首页 > 分享 > 栀子鲜花花水和鲜花细胞液气相和液相的成分分析

栀子鲜花花水和鲜花细胞液气相和液相的成分分析

开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】栀子(Gardenia jasminoides Ellis)为茜草科栀子属灌木状植物,又名水横枝、黄果子、黄叶下、山黄枝、黄栀子、山栀子等。栀子花气味芳香,甜美优雅,可用于提取挥发油,已应用于多种香型化妆品、香皂香精以及高级香水香精的调香剂[1,2,3]。栀子纯露也称栀子花水,是水蒸气蒸馏提取栀子鲜花精油过程中得到的副产物,其饱和了一部分的精油成分,具有与栀子精油类似的香气,目前在市场上已被作为护肤品等使用。栀子鲜花细胞液是在低温条件下利用低温抽湿工艺冷凝收集的栀子鲜花细胞原液[4,5],含有一定的栀子花精油成分,具有栀子鲜花的自然花香。近年来栀子鲜花细胞液越来越多地被应用于化妆品、香精香料、功能保健品等领域,但是关于细胞液的成分组成还未知,而且人们对栀子鲜花细胞液的评价褒贬不一。栀子鲜花花水和细胞液不同于栀子花精油,但却具有栀子的花香,在功能化妆品、香精香料、保健品中有一定的应用。因此,对栀子花花水与细胞液进行液相与气相的全组分分析,对科学评价栀子花花水与栀子花细胞液的异同优劣及相关产品开发具有重要意义。【前人研究进展】目前对于栀子花香气成分的研究多集中在对栀子鲜花头香成分的分析[6,7,8,9,10]、栀子花挥发油成分的分析[11,12,13]、栀子花挥发油提取工艺的优化研究[14,15]等方面。但关于花水和细胞液的液相成分分析方法以及气相成分分析未见相关报道。精油是指从植物的花、叶、茎、根或果实中,通过水蒸气蒸馏法提取而得的挥发性芳香物质[16],是挥发性化合物的聚集,浓度大,刺激性强,往往不能直接用于皮肤,而花水和细胞液除了有精油中所具有的大部分挥发性成分外,其液相部分也含有许多具有不同功效的化合物,具有精油无可比拟的功效,在化妆品市场已广泛应用,因此栀子鲜花花水和鲜花细胞液也同样具有栀子花精油无法具有的独特优势,应用价值突出。液质联用分析具有分析时间短、检测限低、灵敏度高的特点,广泛用于植物提取物的成分分析,特别是对于微量成分具有快速检出的优势,刘田园[17]认为对于金银花水这类含有挥发性成分的提取物,快速地检测其中所含的微量水溶性成分才能更准确地反映植物提取物的成分组成,可为提取物功效研究奠定基础。因此,液质联用技术有助于分析栀子鲜花花水和鲜花细胞液的液相成分,从而更全面地分析栀子鲜花花水和鲜花细胞液的功效。【本研究切入点】目前关于栀子鲜花花水和鲜花细胞液的气相成分以及液相成分的分析未见报道。本研究首次从气相和液相两个方面全面分析栀子鲜花花水、鲜花细胞液的气味和功效的差异与联系。【拟解决的关键问题】利用顶空固相微萃取/气相色谱—质谱联用技术(HS-SPME/ GC-MS)分析栀子鲜花花水和鲜花细胞液中的挥发性成分,利用超高效液相色谱—质谱联用技术(UPLC-ESI-QTOF-MS/MS)分析栀子鲜花花水和鲜花细胞液的化学成分,通过对栀子鲜花花水和栀子鲜花细胞液香气成分、相对含量及其液相化学成分、相对含量的分析评价,探明栀子鲜花花水和鲜花细胞液差异的本质,为香气修饰、应用配方及它们在特定功能化妆品、香精香料、保健品开发上的应用提供数据支撑和理论依据。

1 材料与方法

试验于2018年在福建省农业科学院作物研究所进行。

1.1 试验材料与仪器

试验所用栀子鲜花于2018年6月1日采自福建省福鼎市前岐镇‘分关1号’栀子种植基地,鲜花为当天开放,不发黄,且花瓣完全展开。

GCMS-TQ8040三重四极杆型气相色谱质谱联用仪,日本岛津公司;手动SPME迸样器、65 μm PDMS/DVB萃取头,美国Supelco公司;超高效液相色谱UPLC-TripleTOF串联飞行时间质谱仪,美国AB SCIEX公司。

1.2 样品制备

(1)常压水蒸汽蒸馏提取栀子鲜花花水(FFWE):称取栀子花5 kg,置于100 L蒸馏罐中,按料液比为1﹕4加水,进行水蒸汽蒸馏,馏出液的收集完全处于封闭状态,按鲜花﹕花水=1﹕1收集5 kg花水[18]。

(2)栀子鲜花细胞液(FFCS):称取栀子鲜花5 kg,置于烘干箱中,28—32℃常温烘干,鼓风机转速为2 000 r/min,压缩机制冷运行频率为30 Hz,通过冷凝器冷凝收集蒸发液体,冷凝及蒸发液收集过程处于完全封闭状态,脱水8 h直至鲜花脱水率达80%左右,收集2 kg细胞液。

1.3 试验方法

1.3.1 HS-SPME取样 取样前先将固相微萃取头在丙酮中浸泡30 min,紧接着插入色谱仪进样口进行老化30 min,老化温度250℃。用移液枪分别吸取5 mL栀子鲜花花水和细胞液样品,置于20 mL顶空瓶中,将老化好的固相微萃取头插入顶空瓶中,25℃吸附40 min。

1.3.2 GC-MS分析 样品吸附完成后将固相微萃取头抽出,插入气相色谱仪进样口中,250℃解吸3 min,同时进行数据采集。色谱条件:HP-5MS标准色谱柱;进样量1 μL,载气为He(99.99%),流量1 mL·min-1,分流比10﹕1;程序升温,进样口250℃,柱温起始温度50℃保持2 min,以5℃·min-1升温至180℃,再以20℃·min-1升温至280℃保持2 min。总程序时间40 min。质谱条件:GC-MS接口温度280℃;离子源温度200℃,电离方式EI,电子能量70 eV;扫描质量范围35—550 amu。

1.3.3 UPLC-MS/MS分析 分别移取5 mL栀子花样品,真空浓缩抽干,加入提取试剂(乙腈﹕甲醇﹕水=2﹕2﹕1)500 μL进行超声提取15 min,重复3次,提取液在1 200 g·min-1、4℃下离心10 min,取上清液,真空抽干,再用100 μL复溶液复溶(乙腈﹕水=1﹕1),转移至2 mL带有内衬管的进样小瓶上机进行LC-MS检测。

色谱条件:色谱柱为BEH C18柱(100 mm×2.1 mm i.d., 1.7 µm; Waters, Milford, USA);流动相A为水(含0.1%甲酸),流动相B为乙腈/异丙醇=1﹕1(含0.1%甲酸);梯度洗脱程序为0—3 min:5%—25% B,3—9 min:25%—95% B,9—13 min:95—95% B,13—13.1 min:95%—5% B,5%B保持3 min。流速为0.40 mL·min-1,进样量为10 μL,柱温为45℃。

质谱条件:样品质谱信号采集分别采用正负离子扫描模式,电喷雾毛细管电压,进样电压和碰撞电压分别为:1.0 kV、40 V和6 eV。离子源温度和去溶剂温度分别为:120℃和500℃,载气流量:900 L·h-1,质谱扫描范围:50—1 000 m/z,扫描时间和间隔时间分别为:0.1 s和0.02 s。

1.4 数据处理与分析

GC-MS数据分析根据已有标样(C9-C22正构烷烃)的色谱保留时间,计算各样品中每个成分的保留指数RI(retention index),根据NIST 2014标准谱库中信息进行比对,同时结合文献中相应的参考物质RI值进行定性分析。每个成分的物质含量以相对含量表示,运用峰面积归一化法,求得各成分的相对含量[19]。每个样品数据重复3次。

UPLC-MS/MS数据分析中的原始数据经代谢组学处理软件QI(Waters, Milford, USA)进行基线过滤、峰识别、积分、保留时间校正、峰对齐和归一化,最终得到一个保留时间、质荷比和峰强度的数据矩阵,并与metlin数据库和HMDB数据库进行比对,对各代谢物质进行定性。运用峰面积归一化法,求得各代谢物质的相对含量。每个样品数据重复3次。

2 结果

2.1 栀子鲜花花水和细胞液的香气成分比较

表1

可以看出,栀子鲜花花水中的香气成分以芳樟醇和惕各酸顺-3-己烯酯为主,相对含量分别达到63.00%和13.24%,栀子鲜花细胞液中以芳樟醇和反式-橙花叔醇为主要香气成分,相对含量分别高达69.37%和19.08%。栀子鲜花花水中的反式-橙花叔醇相对含量仅为0.05%,而栀子鲜花细胞液中惕各酸顺-3-己烯酯的相对含量只有0.88%。栀子鲜花花水中的香叶醇相对含量达到1.71%,而在栀子鲜花细胞液中未检测到。

表1 栀子鲜花花水和细胞液的香气成分及其相对含量(高于0.1%)

Table 1 Aroma constituents and relative percentage of floral water extract and flowers cell sap from Gardenia jasminoides (above 0.1%)

编号 No. 文献保留指数
Reported retention index 测定保留指数
Tested retention index 化合物名称
Compound name 相对含量 Relative content (%) 鲜花花水
FFWE 鲜花细胞液FFCS 醇类 Alcohols 1 844[20] 841 (Z)-3-己烯-1-醇3-Hexen-1-ol, (Z)- 1.95±0.06** 1.69±0.04 2 860[21] 855 正己醇 1-Hexanol 1.09±0.02** 0.35±0.01 3 969[22] 965 正庚醇 1-Heptanol 0.13±0.00** - 4 1035[23] 1031 二氢香芹醇 Dihydrocarveol 0.14±0.00** - 5 1038[24] 1034 桉叶油醇 Eucalyptol 0.13±0.00** - 6 1078[24] 1080 顺式-芳樟醇氧化物 cis-Linalool oxide 0.18±0.01** - 7 1085[22] 1083 正辛醇 1-Octanol 0.17±0.01** - 8 1099[24] 1098 反式芳樟醇氧化物(呋喃) trans-Linalool oxide (furanoid) 0.16±0.00** 0.13±0.00 9 1114[25] 1120 芳樟醇 Linalool 63.00±1.89 69.37±1.39** 10 1118[26] 1122 二氢芳樟醇 1,5,7-Octatrien-3-ol, 3,7-dimethyl- 0.48±0.01** - 11 1200[27] 1202 2-莰醇 Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, (1S-endo)- 0.12±0.00** - 12 1201[28] 1204 1-壬醇 1-Nonanol 0.39±0.01** - 13 1265[29] 1269 橙花醇 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- 0.80±0.02** - 14 1301[30] 1302 香叶醇 Geraniol 1.71±0.05** - 15 1583[31] 1594 反式-橙花叔醇 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (E)- 0.05±0.00 19.08±0.38** 16 1639[32] 1639 T-杜松醇 .tau.-Cadinol 0.25±0.01 0.28±0.01* 17 1655[33] 1657 (Z,E)-法呢醇 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-, (Z,E)- - 0.13±0.00** 18 1660[30] 1661 反式-香叶基香叶醇 trans-Geranylgeraniol - 0.20±0.01** 19 1662[34] 1663 法呢醇 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl- - 2.11±0.04** 萜烯类 Terpenes 20 1510[35] 1512 9-去甲-10-脱氧二氢青蒿素 9-Nor-10-deoxydihydroartemisinin - 0.88±0.03** 21 1513[36] 1517 (E)-β-法呢烯 (E)-.beta.-Famesene - 0.29±0.01** 酯类 Esters 22 855[37] 850 惕各酸甲酯 Methyl tiglate 0.36±0.01** 0.05±0.00 23 923[26] 927 惕各酸乙酯 Ethyl tiglate 0.19±0.01** - 24 1103[38] 1105 (E)-2-甲基-2-丁酸-2-甲丙酯 2-Butenoic acid, 2-methyl-, 2-methylpropyl ester, (E)- 0.16±0.00** - 25 1228[39] 1232 (E)-2-甲基巴豆酸异戊酯 2-Butenoic acid, 2-methyl-, 3-methylbutyl ester, (E)- 4.64±0.09** 0.16±0.00 26 1273[22] 1276 2-甲基丁酸叶醇酯 cis-3-Hexenyl-.alpha.-methylbutyrate 0.15±0.00** - 27 1275[22] 1279 2Z-戊烯惕各酸酯 Pentenyl tiglate, 2Z- 0.12±0.00** - 28 1285[22] 1288 1-戊烯-3-惕各酸酯 Penten-3-yl tiglate, 1- 3.94±0.08** 1.15±0.03 29 1390[27] 1392 惕各酸顺-3-己烯酯 Tiglate <3(Z)-hexenyl-> 13.24±0.40** 0.88±0.03 30 1399[27] 1400 惕各酸己酯 Hexyl tiglate 1.51±0.05** 0.02±0.00 31 1510[40] 1513 丙酮香叶酯 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- 0.11±0.00** - 32 1539[41] 1542 茉莉内酯 2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)- - 0.25±0.01** 33 1600[24] 1607 惕各酸苯乙酯 2-Phenylethyl tiglate 0.42±0.01** 0.07±0.00 醛类 Aldehydes 34 1664[38] 1668 法呢醛 Farnesal - 0.45±0.01** 酮类 Ketones 35 1254[42] 1260 4,7,7-三甲基双环[4.1.0]-3-庚烯-2-酮 4,7,7-Trimethylbicyclo[4.1.0]hept-3-en-2-one - 0.40±0.01** 36 1289[43] 1292 (+)-香芹酮 D-Carvone 1.15±0.03** - 酚类 Phenols 37 1543[44] 1548 甲基异丁香酚 Benzene, 1,2-dimethoxy-4-(1-propenyl)- - 0.11±0.00** 其他类 Others 38 1000[45] 1004 2-乙烯基-2-甲基-5-(1-甲基乙烯基)四氢呋喃 (2R,5R)-2-Methyl-5-(prop-1-en-2-yl)-2-vinyltetrahydrofuran 0.12±0.00** - 39 1350[46] 1353 吲哚 Benzo-2,3-pyrrole - 0.30±0.01** n=3。“-”表示化合物未检出。*: P<0.05,表示差异显著;**: P<0.01表示差异极显著。下同n=3. “-” indicates compound was not detected. *: P<0.05 indicated significant differences at 0.05 level; **: P<0.01 indicated significant differences at 0.01 level. The same as below

