首页 > 分享 > 典型野生食用菌重金属含量及其人体健康风险评价

典型野生食用菌重金属含量及其人体健康风险评价

摘要:土壤重金属污染是影响生态环境、食品安全和人体健康的重要因素.云南省土壤重金属背景值较高,且矿产资源丰富、采矿活动频繁,导致土壤重金属含量较高.野生食用菌是高效重金属储积器,云南是中国野生食用菌最大产区.因此,本文以云南省8种典型野生食用菌为研究对象,探究其重金属含量(汞、镉、铅、锌、铜、砷)与分配特征,采用单因子污染指数对其进行重金属污染评价,利用概率方法(THQ指数)评估其对不同年龄人群(成人、儿童)的人体健康风险.研究结果表明,不同种类野生食用菌重金属含量存在显著差异(P<0.05).Hg、Cd、Pb、Zn、Cu浓度范围分别为0.5—7.2、0.3—15、0—26.8、47.7—214、56.7—428 mg·kg-1 dw;As未检出.此外,Hg、Cd、Pb、Zn、Cu均主要分布于菌盖.除虫草花、白森、干巴菌中Hg未检出,其余重金属污染评价中单因子污染指数均>1,且同一元素在同种野生食用菌不同部位污染程度不同,其中,老人头菌盖受Cd污染最为严重.基于国家食品安全标准,本研究中98%野生食用菌Hg、Cd、Pb含量超标.然而,THQ指数表明,部分野生食用菌中Zn无风险(THQ<1),老人头菌盖、鸡枞菌盖中Cd、Hg、Pb、Cu具有人体健康风险(THQ>1),且风险值儿童>成人.

Abstract:Heavy metals pollution poses risks to ecological environment, food safety and human health. Yunnan soils are characterized with high background heavy metals concentrations, together with the rich mining resources and intensive mining activities, rending the soil is polluted with heavy metals. Wild edible mushrooms are efficient heavy metal accumulators, while Yunnan is the largest and predominant producing area in China. Therefore, the present study was aimed to: 1) investigate heavy metals (Hg, Cd, Pb, Zn, Cu, As) concentration and distribution in 8 typical wild edible mushrooms; 2) evaluate the heavy metal pollution risk using single factor evaluation index; and 3) evaluate the associated human health risk of different age groups (adults and children) via a probabilistic method. The results showed that heavy metals concentrations were significantly different (P<0.05) in different mushroom species. The concentrations of Hg, Cd, Pb, Zn, Cu were 0.5—7.2、0.3—15、0—26.8、47.7—214、56.7—428 mg·kg-1 dw, while As was undetected. Besides, heavy metals distribution was various among different wild mushroom species, with Hg, Cd, Pb, Zn, Cu were mainly accumulated in the cap. Except Hg in Cordyceps millitaris、Grifola frondosa、Thelephora ganbajun was undetected, the single pollution index suggested that Hg, Cd and Pb in the studied wild mushrooms exceeded standards, with Catathelasma ventricosum cap being the highest polluted with Cd. Although Hg、Cd、Pb in 98% of the studied edible mushrooms exceed the national food safety standards, the THQ index suggested that Zn has low human health risks (THQ<1) and Hg, Pb and Cu have high risks (THQ>1), with the risk was higher for children than for adults.

[1]ZHANG X, ZHONG T, LIU L, OUYANG X. Impact of soil heavy metal pollution on food safety in China[J]. Plos One, 2015, 10(8):e0135182. [2]ALLEN L H. Food safety:Heavy metals[J]. Encyclopedia of Human Nutrition, 2013, (2):331-336. [3]MOHAMMED A S, KAPRI A, GOEL R. Heavy metal pollution:Source, impact, and remedie[J]. Biomanagement of Metal-Contaminated Soils, 2011(20):1-28. [4]徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115.

XU Z Q, NI S J, TOU X G, et al. Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk index[J]. Environment Science & Technology, 2008, 31(2):112-115(in Chinese).

