11040589

[61]

Zhuang ZQ,Chen M,Niu JH,Qu N,Ji B,et al. The manufacturing process of kiwifruit fruit powder with high dietary fiber and its laxative effect[J]. Molecules,2019,24 (21):3813. doi: 10.3390/molecules24213813

[62] 李斌,张继月,耿丽娟,吕庆红,辛广,等. 软枣猕猴桃在体外模拟消化过程中酚类物质及抗氧化活性的变化规律[J]. 食品科学,2021,42(23):196−205.

Li B,Zhang JY,Geng LJ,Lü QH,Xin G,et al. Changes of phenolics and antioxidant activities of kiwiberry (Actinidia arguta) fruit during in vitro simulated digestion[J]. Food Science,2021,42 (23):196−205.

[63] 高帆,谢玥,沈妍秋,雷芝,王秀,等. 外源褪黑素对氯化钠胁迫下美味猕猴桃实生苗抗氧化物酶和渗透调节物质的影响[J]. 浙江农林大学学报,2018,35(2):291−297.

Gao F,Xie Y,Shen YQ,Lei Z,Wang X,et al. Exogenous melatonin for NaCl stress with antioxidant enzymes and osmotic substances of Aclinidia deliciosa seedlings[J]. Journal of Zhejiang A&F University,2018,35 (2):291−297.

[64] 王岸娜,李岚昕,吴立根,崔文慧,丁璇子,郑思迪. 猕猴桃糖蛋白体外抗氧化研究[J]. 食品工业,2017,38(10):161−164.

Wang AN,Li LX,Wu LG,Cui WH,Ding XZ,Zheng SD. Study on antioxidant activity of kiwifruit glycoprotein in vitro[J]. The Food Industry,2017,38 (10):161−164.

[65] 纪旭光. 软枣猕猴桃果实多糖的提取纯化、抗氧化及转录组测序研究[D]. 佳木斯: 佳木斯大学, 2022: 1-57. [66]

Taghinezhad E,Kaveh M,Szumny A. Thermodynamic and quality performance studies for drying kiwi in hybrid hot air-infrared drying with ultrasound pretreatment[J]. Appl Sci,2021,11 (3):1297. doi: 10.3390/app11031297

[67]

Ramazzina I,Berardinelli A,Rizzi F,Tappi S,Ragni L,et al. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit[J]. Postharvest Biol Technol,2015,107:55−65. doi: 10.1016/j.postharvbio.2015.04.008

[68]

Zhao Y,Wang P,Zhan P,Tian HL,Lu C,Tian P. Aroma characteristics of cloudy kiwifruit juices treated with high hydrostatic pressure and representative thermal processes[J]. Food Res Int,2021,139:109841. doi: 10.1016/j.foodres.2020.109841

[69]

Silva AM,Pinto D,Moreira MM,Costa PC,Delerue-Matos C,Rodrigues F. Valorization of Kiwiberry leaves recovered by ultrasound-assisted extraction for skin application:a response surface methodology approach[J]. Antioxidants (Basel),2022,11 (4):763. doi: 10.3390/antiox11040763

[70]

Peng YY,Cordiner SB,Sawyer GM,McGhie TK,Espley RV,et al. Kiwifruit with high anthocyanin content modulates NF-κB activation and reduces CCL11 secretion in human alveolar epithelial cells[J]. J Funct Foods,2020,65:103734. doi: 10.1016/j.jff.2019.103734

[71]

D'Amelio CM,Bernad A,García-Figueroa BE,Garrido-Fernández S,Azofra J,et al. Unraveling the diagnosis of kiwifruit allergy:usefulness of current diagnostic tests[J]. J Investig Allergol Clin Immunol,2022,32 (3):206−212. doi: 10.18176/jiaci.0691

[72]

Sopo SM,Fantacci C,Sani I. Contact urticaria on eczematous skin by kiwifruit allergy. In vivo component-resolved diagnosis[J]. Allergol Immunopathol (Madr),2015,43 (5):474−476. doi: 10.1016/j.aller.2014.07.006

[73]

Yoo SK,Kang JY,Lee U,Park SK,Kim JM,et al. Improving effect of Actinidia arguta leaf on hyperglycemia-induced cognitive dysfunction[J]. J Funct Foods,2021,76:104315. doi: 10.1016/j.jff.2020.104315

[74]

Chan AOO,Leung G,Tong T,Wong NY. Increasing dietary fiber intake in terms of kiwifruit improves constipation in Chinese patients[J]. World J Gastroenterol,2007,13 (35):4771−4775. doi: 10.3748/wjg.v13.i35.4771

[75] 李加兴,陈双平,李伟,王小勇,任展,李敏利. 几种主要产地猕猴桃的果籽营养成分比较[J]. 食品与机械,2007,23(2):86−87.

Li JX,Chen SP,Li W,Wang XY,Ren Z,Li ML. Comparision of with kiwi fruit seed's nutrition ingredient in several kind of main habitat[J]. Food & Machinery,2007,23 (2):86−87.

相关知识

期刊论文
武汉植物园在猕猴桃局部适应性的进化机制研究中获进展
武汉植物园在猕猴桃局部适应性的进化机制研究方面取得进展
猕猴桃溃疡病防治策略的研究现状与展望
我国猕猴桃种植与气象条件研究综述
基于Citespace的国内园艺疗法及康复花园研究可视化分析
遥感技术在红树林生态监测与研究中的应用进展
研究生“景观生态学”课程教学国内外比较分析
基于Python的鲜花销售平台设计与实现(Django框架) 研究背景与意义、国内外研究现状
全球植物修复研究文献计量分析

网址: 基于国内外期刊论文分析全球猕猴桃研究与应用进展 https://m.huajiangbk.com/newsview918983.html

所属分类:花卉
上一篇: 蒲江猕猴桃
下一篇: //post.smzdm.com