从栀子鲜花花水和鲜花细胞液中共检测出香气成分111种,其中栀子鲜花花水检测出香气成分79种,而鲜花细胞液中检测出香气成分56种,仅占检测出的挥发性成分总量的一半。从

图1

图2

可知,检测出的香气成分包含醇类化合物、萜烯类化合物、酯类化合物、醛类化合物、酮类化合物、酚类化合物等8个种类的化合物。栀子鲜花花水中的醇类化合物、酮类化合物、酯类化合物的种类分别为32、5、26种,高于鲜花细胞液,但萜烯类化合物仅检测到5种,远远低于鲜花细胞液(12种)。栀子鲜花细胞液中醇类化合物的相对含量占94.17%,而栀子鲜花花水中仅有71.54%;萜烯类化合物的相对含量达到1.54%,而栀子鲜花花水仅占0.46%。栀子鲜花细胞液中酯类化合物和酮类化合物的相对含量分别仅为2.91%和0.51%,而栀子鲜花花水中分别达到26.06%和1.33%。表明栀子鲜花细胞液中的挥发性成分以醇类和萜烯类为主,较为单一;而栀子鲜花花水中除了醇类成分,酯类、酮类成分也占有较大比例。

图1 栀子鲜花花水和细胞液的香气成分种类数量

Fig. 1 Type number of aroma constituents of floral water extract and flowers cell sap from Gardenia jasminoides

Full size|PPT slide

检测发现栀子鲜花花水和鲜花细胞液的酯类化合物中存在着多种惕各酸酯类成分,其中栀子鲜花花水中的惕各酸酯类成分有10种,数量高于鲜花细胞液的7种。栀子鲜花花水中各惕各酸酯类化合物相对含量总和为19.96%,其中惕各酸顺-3-己烯酯相对含量达13.24%,而鲜花细胞液中各惕各酸酯类成分的含量仅为2.30%。

2.2 栀子鲜花花水和细胞液的化学成分比较

正、负离子模式下栀子鲜花花水和细胞液的化学成分及其相对含量分析结果见

表2

表2

可以看出,栀子鲜花花水和栀子鲜花细胞液在正、负离子模式下同时进行UPLC-QTOF-MS/MS分析,分别鉴定出200个、212个和46个、54个成分。可见栀子鲜花花水和栀子鲜花细胞液中的化学成分在正离子模式下响应较为灵敏,栀子鲜花细胞液在正、负离子模式下检出的成分数量均多于栀子鲜花花水。

图2 栀子鲜花花水和细胞液的香气成分相对含量

Fig. 2 Relative contents of aroma constituents of floral water extract and flowers cell sap from Gardenia jasminoides

Full size|PPT slide

表2 栀子鲜花花水和细胞液的化学成分及其相对含量(高于0.1%)

Table 2 Chemical constituents and relative percentage of floral water extract and flowers cell sap from Gardenia jasminoides (above 0.1%)

编号
No. 保留
时间
Retention time (min) 加和离子
模式
Additive ion mode m/z
Mass charge ratio 分子式
Molecular formula 成分名称
Compound name 相对含量 Relative content (%) 鲜花花水 FFWE 鲜花细胞液 FFCS 正离子模式
Positive ion mode 负离子模式
Negative ion mode 正离子模式
Positive ion mode 负离子模式
Negative ion mode 氨基酸类 Amino acids 1 2.44 M+K-2H 152.0111 C5H9NO2 L-脯氨酸 L-Proline - 0.59±0.02 - 3.05±0.06** 2 3.10 M-H 300.1221 C17H19NO4 3-(3,4-二羟苯基)-N-[2-(4-羟苯基)乙基]丙氨酸3-(3,4-Dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]propanimidic acid - - - 0.17±0.01** 单萜类 Monoterpeniods 3 3.50 M+H 153.1271 C10H16O 桧醇 Sabinol 0.48±0.01** - 0.23±0.01 - 4 6.16 M+H-H2O, M+H 135.1168 C10H16O (S)-(-)-紫苏醇 (S)-(-)-Perillyl alcohol 13.73±0.27** - 5.11±0.15 - 5 3.09 M-H 183.0657 C9H12O4 京尼平酸 Genipic acid - 1.76±0.05** - 0.18±0.01 6 4.61 M-H, M+Na-2H 315.1801 C16H28O6 薄荷醇-葡萄糖醛酸 Menthol-glucoronide - 0.83±0.02** - 0.18±0.01 倍半萜类 Sesquiterpenoids 7 3.60 M+ACN+Na 494.2162 C24H30O7 蜜环菌醛H Melleolide H - - 0.23±0.01** - 8 5.61 M+H-2H2O, M+Na, M+H-H2O 249.1470 C15H22O4 青蒿琥酯 Artemin 0.06±0.00 - 0.19±0.01** - 9 5.65 M+H-H2O, M+H 203.1790 C15H24O 氧化石竹烯 Caryophyllene epoxide 0.38±0.01 - 1.77±0.05** - 10 5.76 M+H 205.1947 C15H24 α-佛手柑油烯 alpha-Bergamotene - - 0.11±0.00** - 11 6.03 M+H 205.1948 C15H24 (+)-长叶环烯 Longicyclene - - 0.12±0.00** - 12 7.61 M+H 205.1949 C15H24 α-石竹烯 α-Humulene 0.06±0.00 - 0.39±0.01** - 二萜类 Diterpenoids 13 5.69 2M+H 661.2964 C19H22O5 赤霉素A62 Gibberellin A62 - - 0.10±0.00** - 14 7.53 M+Na-2H 421.1863 C20H32O8 辛卡西醇B Cincassiol B - 1.56±0.05** - 0.30±0.01 三萜类 Triterpenoids 15 6.37 M+H, M+Na, M+H-H2O 489.3558 C30H48O5 山茶皂苷元B Camelliagenin B 2.16±0.06** - 0.02±0.00 - 16 6.63 M+H-H2O, M+H 491.3712 C30H50O5 山茶皂苷元C Camelliagenin C 0.18±0.01** - - - 17 3.86 M+Cl 541.1830 C26H34O10 异柠檬苦素酸 Isolimonic acid - 0.20±0.01 - 0.64±0.02** 18 4.25 M+Na-2H 803.4226 C41H66O14 麦德龙苷D Madlongiside D - 4.35±0.09** - 0.23±0.01 19 5.22 M-H, M+Cl 503.3367 C30H48O6 羟基积雪草苷 Madecassic acid - 20.20±0.61** - 0.02±0.00 黄酮类 Flavonoids 20 4.72 M+H 823.3062 C39H50O19 朝藿定D Hexandraside D - - 0.11±0.00** - 香豆素类 Coumarins 21 4.38 M+H, M+ CH3OH+H 179.0699 C9H6O2 香豆素 Coumarin - - 0.74±0.02** - 22 0.66 M+H 141.1134 C6H12N4 六亚甲基四胺 Methenamine 0.33±0.01** - 0.11±0.00 - 23 1.90 M+H, 2M+H 217.0974 C12H12N2O2 L-1,2,3,4-四氢-β-咔啉-3-羧酸 L-1,2,3,4-Tetrahydro-beta-carboline-3- carboxylic acid 0.35±0.01 - 3.17±0.06** - 24 2.39 M+H 476.3055 C21H41N5O7 乙基紫苏霉素 Netilmicin 0.17±0.00 - 0.18±0.01** - 25 2.86 M+H-H2O, M+H 120.0446 C7H7NO2 氨茴酸 Anthranilic acid 1.15±0.03 - 2.02±0.06** - 26 4.38 M+H-H2O 172.0752 C11H11NO2 吲哚-3-丙酸 Indole-3-propionic acid - - 0.44±0.01** - 27 5.19 2M+ACN+H 706.3567 C14H24N2O7 大观霉素 Spectinomycin 0.29±0.01** - 18.16±0.36** - 28 7.50 M+H 270.3152 C18H39N 十八胺 Octadecylamine 0.14±0.00 - 0.15±0.00** - 29 9.68 M+H, M+Na, 2M+H, 2M+Na 338.3415 C22H43NO 芥酸酰胺 13Z-Docosenamide 43.66±1.31** - 19.41±0.58 - 30 1.92 M-H2O-H 171.0926 C11H14N2O 艾胺 Alline - - - 0.57±0.02** 31 2.78 M-H 164.0353 C8H7NO3 2-甲酰胺基苯甲酸
N-formylanthranilic acid - - - 0.26±0.01 32 2.99 M-H2O-H 146.0248 C8H7NO3 (R)-2-羟基-2H-1,4-苯并恶嗪-3(4H)-酮 (R)-2-Hydroxy-2H-1,4-benzoxazin-3 (4H)-one - - - 0.31±0.01 33 3.11 M-H 136.0405 C7H7NO2 葫芦巴碱 Trigonelline - - - 1.58±0.05** 34 3.72 M+FA-H 462.1899 C21H27N3O6 (E)-卡西定 (E)-Casimiroedine - - - 0.22±0.01** 35 3.93 M+Cl 296.0910 C11H19NO6 百脉根苷 Lotaustralin - - - 0.23±0.01** 36 3.97 M+FA-H 302.1028 C8H20NO6P 甘油磷酰胆碱 Glycerophosphocholine - 1.54±0.05** - - 37 4.16 M-H2O-H 322.1069 C19H19NO5 4-羟基降南天竹宁 4-Hydroxynornantenine - - - 0.58±0.02** 38 4.42 M-H2O-H 742.2463 C39H43N3O11S 曲贝替定 Trabectedin - - - 3.30±0.07** 39 4.43 M-H 357.3149 C17H19NO5 3-(3,4-二羟苯基)-N-[2-(5-羟苯基)乙基] 丙酮酸3-(3,4-Dihydroxyphenyl)-N-[2-(5- hydroxyphenyl)ethyl]propanimidic acid - 0.40±0.01 - 3.33±0.10** 40 4.46 3M-H 482.1357 C9H7NO2 喹啉-4,8-二醇 Quinoline-4,8-diol - - - 0.30±0.01** 41 5.26 M+Cl 700.2743 C33H47NO13 纳他霉素 Natamycin - - - 2.61±0.05** 42 5.97 M+FA-H 236.1049 C10H13N3O 4-羟基异喹胍 4-Hydroxydebrisoquine - 1.25±0.04** - - 甾体类 Steroids 43 5.61 M+H 305.2095 C19H28O3 16-氧雄甾烯二醇 16-Oxoandrostenediol 0.12±0.00** - - - 芳香类 Aromatics 44 4.24 M+H 133.1012 C10H12 对-孟-1,3,5,8-四烯 p-Mentha-1,3,5,8-tetraene 8.46±0.25 - 8.03±0.24 - 45 4.25 M+H 107.0858 C8H10 间二甲苯 m-Xylene 1.31±0.04** - 1.11±0.03 - 46 9.22 M+H, M+Na, M+K, 2M+Na 391.2835 C24H38O4 邻苯二甲酸二(2-乙基己)酯 Bis(2-ethylhexyl) phthalate 10.41±0.31** - 4.21±0.13 - 47 4.60 M-H 549.1998 C27H34O12 络石苷 Tracheloside - - - 0.43±0.01** 醇类 Alcohols 48 3.19 M+H-H2O, 2M+Na 361.1640 C20H26O7 氨茶醇 Carinol - - 0.19±0.01** - 49 3.75 M+H-H2O, M+H, M+Na 171.1491 C10H18O2 反式-对-孟-2-烯-1,4-二醇 trans-p-Menth-2-ene-1,4-diol 5.78±0.17** - 4.45±0.13 - 50 5.24 M+ACN+H 158.1538 C7H16O 正庚醇 1-Heptanol 0.22±0.01** - 0.15±0.00 - 51 5.30 M+ACN+Na 482.2169 C23H30O7 星形曲霉毒素 Asteltoxin - - 0.11±0.00** - 52 0.76 M-H 349.1855 C16H30O8 反式-对-孟-1,7,8-三醇 8-葡萄糖苷 trans-p-Menthane-1,7,8-triol 8-glucoside - 1.78±0.05** - - 53 3.40 M+FA-H 351.1796 C18H26O4 5'-羧基-γ-色原烷醇 5'-Carboxy-gamma-chromanol - 0.96±0.03** - - 54 3.95 M-H 375.1431 C20H24O7 加利烷醇 Carissanol - - - 0.53±0.02** 55 4.45 M-H 356.9991 C16H30O9 反式-对-孟-1,7,8-三醇 9-葡萄糖苷 trans-p-Menthane-1,7,8-triol 9-glucoside - 0.38±0.01 - 3.39±0.07** 56 4.48 M+FA-H 356.3675 C18H26O5 6'-羧基-γ-色原烷醇 6'-Carboxy-gamma-chromanol - 0.35±0.01 - 3.49±0.07** 57 7.55 M+Na-2H 303.1568 C16H26O4 乳聚醇 CLactapiperanol C - - - 0.41±0.01** 酚类 Phenols 58 2.73 M+H 153.0544 C8H8O3 香草醛 Vanillin 0.49±0.02** - 0.28±0.01 - M-H 151.0400 - 12.15±0.24** - 3.60±0.11 59 6.45 M+H-H2O, 2M+H 653.3095 C20H22O4 (+)-加利恩 (+)-Galeon - - 1.01±0.03** - 60 8.88 M+H 413.3017 C27H40O3 4-甲氧基-3-牛龙牛儿基牛龙牛儿酯-1,2-二羟基苯4-Methoxy-3-geranylgeranyl-1,2- dihydroxybenzene - - 0.31±0.01** - 61 4.27 M+K-3H 360.4726 C27H36O11 杨梅醇 6-葡萄糖苷 Myricanol 6-glucoside - 0.54±0.02 - 2.81±0.06** 酸类 Acids 62 6.13 M+H-2H2O 337.1317 C17H24O9 3,4,5-三羟基-6-[4-(3-羟丁基)-2-甲氧苯基]噁烷-2-羧酸3,4,5-Trihydroxy-6-[4-(3-hydroxybutyl)-2-methoxyphenoxy]oxane-2-carboxylic acid 0.16±0.00** - 0.13±0.00 - 63 7.15 M+Na 317.2084 C18H30O3 9顺,11反-共轭亚油酸 13-OxoODE 0.19±0.01** - - - 64 0.26 M-H 112.9861 C2HF3O2 三氟乙酸 Trifluoroacetic acid - 10.30±0.31** - 2.90±0.06 65 2.15 M-H2O-H 311.0781 C14H18O9 6-(5-乙基-2,3-二羟苯氧基)-3,4,5-三羟基噁烷-2-羧酸6-(5-Ethyl-2,3-dihydroxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid - 1.32±0.04** - - 66 3.39 M-H2O-H 157.0506 C7H12O5 2-异丙基苹果酸 2-Isopropylmalic acid - - - 0.15±0.00** 67 4.14 M-H 173.1181 C9H18O3 (±)-3-羟基壬酸 (±)-3-Hydroxynonanoic acid - 0.32±0.01** - 0.27±0.00 68 4.28 M+Cl, M+K-3H 360.1568 C36H32O20S (5-{custom_citation.annotation}1-3,4-二氢-2H-1-苯并吡喃-2-烷基}-3-羟苯基)氧化磺酸(5-{custom_citation.annotation}0-3,4-dihydro-2H-1-benzopyran-2-yl}-3- hydroxyphenyl)oxidanesulfonic acid - 0.53±0.02 - 2.86±0.06** 69 4.38 M-H 358.2622 C9H18O4 (±)-4-羟基壬酸 (±)-4-Hydroxynonanoic acid - 0.44±0.01 - 3.18±0.06** 70 4.50 M-H3O-H 356.0518 C7H12O6 3-异丙基苹果酸 3-Isopropylmalic acid - 0.34±0.01 - 3.54±0.11** 71 4.79 M+Cl, M+K-2H 835.1021 C36H32O19S (5-{custom_ref.citedCount>0}9-3,4-二氢-2H-1-苯并吡喃-2-烷基}-2-羟基苯基)氧化磺酸(5-{custom_ref.citedCount>0}8-3,4- dihydro-2H-1-benzopyran-2-yl}-2- hydroxyphenyl)oxidanesulfonic acid - - - 0.94±0.03** 72 6.94 M-H 319.2267 C20H32O3 11(S)-羟基二十碳-5Z,8Z,12E,14Z-四烯酸 11(S)-HETE - 1.65±0.05** - 0.63±0.02 73 7.48 M-H 277.1435 C16H22O4 2,5,7,8-四甲基-6-羟基苯并二氢吡喃基-2-丙酸 α-CEHC - 2.42±0.07** - 0.22±0.01 74 8.94 M-H 279.2322 C18H32O2 17-十八炔酸 17-Octadecynoic Acid - 13.46±0.27** - 0.80±0.02 75 9.14 M-H 305.2469 C20H34O2 5(Z),11(Z),14(Z)-二十碳三烯酸 5(Z),11(Z),14(Z)-Eicosatrienoic acid - 0.60±0.02** - - 76 9.32 M-H 307.2627 C20H36O2 5(Z),14(Z)-二十碳二烯酸 5(Z),14(Z)-Eicosadienoic Acid - 2.83±0.08** - - 77 9.47 M-H 333.2788 C22H38O2 顺13,16,19-二十二碳三烯酸 Docosatrienoic Acid - 1.19±0.04** - - 酮类 Ketones 78 2.76 M+CH3OH+H 361.1639 C19H20O5 1-(3,4-二羟苯基)-7-(4-羟苯基)庚烷- 3,5-二酮1-(3,4-Dihydroxyphenyl)-7-(4-
hydroxyphenyl)heptane-3,5-dione - - 0.14±0.00** - 79 3.49 M+ACN+Na 448.1750 C22H24O6 12-去氢波森 12-Dehydroporson - - 0.16±0.00** - 80 4.23 M+H-H2O, M+H 93.0704 C7H10O 3-甲基-2-环己烯-1-酮 3-Methyl-2-cyclohexen-1-one 0.28±0.01** - 0.24±0.01 - 81 4.76 M+H-H2O, M+Na 313.1425 C19H22O5 6-(1-羟基-2-甲基丁基-3-烯-2-烷基)- 2-(2-羟丙基-2-烷基)-2H,3H,7H-呋喃[3,2-g]苯并吡喃-7-酮6-(1-Hydroxy-2-methylbut-3-en-2-yl)-2-(2-hydroxypropan-2-yl)-2H,3H,7H-furo
[3,2-g]chromen-7-one 0.16±0.00** - - - 82 2.44 3M-H 545.1655 C9H10O4 1-(2,6-二羟基-4-甲氧基苯基)乙酮 2',6'-Dihydroxy-4'-methoxyacetophenone - 0.09±0.00 - 3.49±0.10** 83 4.35 M-H3O-H 358.8937 C11H12O4 4-(3,4-亚甲基二氧苯基)-3-丁酮 4-(3,4-Methylenedioxyphenyl)-3-butanone - 0.47±0.01 - 3.07±0.06** 84 4.78 M-H2O-H 173.0605 C11H12O3 胡椒基丙酮 4-(3,4-Methylenedioxyphenyl)-2-butanone - 1.48±0.05** - - 85 4.80 M-H, M+FA-H 329.1381 C19H22O5 3-羟基-2-(2-羟丙基-2-烷基)-6-(2-甲丁基-3-烯-2-烷基)-2H,3H,7H-呋喃[3,2-g]色原烷-7-酮3-Hydroxy-2-(2-hydroxypropan-2-yl)-6-(2-methylbut-3-en-2-yl)-2H,3H,7H-furo[3,2-g]chromen-7-one - 0.02±0.00 - 23.98±0.48** 酯类 Esters 86 4.75 M+Na, 2M+Na, M+H-H2O 327.1589 C20H24O5 异千叶蓍酯二烯 Isoachifolidiene 0.58±0.02 - 16.76±0.50** - 87 5.67 M+ACN+H 390.2268 C20H28O5 蜂斗菜内酯C Bakkenolide C 0.21±0.01 - 0.52±0.02** - 88 3.48 M-H 171.1027 C9H16O3 乙酰乙酸异戊酯
3-Methylbutyl 3-oxobutanoate - 9.00±0.18** - 7.83±0.16 89 4.01 M+FA-H 399.1330 C17H22O8 蒽酸甲酯 F 葡萄糖苷
Methyl helianthenoate F glucoside - - - 2.51±0.08** 90 4.52 M-H 355.7360 C9H16O4 3-甲丁基 4-氧丁酸酯
3-Methylbutyl 4-oxobutanoate - 0.33±0.01 - 3.60±0.07** 肽类 Peptides 91 5.00 M+H 640.2524 C27H37N5O13 苏氨酸-苯丙氨酸-葡萄糖-葡萄糖-天冬氨酸 Thr Phe Glu Glu Asp - - 0.42±0.01** - 92 5.27 M+H 446.2743 C23H35N5O4 赖氨酸-异亮氨酸-色氨酸 Lys Ile Trp 0.20±0.01** - - - 93 5.37 M+H 473.1920 C22H28N6O4S 色氨酸-蛋氨酸-组氨酸 Trp Met His - - 0.25±0.01** 94 6.49 M+H 474.3047 C20H39N7O6 谷氨酰胺-丙氨酸-赖氨酸-赖氨酸
Gln Ala Lys Lys 0.77±0.02** - - - 95 5.18 M-H2O-H 283.1539 C11H22N6O4 精氨酸-谷氨酰胺 Arginyl-Glutamine - 0.96±0.03** - 0.24±0.01 96 6.39 M-H 592.2326 C28H39N3O9S 4-羟基-17β-雌二醇-2-S-谷胱甘肽 4-Hydroxy-17beta-estradiol-2-S-
glutathione - - - 0.51±0.02** 胺类 Amines 97 7.20 M+H-H2O 444.3312 C24H47NO7 葡萄糖鞘氨醇半乳糖苷 Glucosylsphingosine 0.24±0.01** - - - 其他类 Others 98 2.92 M+H-2H2O 343.1540 C20H26O7 15-羟基勒普妥卡品 15-Hydroxyleptocarpin 0.01±0.00 - 0.27±0.01** - M-H 377.1591 - 0.11±0.00 - 2.80±0.08** 99 2.49 2M+FA-H 505.2998 C12H22O4 塔罗霉素A Talaromycin A - 0.65±0.02** - -