[5]TCHOUNWOU P B, YEDJOU C G, PATLOLLA A K, et al. Heavy metals toxicity and the environment[J]. EXS, 2012, 101(101):133. [6]顾济沧, 赵娟. 云南省土壤重金属污染现状及治理技术研究[J]. 环境科学导刊, 2010(5):70-73. GU J C, ZHAO J. Status of soil contamination by heavy metals and study on remediation techniques in Yunnan[J]. Environment Science Survey, 2010

(5):70-73(in Chinese).

[7]张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2):692-703.

ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environment Science, 2014, 35(2):692-703(in Chinese).

[8]李丹, 高阳俊, 耿春女. 食物链途径人体健康风险评估的关键内容探讨[J]. 环境化学, 2015, 34(3):431-441.

LI D, GAO Y J, GENG C N. Discussions on the human health risk assessment by food-chain exposure pathways[J]. Environmental Chemistry, 2015, 34(3):431-441(in Chinese).

[9]WANG X M, ZHANG J L H, ZHAO Y L, et al. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China[J]. Food Chemistry, 2014, 151(20):279-285. [10]黄晨阳, 张金霞. 食用菌重金属富集研究进展[J]. 中国食用菌, 2004(4):8-10. HUANG C Y, ZHANG J X. Studies on heavy metal accumulation inedible mushroom[J]. Edible Fungi China, 2004

(4):8-10(in Chinese).

[11]IGBIRI S, UDOWELLE N A, EKHATOR O C, et al. Edible mushrooms from Niger Delta, Nigeria with heavy metal levels of public health concern:A human health risk assessment[J]. Recent Patents on Food, Nutrition & Agriculture, 2017, 9(1):31-41. [12]BLAGODATSKI A, YATSUNSKAYA M, MIKHAILOVA V, et al. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy[J]. Oncotarget, 2018, 9(49):29259-29274. [13]BENNETT D, KASTENBERG W E, MCKONE T E J R E, et al. A multimedia, multiple pathway risk assessment of atrazine:the impact of age differentiated exposure including joint uncertainty and variability[J]. Reliability Engineering & System Safety, 1999, 63(2):185-198. [14]SABA M, FALANDYSZ J, NNOROM I C. Mercury bioaccumulation by Suillus bovinus mushroom and probable dietary intake with the mushroom meal[J]. Environmental Science and Pollution Research, 2016, 23(16):16280-16295. [15]高培培, 肖冰, 刘文菊, 等. 莲藕中重金属含量特征及其健康风险评价[J]. 环境化学, 2020, 39(2):362-370.

GAO P P, XIAO B, LIU W J, ZHANG X Y, et al. Analysis and health risk assessment of heavy metal in lotus root[J]. Environmental Chemistry, 2020, 39(2):362-370(in Chinese).

[16]CHUDZYN'SKI K, JARZYN'SKA G, STEFAN'SKA A, et al. Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom[J]. Food Chemistry, 2011, 125(3):986-990. [17]OSTOS C, PEREZ F, ARROYO B M, et al. Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain[J]. Journal of Food Composition and Analysis, 2014, 37, 136-142. [18]FALANDYSZ J, ZHANG J, WIEJAK A, et al. Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China[J]. Ecotoxicology & Environmental Safety, 2017, 142:497-502. [19]KLEIN G L J E O H N. Food safety:Heavy metals[J]. Encyclopedia of Human Nutrition, 2005, 271(6):344-351. [20]张家树, 卢俊霖, 熊联成, 等. 野生菌中金属含量调查与分析[J]. 河南预防医学杂志, 2019, 30(6):458-460

, 483. ZHANG J S, LU J L, XIONG L C, et al. Investigation and analysis of metal content in wild bacteria[J]. Henan Journal of Preventive Medicine, 2019, 30(6):458-460, 483(in Chinese).

[21]林佶, 孙灿, 段志敏,等. 云南省常见野生食用菌13种矿物质元素调查分析[J]. 中国卫生检验杂志, 2011, 21(6):1521-1523.