在正离子模式下,栀子鲜花花水和栀子鲜花细胞液中的化学成分以氨基酸、萜类、生物碱、肽类等为主要成分,其中以生物碱的数量最多,在栀子鲜花花水和栀子鲜花细胞液中分别为30种和39种。从各成分相对含量上看(

图3

),栀子鲜花花水中相对含量较高的成分种类有生物碱类、芳香类、单萜类,相对含量分别达到47.10%、20.74%、14.24%,而栀子鲜花细胞液中的主要成分有生物碱类、酯类、芳香类,相对含量分别为45.21%、18.01%、14.68%。由此可见,生物碱类成分是栀子鲜花花水和栀子鲜花细胞液中的主要活性物质,不仅含量高,而且成分种类多样。

图3 正离子模式下的栀子鲜花花水和细胞液的化学成分种类及其相对含量

Fig. 3 Types of chemical constituents and their relative contents of floral water extract and flowers cell sap from Gardenia jasminoides in positive ion mode

Full size|PPT slide

在负离子模式下,栀子鲜花花水和栀子鲜花细胞液中的化学成分以生物碱、酸类成分为主,它们在栀子鲜花花水和栀子鲜花细胞液中的数量分别为5种、14种和12种、12种。从各成分相对含量上看(

图4

),栀子鲜花花水中相对含量较高的成分有酸类、三萜类、酯类,相对含量分别达到37.87%、24.75%、9.37%,而栀子鲜花细胞液以酮类、酸类、酯类、生物碱类为主,相对含量分别为31.29%、15.64%、14.19%、13.45%。可以看出,酸类和酯类成分均是栀子鲜花花水和栀子鲜花细胞液中大量存在的物质。

图4 负离子模式下的栀子鲜花花水和细胞液的化学成分种类及其相对含量

Fig. 4 Types of chemical constituents and their relative contents of floral water extract and flowers cell sap from Gardenia jasminoides in negative ion mode

Full size|PPT slide

2.2.1 氨基酸类成分的鉴定 氨基酸是栀子鲜花花水和鲜花细胞液中的一类主要成分。在正离子模式下,从栀子鲜花花水和鲜花细胞液中鉴定出的氨基酸成分有9种,如L-组氨酸、L-脯氨酸等,相对含量均小于0.1%。而在负离子模式下,仅检测出2种氨基酸,分别为L-脯氨酸和3-(3,4-二羟苯基)-N-[2-(4-羟苯基)乙基]丙氨酸,其中L-脯氨酸在栀子鲜花细胞液中的相对含量高达3.05%,在栀子鲜花花水中的相对含量为0.59%,也是相对含量最高的氨基酸成分。

2.2.2 萜类成分的鉴定 栀子鲜花花水和鲜花细胞液中的萜类成分较为丰富,不仅体现在数量上,在相对含量上也占有重要比例,包括单萜、倍半萜、二萜和三萜成分。

2.2.2.1 单萜成分的鉴定 栀子鲜花花水和鲜花细胞液中检测出的单萜成分不多。正离子模式下鉴定的成分有二氢黄蒿萜酮、桧醇和(S)-(-)-紫苏醇,其中栀子鲜花花水中的(S)-(-)-紫苏醇的相对含量高达13.73%,在鲜花细胞液中也有5.11%。在负离子模式下,发现了薄荷醇-葡萄糖醛酸和栀子中特有的活性成分京尼平酸,其中栀子鲜花花水中的京尼平酸相对含量较高,达到1.76%。

2.2.2.2 倍半萜成分的鉴定 负离子模式下没有发现倍半萜成分,而在正离子模式下响应灵敏,检测出了19种倍半萜成分。相对含量较高的有蜜环菌醛H、青蒿琥酯、氧化石竹烯、α-佛手柑油烯、(+)-长叶环烯、α-石竹烯等,其中相对含量最高的氧化石竹烯在栀子鲜花花水和鲜花细胞液中的相对含量分别达到1.77%和0.38%。

2.2.2.3 二萜成分的鉴定 栀子鲜花花水和鲜花细胞液中检出的二萜类成分不多。正离子模式下共检测到4种二萜类成分,如西红花苷II、赤霉素A62等,相对含量均在0.1%以下,而负离子模式下仅检测到辛卡西醇B这一种二萜成分,在栀子鲜花花水中的相对含量为1.56%,而在栀子鲜花细胞液中仅为0.30%。

2.2.2.4 三萜成分的鉴定 栀子鲜花花水和鲜花细胞液中检测到的三萜类成分虽然也不多,但是有些三萜化合物的相对含量较高。正离子模式下检测到的4种三萜成分中,山茶皂苷元B在栀子鲜花花水中的相对含量达到2.16%,而鲜花细胞液中只有0.02%。负离子模式下检测到的三萜成分有异柠檬苦素酸、麦德龙苷D和羟基积雪草苷,其中麦德龙苷D和羟基积雪草苷在栀子鲜花花水中的相对含量分别达到4.35%和20.20%。

2.2.3 生物碱成分的鉴定 生物碱成分是栀子鲜花花水和鲜花细胞液中成分数量最多,也是相对含量最高的一类成分,相对含量分别达到47.09%和45.20%。生物碱成分在正离子模式下更容易响应,检测到的成分数量要远高于负离子模式。正离子模式下检测到的44种生物碱成分中,芥酸酰胺、大观霉素、氨茴酸、L-1,2,3,4-四氢-β-咔啉-3-羧酸的相对含量均较高。芥酸酰胺在栀子鲜花花水中的相对含量达到43.66%,而在鲜花细胞液中的相对含量为19.41%,均是相对含量最高的生物碱成分,是栀子鲜花花水和鲜花细胞液中的重要功效成分。大观霉素在栀子鲜花细胞液中的相对含量为18.16%,而在栀子鲜花花水中仅为0.29%。负离子模式下检测到的14种生物碱成分中,鲜花细胞液中相对含量较高的成分有曲贝替定、3-(3,4-二羟苯基)-N-[2-(5-羟苯基)乙基]丙酮酸、纳他霉素和葫芦巴碱,相对含量分别达到3.30%、3.33%、2.61%和1.58%,而栀子鲜花花水中的3-(3,4-二羟苯基)-N-[2-(5-羟苯基)乙基]丙酮酸相对含量仅有0.40%。鲜花细胞液未检测到的甘油磷酰胆碱和4-羟基异喹胍在栀子鲜花花水中的含量则达到1.54%和1.25%。

0}7}=='sec'" m-for-array="{{custom_ref.citedCount>0}6}" m-for-val="custom_sec" m-for-template-ref="template_secL">0}5}=='sec'" m-for-array="{{custom_ref.citedCount>0}4}" m-for-val="custom_sec" m-for-template-ref="template_secL">

3 讨论

由于栀子鲜花细胞液中醇类化合物和萜烯类化合物的相对含量总和达到95.71%,而其中芳樟醇及其氧化物的含量高达69.52%,反式-橙花叔醇和橙花叔醇的含量高达19.12%,可见醇类化合物对栀子鲜花细胞液的香气品质影响最大,起到了决定性作用,而水蒸气蒸馏提取的栀子鲜花花水中醇类化合物和萜烯类化合物的相对含量总和为72.00%,其中芳樟醇及其氧化物的含量达63.82%,反式-橙花叔醇仅有0.05%。由于萜烯类化合物具有新鲜的头香,芳樟醇及其氧化物使香气偏轻[47],反式-橙花叔醇带有类似于玫瑰、铃兰和苹果花的气息[48],因此,栀子鲜花细胞液较栀子鲜花花水具有充足的头香,但香气简单,层次不丰富。而栀子鲜花花水除了醇类化合物和萜烯类化合物外,还含有相对含量高达26.06%的酯类化合物,主要以惕各酸酯类化合物存在,各惕各酸酯类化合物相对含量总和为19.47%,其中惕各酸顺-3-己烯酯相对含量达13.24%,与报道的栀子鲜花中的主要成分结果相一致[10-11,13-14]。通过文献检索,发现惕各酸酯类成分仅能在栀子花[8,10,14]、香叶天竺葵[49]、百合[50]等少数花卉中有报道,尤以栀子花中的相对含量较高,数量最多,而其他花卉相对含量较低,是栀子花的特征性香气成分。其中,惕各酸顺-3-己烯酯有优雅的花香气[51],使栀子鲜花花水具有很好的底香。因此,栀子鲜花花水更具有栀子花特有的香气,而且香气更悠长,层次更丰富。与张银华等[12]制备的栀子花精油的成分进行比较,发现栀子鲜花花水中惕各酸顺-3-己烯酯的比例很高,而栀子花精油中非常低,表明栀子鲜花花水比稀释后的栀子花精油更能显现“栀子香型”。

L-脯氨酸是一种重要的五元环状氨基酸,是人体合成蛋白质的十八种氨基酸之一,味微甜,可作为营养增补剂[52],在栀子鲜花花水和鲜花细胞液中均是相对含量最高的氨基酸成分,但栀子鲜花细胞液中的氨基酸类种类多于栀子鲜花花水,营养成分更全面。可见栀子鲜花细胞液的营养功效较栀子鲜花花水全面。(S)-(-)-紫苏醇是一种单环单萜烯醇,具有较好的抗癌功效,在国外已作为防癌保健品推广,或作为新型抗癌药物进行临床试验[53],(S)-(-)-紫苏醇是栀子鲜花花水和鲜花细胞液中相对含量最高的单萜类成分。通过分析,发现栀子鲜花花水中存在较多的抗菌、抗炎活性物质,如倍半萜成分双氢青蒿素、三萜成分山茶皂苷元B、三萜成分羟基积雪草苷等,而栀子鲜花细胞液中仅含有山茶皂苷元B、羟基积雪草苷,抗菌、抗炎成分种类较少而且相对含量极低。双氢青蒿素对大肠杆菌有抗菌活性[54],且具有较好的抗炎活性[55],山茶皂苷元B对病原真菌和酵母菌具有较强的抑制活性[56],羟基积雪草苷具有抗炎药理作用,已在临床上得到应用[57]。此外,栀子鲜花花水中还存在双环孢素、塔罗霉素A等抗生素,而鲜花细胞液中仅含有塔罗霉素A。栀子鲜花细胞液中含有相对含量较高的大观霉素,栀子鲜花花水中也含有大观霉素,其具有抗淋球菌活性[58]。由此可见,栀子鲜花花水中的抗菌、抗炎成分更为多样,在抗菌、抗炎功效上更为突出。京尼平酸是栀子中存在的特征性活性成分之一,是评价栀子药效的主要化学成分[59],具有抗氧化、抗应激等药理作用[60],负离子模式下,在栀子鲜花花水中的相对含量达1.76%,占其单萜类成分的比例为67.95%;而在栀子鲜花细胞液中的相对含量仅有0.18%,占其单萜类成分的比例为48.65%,可见京尼平酸在栀子鲜花花水抗氧化功效的表现上更突出。芥酸酰胺作为芥酸的重要衍生物,是一种应用范围广泛的生物活性物质,有研究表明,芥酸酰胺对小鼠具有一定的抗焦虑样作用[61]。芥酸酰胺作为栀子鲜花花水和鲜花细胞液中相对含量最高的一种生物碱成分,赋予了栀子鲜花花水和鲜花细胞液具有一定的抗焦虑生理功能。

0}3}=='sec'" m-for-array="{{custom_ref.citedCount>0}2}" m-for-val="custom_sec" m-for-template-ref="template_secL">

4 结论

通过气相色谱—质谱联用技术分析了栀子鲜花花水和鲜花细胞液的香气成分,表明芳樟醇是栀子鲜花细胞液和栀子鲜花花水的主要香气成分。栀子鲜花细胞液较栀子鲜花花水具有充足的头香,但香气简单,留香时间短;而栀子鲜花花水含有更多的代表栀子花特征香气成分的惕各酸酯类化合物,香气成分较栀子鲜花细胞液丰富,各类化合物含量分布较均衡,使栀子鲜花花水除了具有良好的头香,而且具有浓郁的底香,持香时间长,香气层次更丰富。通过超高效液相色谱—质谱联用技术(UPLC-ESI-QTOF-MS/MS)分析了栀子鲜花花水和鲜花细胞液液相化学成分,表明生物碱类成分是栀子鲜花花水和鲜花细胞液中的主要特征性物质,可作为栀子鲜花花水和鲜花细胞液品质的评价指标。栀子鲜花花水含有丰富的萜类成分及生物碱成分,而栀子鲜花细胞液在营养功效上更显著。

0}1}=='sec'" m-for-array="{{custom_ref.citedCount>0}0}" m-for-val="custom_sec" m-for-template-ref="template_secL">

{{custom_citationIndex}5}

=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citationIndex}1}{{custom_ref.citationList}8}[1]YAGI N

,

NAKAHASHI H

,

KOBAYASHI T

,

MIYAZAWA M

. Characteristic chemical components of the essential oil from white kwao krua ( Pueraria mirifica). Journal of Oleo Science, 2013,62(3):175-179.

The components of the essential oil from the roots of Pueraria mirifica were analyzed by capillary gas chromatography-mass spectrometry (GC-MS). Eighty-two components, representing 88.5% of the total oil, were identified by GC-MS. The main component of the oil was 2-pentylfuran, followed by hexanal and hexadecanol. With regard to the odor components from the essential oil of P. mirifica as determined by gas chromatography-olfactometry and aroma extract dilution analysis, it was revealed that phenylacetaldehyde and (2E)-nonenal imparted the green odor of the oil, and geraniol contributed to the sweet odor.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}8}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_citationIndex}3}[2]USAMI A

,

ONO T

,

MARUMOTO S

,

MIYAZAWA M

. Comparison of volatile compounds with characteristic odor in flowers and leaves of nojigiku ( Chrysanthemum japonense). Journal of Oleo Science, 2013,62(8):631-636.

The aim of the present study was to investigate the essential oils isolated from flower and leaf in order to get insight into similarities and differences as to their aroma-active composition. The essential oil obtained from the two parts were analyzed by gas chromatography-mass spectrometry and gas chromatography olfactometry (GC-O). Flower and leaf oils, 38 and 36 constituents, representing 96.4 and 91.0% of the total oil composition, respectively, were identified. The main compounds in flower oil were camphor (47.64%), bornyl acetate (11.87%), and nojigiku alcohol (6.29%), whereas those in leaf oil were camphor (39.14%), nojigiku alcohol (10.76%) and gamma-muurolene (7.02%). 13 Aroma-active compounds were identified by GC-O analysis in flower oil and 12 in leaf oil. The main aroma-active compounds in flower oil were camphor (camphor, FD (flavor dilution) = 7, OAV (odor active value) = 136913), bornyl acetate (camphor, FD = 6, OAV = 113711), and beta-caryophyllene (spicy, FD = 5, OAV = 116480). In leaf oil, the main aroma-active compounds were camphor (camphor, FD = 7, OAV = 106784), nojigiku alcohol (camphor, FD = 5, OAV = not determined), and beta-caryophyllene (spicy, FD = 6, OAV = 526267).

{{custom_citationIndex}1}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}3}{{custom_ref.bodyP_ids}9}本文引用 [{{custom_ref.bodyP_ids}0}]摘要{{custom_bodyP_id}8}[3]KASHIMA Y

,

NAKAYA S

,

MIYAZAWA M

. Volatile composition and sensory properties of indian herbal medicine-pavonia odorata-used in ayurveda. Journal of Oleo Science, 2014,63(2):149-158.

The chemical composition of volatile oil obtained from aerial parts of Pavonia odorata were investigated using gas chromatography-mass spectrometry (GC-MS). Its aroma-active compounds were identified using gas chromatography-olfactometry (GC-O) and aroma extraction dilution analysis (AEDA). In order to determine the relative contribution of each compound to the aroma of P odorata, relative flavour activity (RFA) was calculated. The hydrodistillation of P odorata afforded yellowish oil and the yield was 0.009% (w/w) with a spicy, sweet, and green odour. Eighty-five compounds were identified in the oil by GC-MS; the major constituents of the volatile oil were ageratochromene (11.95%), palmitic acid (9.95%), hexahydrofarnesyl acetone (5.96%), beta-eudesmol (4.53%) and beta-caryophyllene oxide (3.08%). The most characteristic aroma compounds in the volatile oil were identified for p-caryophyllene oxide (FD-factor = 128, spicy), (E)-pinocarveol (FD-factor = 64, sweet), 3-butylpyridine (FD-factor = 64, spicy), and 2-nonanone (FD-factor = 32, green) by GC-MS, GC-O and AEDA. It seems that these compounds are responsible for the spicy, sweet and green odour of the aerial parts of P odorata. The antioxidant activity of the volatile oil was also investigated by the oxygen radical absorbance capacity (ORAC) assay using fluorescein (FL) as the fluorescent probe. The ORAC value of the oil was 594.2 +/- 25.9 mu M TE/g. The results indicated that the volatile oil from the aerial parts of P odorata could be considered as a natural antioxidant effect agent.

{{custom_bodyP_id}6}https://doi.org/{{custom_bodyP_id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[4]

张海云, 吕传润, 张静菊, 赵成良, 李宏英 . 新品种丰花玫瑰鲜花细胞液提取率及化学成分分析初报. 香料香精化妆品, 2010(5):17-21.

ZHANG H H

,

LÜ C R

,

ZHANG J J

,

ZHAO C L

,

LI H Y

. The preliminary analysis on the extraction yield of cell sap and chemical composition of a new variety Rosa rugosa of “Feng Hua”. Flavour Fragrance Cosmetics, 2010(5):17-21. (in Chinese)

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[5]

张海云, 孟宪水, 赵成良 . 玫瑰鲜花细胞液的提取. 农产品加工, 2010(5):33-34.

ZHANG H Y

,

MENG X S

,

ZHAO C L

. Extraction of rose flowers cell sap. Farm Products Processing, 2010(5):33-34. (in Chinese)

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.content}5}]摘要{{custom_citation.doi}3}[6]

刘百战, 高芸 . 固相微萃取气相色谱/质谱分析栀子花的头香成分. 色谱, 2000,18(5):452-455.

摘要

分别用固相微萃取和动态顶空法分离栀子鲜花的头香成分,用GC/MS技术分析鉴定,并用GC/MS总离子流色谱峰的峰面积进行归一化定量。在固相微萃取方法中,共鉴定了54种化学成分,占总峰面积的99.98%。主要成分(质量分数)依次为金合欢烯(64.86%)、罗勒烯(29.33%)、芳樟醇(2.74%)、惕各酸顺式叶醇酯(1.34%)和苯甲酸甲酯(0.25%)等。经与动态顶空法的分析结果比较发现,固相微萃取法不仅操作简便,而且具有较高的采样灵敏度,获得的化学成分的信息量多于动态顶空法。

LIU B Z

,

GAO Y

. Analysis of headspace constituents of Gardenia flower by GC/MS with solid-phase microextraction and dynamic headspace sampling. Chinese Journal of Chromatography, 2000,18(5):452-455. (in Chinese)

The headspace constituents of fresh Gardenia flower were investigated by GC/MS. The headspace volatiles were sampled by solid-phase microextraction (SPME) and dynamic headspace sampling (DHS). SPME sampling was conducted with 100 microns PDMS fiber at 28 degrees C for 60 min. In DHS sampling, purified nitrogen was used as purging gas with a flow rate at 80 mL/min for 120 min. Tenax GR(20 mesh-40 mesh) was used as adsorbent and the volatiles were eluted by ether, and concentrated to 0.5 mL for GC/MS analysis. A Supelco-wax capillary column (30 m x 0.25 mm i.d. x 0.25 micron df) was employed in GC/MS analysis. Initial oven temperature was kept at 45 degrees C for 2 min, then raised to 250 degrees C at 4 degrees C/min, and kept at 250 degrees C for 10 min. According to SPME-GC/MS analysis, the main compounds in headspace of fresh Gardenia flower included farnesene(64.86%), cis-ocimene(29.33%), linalool(2.74%), cis-3-hexenyl tiglate(1.34%), methyl benzoate(0.25%). Results obtained from SPME and DHS sampling were also compared. In this study, SPME afforded a simpler and more sensitive sampling method, and much more accurate information about headspace volatiles of Gardenia flower.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[7]MENG X

,

WANG Z Y

,

LV H

. Constituents and bacteriostatic activity of volatile matterfrom four flower plant species. Indian Journal of Agricultural Research, 2010,44(3):157-167.

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.pmid}3}[8]

黄巧巧, 蒋可志, 冯建跃, 陈关喜 . 栀子花头香成分的研究. 浙江科技学院学报, 2003,15(S1):6-7, 10.