LIN J, SUN C, DUAN Z M, et al. Analysis of 13 kinds mineral elements of familiar wild edible fungi in Yunnan province[J]. Chinese Journal of Health Laboratory Technology, 2011, 21(6):1521-1523(in Chinese).

[22]ISILDAK O T I, ELMASTAS M, et al. Bioaccumulation of heavy metals in some wild-grown edible mushrooms[J]. Analytical Letters, 2007, 40(6):1099-1116. [23]李志群, 陈耀光, 李伟中, 等. 云南省矿产资源主要矿种及其可持续发展探讨[J]. 矿业快报, 2004, 20(12):1-4

LI Z Q, CHENG Y G, LI W Z, et al. Discussion on Yunnan Province's main ore species of mineral resources and sustainable development tactics[J]. Express Information of Mining Industry, 2004, 20(12):1-4(in Chinese).

[24]WANG M Q. Effect and countermeasure of heavy metal pollution on food safety[J]. China Condiment, 2009, 34(11):32-34. [25]WANG B H, LIU J, YAO Z Z, et al. Determination and health risk evaluation of heavy metals in cultivated edible mushrooms[J]. Journal of Food Safety & Quality, 2016, 7(2):490-496. [26]中国环境监测总站. 中国土壤元素背景值[M]. 北京市:中国环境科学出版社, 1990. China National Environmental Monitoring Station. Background values of soil elements in China[M]. Beijing:China Environmental Science Press, 1990(in Chinese). [27]RUDAWSKA M, LESKI T. Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland[J]. Food Chemistry, 2005, 92(3):499-506. [28]ŠIRIČ I, KASAP A, BEDEKOVIČ D, FALANDYSZ J. Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia[J]. Journal of Environment Science Health Part B, 2017, 52(3):156-165. [29]KALAČ P, SVOBODA L. A review of trace element concentrations in edible mushrooms[J]. Food Chemistry, 2000, 69(3):273-281. [30]刘朋虎, 赖瑞联, 陈华, 等. 镉对食用菌生长的影响及防控技术研究进展[J]. 生态环境学报, 2019, 28(2):419-428.

LIU P H, LAI R L, CHEN H, et al. Effects of Cd on edible fungi growth and Cd pollution prevention and control techniques in mushroom production[J]. Ecology and Environment Sciences, 2019, 28(2):419-428(in Chinese).

[31]刘高翔, 杨美智子, 刘洋铭, 等.食用菌对镉的富集作用及其机理的研究概况[J]. 食品工业科技, 2012, 33(13):392-394.

LIU G X, YANG M Z Z, LIU Y M, et al. The bioaccumulation characteristics and mechanisms of cadmium in edible mushrooms[J]. Science and Technology of Food Industry, 2012, 33(13):392-394(in Chinese).

[32]MLECZEK M, NIEDZIELSKI P, KALAČ P, et al. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland[J]. Environmental Science and Pollution Research, 2016, 23(16):16280-16295. [33]SORBARI I, UDOWELLE N A, EKHATOR O C, et al. Edible mushrooms from Niger Delta, Nigeria with heavy metal levels of public health concern:A human health risk assessment[J]. Recent Patents on Food, Nutrition & Agriculture, 2017, 9(1):31-41.

相关知识

四川盆地典型农耕区土壤重金属含量、污染及其影响因素
城市典型工业区土壤重金属分布与污染评价
我国金银花主产区花和土壤重金属污染特征及风险评价
松嫩平原北部土壤重金属空间分异特征及生态安全评价
土壤污染对中药材三七中重金属含量的影响
第二章 土壤健康风险评价与管理.ppt
我国土壤-蔬菜作物系统重金属污染及其安全生产综合农艺调控技术
重金属污染土壤修复技术及其修复实践
临沂市花生产地土壤环境质量分析与评价
土壤重金属污染对蔬菜生长的抑制作用及其生态毒性

网址: 典型野生食用菌重金属含量及其人体健康风险评价 https://m.huajiangbk.com/newsview1022316.html

所属分类:花卉
上一篇: 一种雷公菌的人工栽培方法与流程
下一篇: 地皮菜怎么种植?