HUANG Q Q

,

JIANG K Z

,

FENG J Y

,

CHEN G X

. Analysis of volatile constituents of Gardenia flowers. Journal of Zhejiang University of Science and Technology, 2003,15(S1):6-7, 10. (in Chinese)

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citation.url}8}[9]

黄巧巧, 蒋可志, 冯建跃, 陈关喜 . 气相色谱/质谱法研究栀子花头香成分. 云南植物研究, 2004,26(4):471-474.

HUANG Q Q

,

JIANG K Z

,

FENG J Y

,

CHEN G X

. Analysis of volatile constituents of Gardenia flowers by GC/MS. Acta Botanica Yunnanica, 2004,26(4):471-474. (in Chinese)

{{custom_citation.url}6}https://doi.org/{{custom_citation.url}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}4}本文引用 [{{custom_ref.citationList}5}]摘要{{custom_citation.annotation}3}[10]

谭谊谈, 薛山, 唐会周 . 不同花期栀子花的香气成分分析. 食品科学, 2012,33(12):223-227.

摘要

为研究栀子花开放过程香气成分释放规律,以固相微萃取和气相色谱-质谱联用技术测定栀子花初开期、盛开期和衰花期的鲜花活体香气成分。结果表明:3个不同花期共检测出36种香气成分,主要为酯类、萜烯类和烃类物质,其相对含量分别占据各花期总挥发性物质含量的85.25%、85.29%、94.37%;初开期酯类物质和烃类物质的相对含量较少,随着花期的延续,其相对含量都有一定的上升,而萜烯类物质的含量呈现一个先下降后上升的趋势。罗勒烯、3,7-二甲基-1,6-辛二烯-3-醇丙酸酯、&alpha;-法呢烯、异丙基环己烷和苯甲酸甲基酯为栀子花的主要香气成分。

TAN Y T

,

XUE S

,

TANG H Z

. Analysis of aroma constituents in Gardenia jasminoides at different flowering stages. Food Science, 2012,33(12):223-227. (in Chinese)

In order to under the aroma composition and release regularity of Gardenia jasminoides during the flowering period, the aroma-active components of Gardenia jasminoides at the early, full and late flowering stages were determined by solid phase microextraction (SPME) and gas chromatograph-mass spectrophotometry (GC-MS). A total of 36 aroma-active components were detected throughout the whole flowering stages, which were mainly esters, terpenoids and hydrocarbons and together accounted for 85.25%, 85.29% and 94.37% of total volatile compounds at the early, full and late flowering stages, respectively. The relative contents of esters and hydrocarbons were low at the early flowering stage and then increased as the flowering period proceeded; however, the relative content of terpenoids showed a trend of decreasing initially and then increasing. The main compounds responsible for the aroma of Gardenia jasminoides flowers were ocimene, &alpha;-farnesene, benzoic acid methyl ester, isopropyl cyclohexane and 3,7-dimethyl 1,6-octadiene-3-alcohol propionate.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_ref.citedCount>0}9}0}8}=={{custom_ref.citedCount>0}7}.length-1) || ({{custom_ref.citedCount>0}6} && {{custom_ref.citedCount>0}5}!='')" class="mag_main_zhengwen_left_div_ckwx_table_benwenyiny mag_rich_ref_abstract">本文引用 [{{custom_ref.citedCount>0}0}]摘要{{custom_ref.citationList}8}[11]

蔡杰, 赵超, 程力, 张前军 . 黔产栀子花挥发油化学成分SPME-GC-MS分析. 贵州科学, 2008,26(3):49-51.

CAI J

,

ZHAO C

,

CHENG L

,

ZHANG Q J

. Study on the chemical components in flower essential oil of Gardenia jasminoides from guizhou by SPME-GC-MS. Guizhou Science, 2008,26(3):49-51. (in Chinese)

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}8}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_citationIndex}3}[12]

张银华, 熊秀芳, 徐盈 . 湖北栀子花挥发油的GC/MS分析. 武汉植物学研究, 1999,17(1):61-63.

ZHANG Y H

,

XIONG X F

,

XU Y

. Analysis of Hubei volatile oil of Gardenia flower by GC/MS. Journal of Wuhan Botanical Research, 1999,17(1):61-63. (in Chinese)

{{custom_citationIndex}1}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}3}{{custom_ref.bodyP_ids}9}本文引用 [{{custom_ref.bodyP_ids}0}]摘要{{custom_bodyP_id}8}[13]

陈彤, 李祖光, 曹慧, 沈德隆 . 栀子花香气成分的研究. 质谱学报, 2006,27(增刊):99-100.

CHEN T

,

LI Z G

,

CAO H

,

SHEN D L

. Study on the aroma components of Gardenia jasminoides. Journal of Chinese Mass Spectrometry Society, 2006,27(Suppl.):99-100. (in Chinese)

{{custom_bodyP_id}6}https://doi.org/{{custom_bodyP_id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[14]

任洪涛, 周斌, 秦太峰, 夏凯国, 周铁生 . 栀子花挥发性成分的提取和对比分析. 香料香精化妆品, 2012(3):17-21.

REN H T

,

ZHOU B

,

QIN T F

,

XIA K G

,

ZHOU T S

. Extraction and analysis of the volatile components inGardenia jasminoides. Flavour Fragrance Cosmetics, 2012(3):17-21. (in Chinese)

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[15]KANLAYAVATTANAKUL M

,

LOURITH N

. Volatile profile and sensory property of Gardenia jasminoides aroma extracts. Journal of Cosmetic Science, 2015,66(6):371-377.

The volatile profiles of aroma extracts prepared from the flower of Gardenia jasminoides by different methods were investigated using gas chromatography-mass spectrometry. The enfleurage extraction using spermaceti wax and palm oil afforded the best aroma extract with a preference that was significantly (p < 0.05) better than those from solvent extractions, as sensorially evaluated in 43 volunteers. The odor quality of the absolute de enfleurage was similar to the floral scent of fresh gardenia, as confirmed in 152 volunteers. Although female volunteers were insignificantly (p > 0.05) better sensed than male volunteers, age was significant (p < 0.05). The nuance gardenia floral scent was contributed by farnesene, Z-3-hexenyl tiglate, Z-3-hexenyl benzoate, and indole. The relaxing and refreshing sensations of the gardenia odor suggest its applications in body care, cleansing products, and perfume. This study addresses the increasing interest in floral fragrances. The aroma profile and sensory property of this sweet and elegant scent flower will strengthen and expand the applications of gardenia from traditional medicine to those of perfumery and the field of phytochemistry.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.content}5}]摘要{{custom_citation.doi}3}[16]

陆浩, 邵兴锋, 曹锦轩, 欧昌荣, 曾小群, 翁佩芳, 潘道东 . 植物精油在动物性食品保藏中的应用研究进展. 核农学报, 2014,28(11):2079-2085.

摘要

植物精油是植物体内重要的次生代谢产物,具有广泛抗菌抑菌的性能,在食品保藏领域可作为化学防腐剂的替代品,它已成为当下研究的热点.本文介绍了植物精油的特点,综述了精油对动物性食品中病原微生物的抑菌效果、抑菌机理及影响抑菌效果的因素,并进一步探讨了其在动物食品保藏领域中的应用方式及保鲜效果,以期为植物精油在动物性食品中的商业化应用提供理论基础和技术参考.

LU H

,

SHAO X F

,

CAO J X

,

OU C R

,

ZENG X Q

,

WENG P F

,

PAN D D

. Advances in research of plant essential oils on the preservation of animal products food. Acta Agriculturae Nucleatae Sinica, 2014,28(11):2079-2085. (in Chinese)

Plant essential oils, as a important secondary metabolites in plants, can be used as alternative way of chemical method in food preservation for their broad spectrum of antibacterial properties, which has become a current hot spot in food preservation. This paper reviewed the characteristics of plant oils, and emphasize on the inhibitory effect and antibacterial mechanism of plant essential oils on animal derived foods, as well as the factors influencing the antibacterial ability. Furthermore, the application methods and preservation effects of plant oils in the field of animal food preservation are also discussed. This review may provide a theoretical basis and technical reference for commercial application of plant essential oils in animal product foods.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[17]

刘田园 . 金银花水提过程中的成分变化规律及工艺研究[D]. 泰安: 山东农业大学, 2019.

LIU T Y

. Composition change regulation of Lonicerae japonicae flos in water extraction and the technique study[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese)

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.pmid}3}[18]

李爱萍, 徐晓俞, 陈峥, 俞秀红, 黄旭旻, 郑开斌 . 不同加工工艺与收集时段对‘大马士革’玫瑰花水香气成分的影响. 中国农业科学, 2017,50(4):720-731.

摘要

【目的】了解水蒸气蒸馏与共水蒸馏两种不同提取工艺以及不同收集时段对&lsquo;大马士革&rsquo;玫瑰花水香气成分的影响,为玫瑰花水的合理加工及利用提供参考。【方法】通过固相微萃取取样,气相色谱-质谱联用技术(GC-MS)分析,对各成分质谱通过计算机谱库(NIST/WILEY)检索和资料分析,然后结合文献进行人工谱图解析,对不同提取工艺以及不同收集时段的&lsquo;大马士革&rsquo;玫瑰花水主要香气成分进行鉴定和定量。【结果】利用水蒸气蒸馏工艺提取的&lsquo;大马士革&rsquo;玫瑰花水的香气成分在种类数量和相对含量上都高于共水蒸馏得到的&lsquo;大马士革&rsquo;玫瑰花水,且香茅醇和苯乙醇的相对含量也都高于共水蒸馏得到的&lsquo;大马士革&rsquo;玫瑰花水,因此水蒸气蒸馏提取的&lsquo;大马士革&rsquo;玫瑰花水香气丰润,甜香味更浓郁,品质比共水蒸馏提取的&lsquo;大马士革&rsquo;玫瑰花水更好。无论是共水蒸馏还是水蒸气蒸馏的&lsquo;大马士革&rsquo;玫瑰花水都是在第二时段得到的醇类化合物的数量和含量最高。共水蒸馏以第二时段收集的花水玫瑰主体香气最强,水蒸气蒸馏的第一时段和第二时段收集的花水主体香气相当,因此共水蒸馏提取的&lsquo;大马士革&rsquo;玫瑰花水以第二时段收集的花水(即第二个与鲜花等重量的花水)的质量最佳,生产上以收集第一时段花水(即第一个与鲜花等重量的花水)和第二时段花水为适;水蒸气蒸馏提取的&lsquo;大马士革&rsquo;玫瑰花水以第一时段收集的花水(即第一个与鲜花等重量的花水)的质量最佳,生产上以收集第一时段、第二时段和第三时段花水为宜。【结论】水蒸气蒸馏提取的&lsquo;大马士革&rsquo;玫瑰花水香气优于共水蒸馏提取的花水;生产上采用共水蒸馏工艺提取的&lsquo;大马士革&rsquo;玫瑰花水以收集前两个时段的花水为宜,水蒸气蒸馏工艺提取的以收集前3个时段的花水为宜。

LI A P

,

XU X Y

,

CHEN Z

,

YU X H

,

HUANG X M

,

ZHENG K B

. Effects of different processing techniques and collecting periods on the aroma constituents of Rosa damascena flower water. Scientia Agricultura Sinica, 2017,50(4):720-731. (in Chinese)

【Objective】 The objective of this experiment is to clarify the impacts of different extraction processes (water steam distillation and coeno-water distillation) and collecting periods on the aroma constituents of Rosa damascena flower water, and to provide reference for the reasonable processing and utilization of rose water. 【Method】 The dominant aroma compositions of R. damascena flower water from different extraction processes and collecting periods were identified and quantified by using the following methods: sampled by solid phase micro extraction first, then the constituent was isolated by gas chromatography- mass spectrometry (GC-MS), and each constituent was retrieved and analyzed by the computer spectral database (NIST/WILEY), finally confirmed artificially referring to data. 【Result】 Types and relative percentage of aroma constituents of R. damascena flower water extracted by water steam distillation were all higher than that extracted by coeno-water distillation, as well as the relative percentage of geraniol and benzyl alcohol. Therefore, R. damascena flower water extracted by water steam distillation was rich in aroma and sweet smell, and the quality was superior to that extracted by coeno-water distillation. Whether R. damascena flower water extracted by coeno-water distillation or water steam distillation had the maximum quantity and content of alcohols in the second period. However, the main aroma of R. damascena flower water extracted by coeno-water distillation and collected in the second period was the strongest, while the main aroma of R. damascene rose water extracted by water steam distillation and collected in the first period was as strong as that collected in the second period. Therefore, R. damascena flower water extracted by coeno-water distillation and collected in the second period (the second weight which is equal to flowers) had the best quality, and the first (the first weight which is equal to flowers) and second periods were suitable for collecting in the production of rose water. While R. damascena flower water from the first period (the first weight which is equal to flowers) extracted by water steam distillation had the best quality, and the first, second and third periods were suitable for collecting in the production of rose water. 【Conclusion】 The aroma of R. damascene rose water extracted by water steam distillation is superior to that extracted by coeno-water distillation. R. damascena flower water extracted by coeno-water distillation and collected in the first two periods is applicable in the production, while rose water extracted by water steam distillation and collected in the first three periods is applicable.

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citation.url}8}[19]

董静, 钟传飞, 王桂霞, 常琳琳, 孙健, 孙瑞, 张宏力, 李睿, 隗永青, 郑书旗, 张运涛 . 日中性草莓不同季节果实挥发性成分差异. 中国农业科学, 2019,52(13):2309-2327.

摘要

【目的】比较日中性草莓秋季和冬季果实挥发性成分,明确季节变化对挥发性成分构成及香气值的影响,为研究草莓香气形成和开发利用日中性品种提供理论依据。【方法】以日中性品种‘阿尔比’‘蒙特瑞’‘波特拉’和‘圣安德瑞斯’的秋季大拱棚栽培和冬季日光温室栽培的成熟果实为试材,采用顶空固相微萃取和气谱-质谱联用方法检测挥发性成分并进行定性、定量分析,计算挥发性成分的数量、含量、比例和香气值,通过主成分分析对秋、冬果实香气成分含量差异做进一步分析,并依据香气值>1的成分,利用聚类热图对供试样品进行分类。【结果】共检测到88种挥发性成分,计算了57种成分的香气值,其中有30种成分的香气值>1。季节变化对各类挥发性成分数量和总含量的影响因品种而异;冬季果实中酯类成分的含量及在总挥发性成分中的比例显著高于秋季果实,而萜烯类成分的比例则显著低于秋季果实。主成分分析表明,‘波特拉’果实的挥发性成分含量受季节变化影响最小,而‘圣安德瑞斯’受季节影响最大。所有挥发性成分中,丁酸乙酯的平均香气值最高,对果实香气有重要影响;与秋季果实相比,冬季果实乙酸丁酯和丁酸甲酯的香气值显著升高;香气值>1的萜烯类成分在冬季果实中的香气值之和均低于秋季果实。丁酸乙酯、丁酸丁酯、4-甲氧基-2,5-二甲基-3(2H )-呋喃酮(DMMF)、己酸乙酯、芳樟醇等成分在不同季节果实的香气差异中起重要作用。通过热图分析可以将供试样品分为3类,其中第I类样品包括‘阿尔比’秋季果实、冬季果实和‘蒙特瑞’秋季果实,它们的总香气值和丁酸乙酯香气值均高于其他样品。【结论】季节变化主要影响果实的酯类和萜烯类成分,冬季果实的酯类含量、比例显著高于秋季果实,而萜烯类的比例则显著低于秋季果实。4个品种中,‘波特拉’果实挥发性成分含量受季节影响最小,而‘阿尔比’果实香气最浓,香气受季节变化的影响最小,‘圣安德瑞斯’挥发性成分含量和香气均受影响最大。

DONG J

,

ZHONG C F

,

WANG G X

,

CHANG L L

,

SUN J

,

SUN R

,

ZHANG H L

,

LI R

,

WEI Y Q

,

ZHENG S Q

,

ZHANG Y T

. Comparative study on fruit volatiles of different day-neutral strawberry cultivars in autumn and winter. Scientia Agricultura Sinica, 2019,52(13):2309-2327. (in Chinese)

【Objective】 Fruit volatiles of day-neutral strawberries harvested in autumn and winter were compared to clarify the effects of seasonal changes on volatile composition and odor activity value (OAV) of volatiles, aiming to provide theoretical basis for research on strawberry aroma and utilization of day-neutral cultivars. 【Method】 Matured fruits of day-neutral cultivars (including Albion, Monterey, Portola, and San Andreas) were harvested from high-tunnel in autumn and greenhouse in winter, respectively. Volatiles were extracted by using solid-phase microextraction (SPME), detected by gas chromatograph-mass spectrometer (GC-MS) and analyzed qualitatively and quantitatively. The numbers, contents, percentages and OAVs of volatiles were calculated. Principal component analysis (PCA) was employed to analyze the differences in volatiles content between autumn and winter strawberries. Clustered heatmap was used to classify the samples depending on the volatiles with OVA higher than 1. 【Result】 A total of 88 individual volatiles were identified and the OAVs of 57 volatiles were calculated. It was found that there were 30 components with OAV higher than 1. Effects of seasonal changes on the number of each chemical category and the total content of volatiles varied among cultivars. Compared to the autumn fruits, the content and percentage of esters in winter fruits were significantly higher, while terpenes were remarkably lower. The result of PCA indicated that, compared with other cultivars, volatiles pattern of Portola showed less variation, whereas San Andreas showed the highest variation between two seasons. Ethyl butanoate was very important for these tested cultivars since its average OAV was the highest in all volatiles. The OAVs of butyl acetate and methyl butanoate in winter fruits were noticeably higher than that in autumn fruits. However, compared with autumn fruits, the winter fruits of each cultivar had a lower sum of terpene OAVs that were higher than 1. Ethyl butanoate, butyl butanoate, 4-methoxy-2, 5-dimethyl- 3(2H)-furanone, ethyl hexanoate and linalool played an important role in the aroma differences between fruits of different seasons. The eight tested samples were classified into 3 groups using clustered heatmap. The group I included Albion autumn, Albion winter and Monterey autumn, of which total OAVs and the OAVs of ethyl butanoate were significantly higher than other groups. 【Conclusion】 Seasonal change had a remarkable impact on esters and terpenes in fruit volatiles of day-neutral strawberry cultivars. It was showed that the content and percentage of esters in winter fruits were significantly higher than autumn fruits, while the percentage of terpenes was remarkably lower in winter fruits. Among the 4 tested cultivars, Portola showed the least variation in volatile content between autumn and winter. Albion was the cultivar with intense aroma and its aroma performance presented the least changes when season changed, however, San Andreas was the one with the largest volatile variation both in volatile content and fruit aroma.

{{custom_citation.url}6}https://doi.org/{{custom_citation.url}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}4}本文引用 [{{custom_ref.citationList}5}]摘要{{custom_citation.annotation}3}[20]LAZAREVIC J

,

RADULOVIC N

,

PALIC R

,

ZLATKOVIC B

. Chemical analysis of volatile constituents of Berula erecta(hudson) coville subsp. erecta (apiaceae) from Serbia. Journal of Essential Oil Research, 2010,22(3):153-156.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_ref.citedCount>0}9}0}8}=={{custom_ref.citedCount>0}7}.length-1) || ({{custom_ref.citedCount>0}6} && {{custom_ref.citedCount>0}5}!='')" class="mag_main_zhengwen_left_div_ckwx_table_benwenyiny mag_rich_ref_abstract">本文引用 [{{custom_ref.citedCount>0}0}]摘要{{custom_ref.citationList}8}[21]RADULOVIC N

,

DORDEVIC N

,

MARKOVIC M

,

PALIC R

. Volatile constituents of Glechoma Hirsuta Waldst. Kit. and G. Hederacea L.(Lamiaceae). Bulletin of the Chemical Society of Ethiopia, 2010,24(1):67-76.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}8}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_citationIndex}3}[22]PINO J A

,

MESA J

,

MUÑOZ Y

,

MARTÍ M P

,

MARBOT R

. Volatile components from mango ( Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry, 2005,53(6):2213-2223.

The volatile components of 20 mango cultivars were investigated by means of simultaneous distillation-extraction, GC, and GC-MS. Three hundred and seventy-two compounds were identified, of which 180 were found for the first time in mango fruit. The total concentration of volatiles was approximately 18-123 mg/kg of fresh fruit. Terpene hydrocarbons were the major volatiles of all cultivars, the dominant terpenes being delta-3-carene (cvs. Haden, Manga amarilla, Macho, Manga blanca, San Diego, Manzano, Smith, Florida, Keitt, and Kent), limonene (cvs. Delicioso, Super Haden, Ordonez, Filipino, and La Paz), both terpenes (cv. Delicia), terpinolene (cvs. Obispo, Corazon, and Huevo de toro), and alpha-phellandrene (cv. Minin). Other qualitative and quantitative differences among the cultivars could be demonstrated.

{{custom_citationIndex}1}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}3}{{custom_ref.bodyP_ids}9}本文引用 [{{custom_ref.bodyP_ids}0}]摘要{{custom_bodyP_id}8}[23]ZHAO Y P

,

LI J M

,

XU Y

,

DUAN H

,

FAN W L

,

ZHAO G A

. Extraction, preparation and identification of volatile compounds in Changyu XO brandy. Chinese Journal of Chromatography, 2008,26(2):212-222.

A method for the preparation of volatile compounds in Changyu XO brandy was established. The volatile compounds were extracted using liquid-liquid extraction and then were separated into two fractions, namely, the acidic/water-soluble fraction and the neutral/basic fraction. The neutral/basic fraction was furthermore separated into 4 fractions using silica gel normal phase chromatography, and each fraction was then concentrated and analyzed using gas chromatography-mass spectrometry (GC-MS). In comparison with the pure standards and the retention indices (RIs) reported in the literature, a total of 302 volatile compounds were identified in Changyu XO brandy, including 30 alcohols, 35 aldehydes and ketones, 20 carboxylic acids, 104 esters, 24 substituted benzenes and derivatives, 14 phenolic derivatives, 14 acetals, 16 furan derivatives, 22 terpenic and norisoprenoidic derivatives and 23 others. It was demonstrated that this method of preparation was effective for the separation and concentration of volatile compounds in Changyu XO brandy.

{{custom_bodyP_id}6}https://doi.org/{{custom_bodyP_id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[24]JALALI-HERAVI M

,

ZEKAVAT B

,

SERESHTI H

. Characterization of essential oil components of Iranian geranium oil using gas chromatography-mass spectrometry combined with chemometric resolution techniques. Journal of Chromatography A, 2006,1114(1):154-163.

The essential oil components of geranium oil cultivated in center of Iran were identified and determined using gas chromatography-mass spectrometry data combined with the chemometric resolution techniques. A total of 61 components accounting for 91.51% were identified using similarity searches between the mass spectra and MS database. This number was extended to 85 components using chemometric techniques. Various chemometric methods such as morphological scores, simplified Borgen method (SBM) and fixed size moving window evolving factor analysis (FSMWEFA) were used for determining the number of components, pure variables, zero concentration and selective regions. Then the overlapping peak clusters were resolved into pure chromatograms and pure mass spectra using heuristic evolving latent projections (HELP) method. A characteristic feature of the Iranian geranium oil is the absence of 10-epi-gamma-eudesmol in its constituents compared with the oil from northern and southern parts of India. The results of this work show that combination of hyphenated chromatographic methods and resolution techniques provide a complementary method for accurate analysis of essential oils.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[25]DHARMAWAN J

,

KASAPIS S

,

SRIRAMULA P

,

LEAR M J

,

CURRAN P

. Evaluation of aroma-active compounds in Pontianak orange peel oil ( Citrus nobilis Lour. var. microcarpa Hassk.) by gas chromatography-olfactometry, aroma reconstitution, and omission test. Journal of Agricultural and Food Chemistry, 2009,57(1):239-244.

The aroma-active compounds of Pontianak orange peel oil ( Citrus nobilis Lour. var. microcarpa Hassk.) were characterized by using gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA) techniques. Forty-one compounds were found to be aroma-active, which were mainly dominated by saturated and unsaturated aldehydes. The flavor dilution (FD) factor was within the range of 2-2048, and compounds having the highest FD factor were alpha-pinene, beta-pinene, linalool, and 2-methoxy-3-(2-methylpropyl) pyrazine, including a few unknown compounds. On the basis of GC-O results, odor activity value (OAV) and relative flavor activity (RFA) were determined for aroma model reconstitution. These resembled the original aroma of the peel oil for the green, fatty, fresh, peely, floral, and tarry attributes, with the model solution derived from OAV being the closest to Pontianak oil. Omission tests were carried out to verify the significance of (Z)-5-dodecenal and 1-phenylethyl mercaptan as key compounds in the aroma of Pontianak orange peel oil.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{referenceList}8}{{referenceList}4}本文引用 [{{custom_ref.id}5}]摘要{{custom_index}3}[26]SALIDO S

,

VALENZUELA L R

,

ALTAREJOS J

,

NOGUERAS M

,

SÁNCHEZ A CANO E

,. Composition and infraspecific variability of Artemisia herba-alba from southern Spain. Biochemical Systematics and Ecology, 2004,32(3):265-277.

Abstract

The composition of the essential oils of 16 individual plants of Artemisia herba-alba Asso ssp. valentina (Lam.) Marcl. (at the full bloom stage) growing wild in four different locations from southern Spain were investigated by capillary GC and GC–MS in combination with retention indices. Among the 60 identified constituents (accounting for 80.6–95.0% of the oils), 33 have been reported for the first time in Spanish A. herba-alba oil and 17 of them have not been previously described in A. herba-alba oil. From the analysis of the oil samples, it could be deduced that a noticeable chemical polymorphism typified this taxon. Four groups of essential oils exhibited a single compound with percentages near 30% or higher: davanone, 1,8-cineole, chrysanthenone and cis-chrysanthenol. Two further oil types showed p-cymene and cis-chrysanthenyl acetate as major components in moderate amounts (ca. 20%). All of these types of essential oils have not been previously found in A. herba-alba from Spain and the appearance of such considerable amount of p-cymene is described here for the first time in A. herba-alba.

{{custom_index}1}https://doi.org/{{custom_ref.nian}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.nian}3}{{custom_ref.citedCount}9}本文引用 [{{custom_ref.citedCount}0}]摘要{{custom_ref.citationList}8}[27]SAROGLOU V

,

DORIZAS N

,

KYPRIOTAKIS Z

,

SKALTSA H D

. Analysis of the essential oil composition of eight Anthemis species from Greece. Journal of Chromatography A, 2006,1104(1-2):313-322.

The volatile composition of eight Anthemis species has been studied. The essential oils were obtained by hydrodistillation in a modified Clevenger-type apparatus, and their analyses were performed by GC and GC-MS. Identification of the substances was made by comparison of mass spectra and retention indices with literature records. A total of 284 different compounds were identified and significant qualitative and quantitative differences and similarities were observed among the samples. The main constituents of the investigated populations of each taxon have been revealed as follows: A. altissima: (-)-linalool, trans-caryophyllene, cis-chrysanthenyl acetate; A. auriculata: spathulenol, trans-caryophyllene, beta-eudesmol; A. chia: cis-chrysanthenyl acetate, trans-caryophyllene, germacrene-d; A. cotula: germacrene-d, spathulenol A. tinctoria: spathulenol, (-)-caryophyllene oxide, T-cadinol; A. melanolepis: p-cymene, chrysanthenone, trans-verbenol, (-)-caryophyllene oxide; A. tomentosa: (-)-linalool, 1,8-cineole; A. werneri subsp. werneri: nopol, terpineol-4, trans-caryophyllene. Sesquiterpene hydrocarbons were shown to be the main group of constituents of all taxa.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}8}{{custom_citation.content}4}本文引用 [{{custom_citation.doi}5}]摘要{{custom_citation.doi}3}[28]ALISSANDRAKIS E

,

TARANTILIS P A

,

HARIZANIS P C

,

POLISSIOU M

. Comparison of the volatile composition in thyme honeys from several origins in Greece. Journal of Agricultural and Food Chemistry, 2007,55(20):8152-8157.

Thyme honey is the most appreciated unifloral Greek honey in Greece as well as around the world. In an effort to investigate the headspace composition of this type of honey, 28 samples were analyzed by means of solid-phase microextraction coupled to a gas chromatography-mass spectrometry system. The botanical origin of the samples was ascertained by pollen analysis, and samples displayed relative frequencies of thyme pollen between 18 and 41%. A total of 62 compounds were isolated, and phenylacetaldehyde was the most abundant (32.9% of the total peak area). Possible botanical markers are 1-phenyl-2,3-butanedione (13.4%), 3-hydroxy-4-phenyl-2-butanone, 3-hydroxy-1-phenyl-2-butanone (14.7%), phenylacetonitrile (4.8%), and carvacrol (0.9%), since these compounds are found only in thyme honey. Additionally, high proportions of phenylacetaldehyde are also characteristic ( F = 12.282, p < 0.001). The average concentrations of seven compounds were significantly different ( p < 0.05), namely phenylacetaldehyde, acetophenone, octanoic acid, carvacrol, phenylethyl alcohol, nonanal, and hexadecane. Applying principal component analysis to the data, six components were extracted, explaining 85.4% of the total variance. The first component explained 46.2% of the total variance and was positively correlated to phenylacetaldehyde, nonanoic acid, acetophenone, decanoic acid, benzaldehyde, phenylacetonitrile, isophorone, and nonanal. The extracted components were used as variables to the discriminant analysis, which showed good discrimination, especially for samples from Crete. A leave-one-out classification showed 85.7% of cross-validated grouped cases correctly classified. These results are promising to establish a discrimination model for these geographical regions. This is crucial for local beekeeper corporations on their effort to produce honey with geographical origin label.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[29]SHANG C Q

,

HU Y M

,

DENG C H

,

HU K J

. Rapid determination of volatile constituents of Michelia alba flowers by gas chromatography- mass spectrometry with solid-phase microextraction. Journal of Chromatography A, 2002,942(1/2):283-288.

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.url}3}[30]TEPE B

,

SOKMEN M

,

AKPULAT H A

,

DAFERERA D

,

POLISSIOU M

,

SOKMEN A

. Antioxidative activity of the essential oils of Thymus sipyleus subsp sipyleus var. sipyleus an. Thymus sipyleus subsp sipyleus var. rosulans. Journal of Food Engineering, 2005,66(4):447-454.

{{custom_citation.url}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citationIndex}8}[31]ARGYROPOULOU C

,

DAFERERA D

,

TARANTILIS P A

,

FASSEAS C

,

POLISSIOU M

. Chemical composition of the essential oil from leaves of Lippia citriodora H.B.K.(Verbenaceae) at two developmental stages. Biochemical Systematics and Ecology, 2007,35(12):831-837.

Abstract

The chemical composition of the essential oil extracted from fresh leaves of Lippia citriodora (Verbenaceae) was analyzed by GC-FID and GC–MS in May, when growth rates are maximal, and in September, in full bloom. In both samples the main constituents were geranial, neral and limonene constituting 66.3% of the total essential oil yield in May and increasing to 69% in September. Their individual percentage values, however, changed considerably for geranial and neral decreasing from 38.7 to 26.8% and from 24.5 to 21.8%, respectively, and for limonene increasing from 5.8 to 17.7%. All other components remained more or less unchanged both qualitatively and quantitatively. FT-IR spectrometry was also applied for the qualitative determination of the main components.

{{custom_citationIndex}6}https://doi.org/{{custom_citationIndex}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[32]HAZZIT M

,

BAALIOUAMER A

,

FALEIRO M L

,

MIGUEL M G

. Composition of the essential oils of Thymus an. Origanum species from Algeria and their antioxidant and antimicrobial activities. Journal of Agricultural and Food Chemistry, 2006,54(17):6314-6321.

The composition of the essential oils of Origanum and Thymus species restricted to Algeria and the North Africa region was determined. Antioxidant and antibacterial activities of the isolated essential oils were also determined. The oils of oregano plants were strongly characterized by p-cymene (16.8-24.9%), gamma-terpinene (16.8-24.9%), thymol (8.4-36.0%), and carvacrol (1.1-29.7%), a thymol chemotype for Origanum floribundum and a alpha-terpineol chemotype for Thymus numidicus being described for the first time. The strains of Listeria monocytogenes tested were relatively resistant to the action of essential oils of either Origanum or Thymus species. All essential oils possessed antioxidant activity, but this was dependent on the specific chemical composition and the method employed to determine such activity.

{{custom_citation.annotation}1}0}9}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_ref.citedCount>0}7}0}6} && {{custom_ref.citedCount>0}5}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}3}0}2} && {{custom_ref.citedCount>0}1}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">{{custom_citationIndex}9}本文引用 [{{custom_citationIndex}0}]摘要{{custom_ref.id}8}[33]LOGHMANI-KHOUZANI H

,

FINI O

,

SAFARI J

. Essential oil composition of Rosa damascena mill cultivated in Central Iran. Scientia Iranica, 2007,14(4):316-319.

{{custom_ref.id}6}https://doi.org/{{custom_ref.id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}8}{{custom_ref.citedCount}4}本文引用 [{{custom_citationIndex}5}]摘要{{custom_ref.citationList}3}[34]BARANAUSKIENE R

,

VENSKUTONIS P R

,

VISKELIS P

,

DAMBRAUSKIENE E

. Influence of nitrogen fertilizers on the yield and composition of thyme ( Thymus vulgaris). Journal of Agricultural and Food Chemistry, 2003,51(26):7751-7758.

The influence of nitrogen fertilizers on the yield of crop, as well as on the production and composition of the essential oil and some other chemical characteristics of thyme, was investigated. Different levels of fertilizers (N = 0, 45, 90, and 135 kg x ha(-)(1)) were applied. It was found that fertilizers increase thyme crop, but differences in the yield of essential oil were not remarkable. However, the use of certain amounts of nitrogen fertilizers resulted in higher yields of essential oil obtainable from the cultivation area unit (dm(3) ha(-)(1)). Totally, 61 constituents were identified in thyme essential oil by capillary GC and GC-MS. Thymol was the dominating compound in the all analyzed oils (44.4-58.1%), followed by p-cymene (9.1-18.5%), gamma-terpinene (6.9-18.9%), and carvacrol (2.4-4.2%). Differences in the percentage of these and other compounds in thyme herb cultivated under different fertilization doses were not significant; very slight changes in the percentage composition were detected after drying. Some variations in the amount of individual constituents expressed in arbitrary units per kilogram of herb (which is almost equivalent to mg x kg(-)(1)) were observed. The highest amounts of sugars and sucrose, in particular, were determined in the second year of thyme cultivation. Differences in the content of dry soluble substances were not meaningful, and there was no effect of nitrogen fertilizers on this chemical characteristic. Some effect of fertilization on the content of vitamin C and carotenes was observed in the first year of thyme cultivation. It was determined that nitrogen fertilizers influence the amount of nitrates, which was highest in the second-year-first-harvest.

{{custom_ref.citationList}1}https://doi.org/{{custom_ref.bodyP_ids}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.bodyP_ids}3}{{custom_ref.id}9}本文引用 [{{custom_ref.id}0}]摘要{{custom_citation.annotation}8}[35]NIBRET E

,

WINK M

. Volatile components of four Ethiopian Artemisia species extracts and their in vitro antipatrypanosomal and cytotoxic activities. Phytomedicine, 2010,17(5):369-374.

Abstract

Artemisia species are one of the many traditional medicinal plants of Ethiopia used for the treatment of infectious and non-infectious health problems. In the present study, eight extracts prepared from leaves and aerial parts of four Artemisia species (Artemisia absinthium, A. abyssinica, A. afra, and A. annua) growing in Ethiopia were tested in vitro against bloodstream forms of Trypanosoma brucei brucei. The most active extract was the dichloromethane extract from aerial parts of A. abyssinica with an IC50 value of 19.13 μg/ml. A selectivity index (SI) of 8.24 was obtained with HL-60 cells treated with the same extract. Artemisinin, the best known antimalarial compound from A. annua showed antitrypanosomal activity with an IC50 value of 35.91 μg/ml and with a selectivity index of 2.44. The dichloromethane extracts of the four species were further investigated for their volatile components using GLC/MS. Camphor was detected in the four species and was found to be the principal compound (38.73%) of A. absinthium extract. Octa-3,5-diene-2,7-dione, 4,5-dihydroxy was detected in three species except in A. afra and was present as the main volatile component (54.95%) of A. abyssinica. Epoxylinalool was detected only in A. afra and was the principal component (29.10%) of dichloromethane extract of the plant. Deoxyqinghaosu was only present in A. annua and absent in the other three Artemisia species. Deoxyqinghaosu was the principal volatile component (20.44%) of the dichloromethane extract of A. annua. In conclusion, the dichloromethane extract from aerial part of A. abyssinica should be considered for further study for the treatment of trypanosomiasis.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[36]ASUMING W A

,

BEAUCHAMP P S

,

DESCALZO J T

,

DEV B C

,

DEV V

,

FROST S

,

MA C W

. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochemical Systematics and Ecology, 2005,33(1):17-26.

Abstract

The composition of the essential oils of Lomatium dasycarpum ssp. dasycarpum, Lomatium lucidum, Lomatium macrocarpum var. macrocarpum and Lomatium utriculatum is described. Identification of components was determined from their GC, GC/MS data and many were confirmed by coinjections with authentic samples. Several components were isolated by liquid and gas chromatographic techniques and their structures confirmed from their 1H and 13C NMR spectral data. 2-Methyl and 3-methylbutanoates were the major components of L. dasycarpum fruits as well as stems and leaves oils. β-Phellandrene/limonene, decanal, dodecanal, bornyl acetate, germacrene D, α-humulene and bicyclogermacrene were the major components of the corresponding L. lucidum oils. α-Pinene and β-pinene were the major components of the fruit oil of L. macrocarpum. Its stem and leaf oil was rich in peucenin 7-methyl ether, β-caryophyllene, (Z)-3-hexenol, palmitic acid, linoleic acid and (E)-2-hexenal. Sabinene, (Z)-ligustilide, terpinen-4-ol, β-phellandrene/limonene, β-caryophyllene, myrcene, α-pinene and β-pinene were the major compounds in L. utriculatum fruit oil, while its stem and leaf oil was rich in (Z)-ligustilide, palmitic acid, terpinen-4-ol, linoleic acid and germacrene D. (Z)-Falcarinol was a major component of all the four root oils.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{fundList_cn}8}[37]ISIDOROV V

,

JDANOVA M

. Volatile organic compounds from leaves litter. Chemosphere, 2002,48(9):975-979.

Abstract

Qualitative composition of volatile emissions of litter of five species of deciduous trees was investigated by GC-MS. The list of identified substances contains more than 70 organic compounds of various classes. It was established that the composition of components emitted by the litter into the gas phase greatly differs from that of essential oils extracted by hydrodistillation from turned leaves collected from trees during fall. It is suggested that most compounds found in litter emissions are products of vital activity of microorganisms decomposing it. The reported data indicate that after the vegetative period is over the decomposition processes of litter are important seasonal sources of reactive organic compounds under the forest canopy.

{{fundList_cn}6}https://doi.org/{{fundList_cn}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}8}{{custom_fund}4}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[38]RADULOVIC N

,

BLAGOJEVIC P

,

PALIC R

. Comparative study of the leaf volatiles of Arctostaphylos uva-ursi(L.) Spreng. and Vaccinium vitis-idaea L., 2010,15(9):6168-6185.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[39]RODRÍGUEZ-BURRUEZO A

,

KOLLMANNSBERGER H

,

PROHENS J

,

NITZ S

,

NUEZ F

. Analysis of the volatile aroma constituents of parental and hybrid clones of pepino ( Solanum muricatum). Journal of Agricultural and Food Chemistry, 2004,52(18):5663-5669.

The volatile constituents of 10 clones (4 parents with different flavors and 6 hybrids from selected crossings among these parents) of pepino fruit (Solanum muricatum) were isolated by simultaneous distillation-extraction and analyzed by gas chromatography-mass spectrometry (GC-MS). Odor-contributing volatiles (OCVs) were detected by GC-olfactometry-MS analyses and included 24 esters (acetates, 3-methylbutanoates, and 3-methylbut-2-enoates), 7 aldehydes (especially hexenals and nonenals), 6 ketones, 9 alcohols, 3 lactones, 2 terpenes, beta-damascenone, and mesifurane. Among these compounds, 17, of which 5 had not been reported previously in pepino, were found to contribute significantly to pepino aroma. OCVs can be assigned to three groups according to their odor quality: fruity fresh (acetates and prenol), green vegetable (C6 and C9 aldehydes), and exotic (lactones, mesifuran, and beta-damascenone). Quantitative and qualitative differences between clones for these compounds are clearly related to differences in their overall flavor impression. The positive value found for the hybrid-midparent regression coefficient for volatile composition indicates that an important fraction of the variation observed is inheritable, which has important implications in breeding for improving aroma. Significant and positive correlations were found between OCVs having common precursors or related pathways.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[40]SARIKURKCU C

,

TEPE B

,

DAFERERA D

,

POLISSIOU M

,

HARMANDA M

. Studies on the anioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (lamiaceae) by three different chemical assays. Bioresource Technology, 2008,99(10):4239-4246.

This study is designed to examine the chemical composition and in vitro antioxidant activity of the essential oil and sub-fractions of the methanol extract of Marrubium globosum subsp. globosum. The GC and GC-MS analysis of the essential oil were resulted in the determination of 84 components representing 88.2% of the oil. The major constituents of the oil were spathulenol (15.8%), beta-caryophyllene (9.0%), caryophyllene oxide (7.9%), germacrene D (6.5%), and bicyclogermacrene (3.1%). Antioxidant activities of the samples were determined by three different test systems namely DPPH, beta-carotene/linoleic acid and reducing power assay. In DPPH system, the weakest radical scavenging activity was exhibited by the essential oil (1203.38+/-7.18 microg ml(-1)). Antioxidant activity of the polar sub-fraction of methanol extract was superior to the all samples tested with an EC(50) value of 157.26+/-1.12 microg ml(-1). In the second case, the inhibition capacity (%) of the polar sub-fraction of methanol extract (97.39%+/-0.84) was found the strongest one, which is almost equal to the inhibition capacity of positive control BHT (97.44%+/-0.74). In the case of reducing power assay, a similar activity pattern was observed as given in the first two systems. Polar sub-fraction was the strongest radical reducer when compared with the non-polar one, with an EC(50) value of 625.63+/-1.02 microg ml(-1). The amount of the total phenolics was highest in polar sub-fraction (25.60+/-0.74 microg/mg). A positive correlation was observed between the antioxidant activity potential and total phenolic level of the extracts. On the other hand, total flavonoid content was found equal for the both sub-fractions.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[41]ENGEL K H

,

FLATH R A

,

BUTTERY R G

,

MON T R

,

RAMMING D W

,

TERANISHI R

. Investigation of volatile constituents in nectarines. 1. Analytical and sensory characterization of aroma components in some nectarine cultivars. Journal of Agricultural and Food Chemistry, 1988,36(3):549-553.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[42]OLLÉ D

,

BAUMES R L

,

BAYONOVE C L

,

LOZANO Y F

,

SZNAPER C

,

BRILLOUET J M

. Comparison of free and glycosidically linked volatile components from polyembryonic and monoembryonic mango ( Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry, 1998,46(3):1094-1100.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[43]HEDIN P A

,

MCKIBBEN G H

,

DOLLAR D A

. Role of ground trash volatiles in the selection of hibernation sites by boll weevils, Journal of Agricultural and Food Chemistry, 2000,48(8):3673-3676.

Volatiles play a large role in governing the behavior of boll weevils (Anthonomus grandis Boheman). They are attracted to cotton plants, and the female is sexually attracted to the male. The attracting compounds in both instances are terpenoids. Primarily in the fall of the year, boll weevils seek hibernation sites in leaf trash, where they remain until the following spring or summer. In the present study, essential oils were prepared by steam distillation from several leaf samples known to be prevalent at hibernation sites, and the oils were analyzed by GLC-MS. On the basis of the resulting presumptive identifications by comparison with those of standards, a number of mixtures were formulated and were field tested, as were the essential oils. The field tests failed to support unambiguously the premise that boll weevils select hibernation sites on the basis of leaf odor alone. However, in the presence of the sex pheromone, beta-caryophyllene (P > T = 0.08), or a mixture of three sesquiterpene hydrocarbons (P > T = 0.10), or a mixture of alkyl alcohols (P > T = 0.15) increased captures. The response to formulations of the sex pheromone with beta-caryophyllene may be primarily sexual, based on its presence in female boll weevils.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[44]DENG C H

,

LI N

,

ZHANG X M

. Rapid determination of essential oil in Acorus tatarinowii Schott. by pressurized hot water extraction followed by solid-phase microextraction and gas chromatography- mass spectrometry. Journal of Chromatography A, 2004,1059(1/2):149-155.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[45]PINO J A

,

MARBOT R

,

VÁZQUEZ C

. Characterization of volatiles in strawberry guava ( Psidium cattleianum Sabine) fruit. Journal of Agricultural and Food Chemistry, 2001,49(12):5883-5887.

Volatile compounds were isolated from strawberry guava fruit by simultaneous steam distillation-solvent extraction according to Likens-Nickerson. Compounds were identified by capillary GC-MS and sensorially characterized by sniffing GC. Two hundred and four compounds were identified in the aroma concentrate, of which ethanol, alpha-pinene, (Z)-3-hexenol, (E)-beta-caryophyllene, and hexadecanoic acid were found to be the major constituents. The presence of many aliphatic esters and terpenic compounds is thought to contribute to the unique flavor of the strawberry guava fruit.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[46]CHUANG P H

,

LEE C W

,

CHOU J Y

,

MURUGAN M

,

SHIEH B J

,

CHEN H M

. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresource Technology, 2007,98(1):232-236.

Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds. Isolated extracts could be of use for the future development of anti-skin disease agents.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[47]

余珍, 易元芬, 吴玉, 喻学俭, 王鹏, 丁靖垲 . 几种玫瑰油的化学成分及香气比较. 云南植物研究, 1994,16(1):75-80.

YU Z

,

YI Y F

,

WU Y

,

YU X J

,

WANG P

,

DING J K

. The comparsion of the chemical constituents and the odour of four rose oils. Acta Botanica Yunnanica, 1994,16(1):75-80. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[48]

钟秋生, 吕海鹏, 林智, 谭俊峰, 郭丽 . 东方美人茶和铁观音香气成分的比较研究. 食品科学, 2009,30(8):182-186.

摘要

选用东方美人茶和铁观音为研究对象,采用顶空-固相微萃取(HS-SPME)法富集其香气物质和GC-MS进行香气成分分析。结果表明:东方美人茶和铁观音在香气组成上存在明显差异;东方美人茶的香气成分比铁观音丰富,以醇类化合物为主,其醇类、酮类和酚类化合物含量均高于铁观音,而酯类和碳氢化合物等含量低于铁观音;东方美人茶的香气成分主要是香叶醇、2,6-二叔丁基对甲苯酚、&beta;-芳樟醇、反式-氧化芳樟醇、芳樟醇氧化物Ⅰ、2,6-二甲基-3,7-辛二烯-2,6-二醇等;而铁观音的主要香气成分是反式-橙花叔醇、&alpha;-法呢烯、吲哚、丁酸-2-甲基-2-苯乙酯、丁酸苯乙酯等。

ZHONG Q S

,

LÜ H P

,

LIN Z

,

TAN J F

,

GUO L

. Comparison of aroma constituents between Oriental Beauty tea and Tieguanyin tea. Food Science, 2009,30(8):182-186. (in Chinese)

The aroma constituents of Oriental Beauty tea and Tieguanyin tea were determined by HS-SPME/GC-MS. Results showed that there are many differences in aroma constitutes between oriental-beauty tea and Tieguanyin tea. The aromatic compounds of Oriental Beauty tea are much richer than those of Tieguanyin tea, and the contents of alcohol, ketones and phenolic compounds are higher but the contents of ester and hydrocarbon compounds are lower than those of Tieguanyin tea. The major aromatic compounds of Oriental Beauty tea are geraniol, butylated hydroxytoluene, &beta;-linalool, trans-linaloloxide, linalool oxide I, and 3,7-octadiene-2,6-diol-2,6-dimethyl, while the major aromatic compounds of Tieguanyin tea are trans-nerolidol, &alpha;-farnesene, indole, butanoic acid, 2-methyl-2-phenylethyl ester, and phenylethyl butyrate.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[49]

任洪涛, 周斌 . 香叶天竺葵精油和纯露的挥发性成分分析及抗氧化活性评价. 日用化学工业, 2017,47(8):463-467.

TRN H T

,

ZHOU B

. Analysis of volatile components and antioxidation activity evaluation of essential oil and aqueous extract from Pelargonium graveolens L′Herit. China Surfactant Detergent & Cosmetics, 2017,47(8):463-467. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[50]

吴琦, 付宇辰, 闫子飞, 王少杰, 冷平生, 胡增辉 . 喷施茉莉酸甲酯对百合花香的影响. 江苏农业科学, 2018,46(6):100-104.

WU Q

,

FU Y C

,

YAN Z F

,

WANG S J

,

LENG P S

,

HU Z H

. Effect of spraying methyl jasmonate on floral fragrance of Lilium brownii var. viridulum. Jiangsu Agricultural Sciences, 2018,46(6):100-104. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[51]

李维妮, 郭春锋, 张宇翔, 魏建平, 岳田利 . 气相色谱-质谱法分析乳酸菌发酵苹果汁香气成分. 食品科学, 2017,38(4):146-154.

LI W N

,

GUO C F

,

ZHANG Y X

,

WEI J P

,

YUE T L

. GC-MS analysis of aroma components of apple juice fermented with lactic acid bacteria. Food Science, 2017,38(4):146-154. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[52]

漆剑 . L-脯氨酸和L-缬氨酸构型转换的研究[D]. 南昌: 南昌大学, 2006.

QI J

. Studies on configuration transformation of L-proline and L-valine[D]. Nanchang: Nanchang University, 2006. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[53]WAGNER J E

,

HUFF J L

,

RUST W L

,

KINGSLEY K

,

PLOPPER G E

. Perillyl alcohol inhibits breast cell migration without affecting cell adhesion. Journal of Biomedicine and Biotechnology, 2002,2(3):136-140.

The monoterpene d-limonene exhibits chemotherapeutic and chemopreventive potential in breast cancer patients. D-limonene and its related compounds, perillyl alcohol and perillyl aldehyde, were chosen as candidate drugs for application in a screen for nontoxic inhibitors of cell migration. Using the nontumorigenic human breast cell line MCF-10A, we delineated the toxicity as greatest for the perillyl aldehyde, intermediate for perillyl alcohol, and least for limonene. A noncytotoxic concentration of 0.5 mmol/L perillyl alcohol inhibited the migration, while the same concentration of limonene failed to do so. Adhesion of the MCF-10A cell line and the human breast cancer cell line MDA-MB 435 to fibronectin was unaffected by 1.5 mmol/L perillyl alcohol. 0.4 mmol/L perillyl alcohol inhibited the growth of MDA-MB 435 cells. All migration-inhibiting concentrations of perillyl alcohol for MDA-MB 435 cells proved to be toxic. These results suggest that subtoxic doses of perillyl alcohol may have prophylactic potential in the treatment of breast cancer.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[54]

黄梅, 沈建英, 杜成成, 尹婷, 戈方济, 谭余庆, 罗俊 . 青蒿素及其衍生物的抗菌活性初步研究. 中国中药杂志, 2019,44(9):1946-1952.

HUANG M

,

SHEN J Y

,

DU C C

,

YIN T

,

GE F J

,

TAN Y Q

,

LUO J

. Preliminary study on antibacterial activity of artemisinin and its derivatives. China Journal of Chinese Materia Medica, 2019,44(9):1946-1952. (in Chinese)

In this study,in order to detect the antimicrobial activity of artemisinin and its derivatives artesunate and dihydroartemisinin,two methods including broth dilution and plate punching method were used to detect the antibacterial activity against gram-negative bacteria(Escherichia coli)and gram-positive bacteria(Staphylococcus aureus)of artemisinin,dihydroartemisinin and artesunate at various concentrations within 5 mmol.L~(-1)and at four time points(8,16,24,32 h).Two antibacterial positive drugs,streptomycin against E.coli and penicillin against S.aureus,were used as positive controls.Plate punching method showed that,unlike the results of 5 mmol.L~(-1)dihydroartemisinin or artesunate,no inhibition zone was detected at the same concentration of artemisinin after 24 h-treatment against E.coli.Broth dilution method showed that,the antibacterial activity of dihydroartemisinin against E.coli.was stronger than those of both artesunate and artemisinin;IC_(50)at24 h-treatment was 155.9mumol.L~(-1)for dihydroartemisinin,370.0mumol.L~(-1)for artesunate and none for artemisinin.Interestingly,dihydroartemisinin and artesunate showed the strongest antibacterial activity between 16-24 h,while artemisinin showed relatively stronger antibacterial activity between 8-16 h.Dihydroartermisinin showed no antibacterial activity against S.aureus.Above all,the antibacterial activity of artemisinins against E.coli is dihydroartemisinin>artesunate>artemisinin.Artemisinin and its derivatives have showed different antibacterial kinetics,and no antibacterial activity against S.aureus.has been detected with dihydroartemisinin.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[55]

覃万翔, 罗敏, 石英, 崔剑, 聂发传, 骆世芳, 贺桂琼, 汪克建 . 双氢青蒿素抑制LPS诱导的小胶质细胞炎症反应. 第三军医大学学报, 2017,39(22):2189-2194.

QIN W X

,

LUO M

,

SHI Y

,

CUI J

,

NIE F C

,

LUO S F

,

HE G Q

,

WANG K J

. Inhibitory effects of dihydroartemisinin on LPS-induced inflammatory response in BV-2 microglial cells. Journal of Third Military Medical University, 2017,39(22):2189-2194. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[56]

张新富 . 油茶皂苷分离纯化及生物活性研究[D]. 合肥: 安徽农业大学, 2013.

ZHANG X F

. Studies on the separation, purification and bioactivity of oleiferasaponin[D]. Hefei: Agricultural University of Anhui, 2013. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[57]

周红成 . 浅述羟基积雪草苷对心血管系统的影响. 科技资讯, 2018,16(25):255-256.

ZHOU H C

. Effect of hydroxyasiaticoside on cardiovascular system. Science & Technology Information, 2018,16(25):255-256. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[58]

巫晓华 . 大观霉素与其他4种抗生素体外抗淋球菌活性比较. 泰山医学院学报, 2014,35(4):287-289.

WU X H

. Comparison the in vitro anti-gonococcal activities of spectinomycin and other four kinds of antibiotics. Journal of Taishan Medical College, 2014,35(4):287-289. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[59]

张宜凡, 王跃, 肖娟, 陈烨, 张艺竹, 安叡, 王新宏 . 外翻肠囊法研究黄芩清肺汤肠吸收成分. 药物分析杂志, 2013,33(5):730-736.

ZHANG Y F

,

WANG Y

,

XIAO J

,

CHEN Y

,

ZHANG Y Z

,

AN R

,

WANG X H

. Study on intestinal absorbable ingredients of Huangqin Qingfei decoction by rat everted gut sac. Chinese Journal of Pharmaceutical Analysis, 2013,33(5):730-736. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[60]

顾关云 . 天然抗氧剂Ⅱ.车前种子的抗氧成分. 国外医学.药学分册, 1986, ( 3):183.

GU G Y

. Natural antioxidant II. Antioxidant component in the seeds of Plantago asiatica L. Foreign Medical Sciences Section on Pharmacy, 1986, ( 3):183. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[61]

宋灵云, 李苗苗, 于海玲 . 芥酸酰胺对小鼠的抗焦虑样作用. 沈阳药科大学学报, 2017,34(4):333-337.

SONG L Y

,

LI M M

,

YU H L

. The anxiolytic like effects of erucamide on mice. Journal of Shenyang Pharmaceutical University, 2017,34(4):333-337. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}

基金

福建省公益类科研院所专项(2019R1031-11)

福建省农业科学院科技创新团队建设项目(STIT2017-2-11)

{{custom_fund}}

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

相关知识

新品种丰花玫瑰鲜花细胞液提取率及化学成分分析初报
栀子鲜花精油挥发性成分分析
不同花期栀子花的香气成分分析
气相色谱
高效液相色谱
栀子花挥发性成分的提取和对比分析
基于气相色谱
超高效液相色谱
栀子花精油:于身色有用 于道气相和
课件:气相色谱法测定中药中农药残留量的研究与应用.ppt

网址: 栀子鲜花花水和鲜花细胞液气相和液相的成分分析 https://m.huajiangbk.com/newsview1022382.html

所属分类:花卉
上一篇: 水栀子和黄栀子的区别
下一篇: 栀子花能水培吗