摘要: 大熊猫在进化过程中形成了一系列策略适应竹子食物,如在不同季节可采食所处不同海拔的竹类,而不同海拔的竹子具有特定的形态特征和环境特点。本研究以四川栗子坪国家级自然保护区为研究区域,通过野外调查揭示小相岭山系大熊猫种群不同主食竹的形态特征和立地环境差异。结果表明,峨热竹、石棉玉山竹和丰实箭竹的基经和高度具有显著差异,低海拔的丰实箭竹具有最大的基经和高度,而高海拔峨热竹的基经和高度最小。不同竹种的立地环境不同,主要表现在海拔和乔木郁闭度上,不同竹种所需求的最适宜生长的乔木郁闭度不同。本研究结果可为该区域大熊猫栖息地恢复和管理,特别是大熊猫主食竹的精细化管理提供参考依据。
Abstract: Giant pandas have formed a series of strategies to adapt to bamboo food in the evolution process, such as eating bamboos at different altitudes in different seasons, and bamboos at different altitudes have specific morphological and environmental characteristics. In this study, Liziping National Nature Reserve in Sichuan province was taken as the study area, and the morphological characteristics and site environment differences of different staple food bamboos of giant panda populations in Xiaoxiangling Mountains were revealed through field investigation. The results showed that the basal diameter and height of A. spanostachya, Y. lineolata and F. ferax were significantly different. The F. ferax at low altitude had the largest basal diameter and height, while the A. spanostachya at higher altitude had the smallest basal diameter and height. Different bamboo species have different site environments, mainly in altitude and tree canopy density. Different bamboo species require different tree canopy which is most suitable for growth. The results of this study can provide reference for the habitat restoration and management of the giant pandas in this area, especially the refined management of the giant panda’s staple food bamboo.
图 1 不同竹种生境变量判别的散点图。
DF1,判别函数1,(F(2, 47)=456.20,P<0.001);DF2,判别函数2,(F(2, 47)=54.74,P<0.001)
Figure 1. Discriminant scatter diagram of different bamboo species' habitat variables
DF1, Discriminant function 1 (F(2, 47)=456.20,P<0.001); DF2, Discriminant function 2 (F(2, 47)=54.74,P<0.001)
表 1 各变量的定义和测量
Table 1 Definition and measurement of variables
变量(单位)Variables(Units)描述与测量Definition and Measurement 海拔(m)生境样方(20 m×20 m)中心点的海拔坡度(°)生境样方(20 m×20 m)中心点的坡度水源距离(m)生境样方(20 m×20 m)中心点到可看见或听见水流的距离乔木高(m)生境样方(20 m×20 m)内高于5 m的乔木的平均高度乔木胸径(cm)生境样方(20 m×20 m)内高于5 m的乔木平均胸径乔木数量生境样方(20 m×20 m)内高于5 m的乔木数乔木郁闭度(%)生境样方(20 m×20 m)内高于5 m的乔木郁闭度(%)灌木高(m)生境样方(20 m×20 m)内高≤5 m的灌木的平均高度灌木盖度(%)生境样方(20 m×20 m)内高≤5 m的灌木平均胸径灌木数量生境样方(20 m×20 m)内高≤5 m的灌木数竹子盖度(%)3个竹子样方(1 m×1 m)平均竹子盖度(%)活竹总数3个竹子样方(1 m×1 m)平均活竹子数量竹子死亡数3个竹子样方(1 m×1 m)平均死亡竹子数量一年生竹数量3个竹子样方(1 m×1 m)平均一年生竹子数量一年生竹高(cm)3个竹子样方(1 m×1 m)平均一年生竹子高一年生竹基径(mm)3个竹子样方(1 m×1 m)平均一年生竹子基经二年生竹数量3个竹子样方(1 m×1 m)平均二年生竹子数量二年生竹高(cm)3个竹子样方(1 m×1 m)平均二年生竹子高二年生竹基径(mm)3个竹子样方(1 m×1 m)平均二年生竹子基经多年生竹数量3个竹子样方(1 m×1 m)平均多年生竹子数量多年生竹高(cm)3个竹子样方(1 m×1 m)平均多年生竹子高多年生竹基径(mm)3个竹子样方(1 m×1 m)平均多年生竹子基经表 2 不同竹种特征变量之间的差异性
Table 2 Differences of bamboo characteristics among different bamboo species
变量Variables丰实箭竹F. ferax石棉玉山竹Y. lineolata峨热竹A. spanostachyaANOVA (F, P) 竹子盖度52.77±20.9252.75±15.7749.14±8.380.30, 0.75活竹总数34.83±7.3233.59±5.4932.53±4.580.63, 0.54竹子死亡数5.65±1.62a6.80±0.79b5.55±0.90a6.22,<0.01一年生竹数量7.90±1.927.71±1.177.14±1.421.12, 0.34一年生竹高347.09±110.57a306.55±46.97a175.42±31.20b26.95,<0.001一年生竹基径20.24±3.06a17.04±1.42b9.24±1.28c125.98,<0.001二年生竹数量7.81±1.53a10.00±2.06b8.06±1.02a9.42,<0.001二年生竹高321.00±94.35a276.18±51.44b187.70±31.42c18.74,<0.001二年生竹基径17.84±3.48a18.16±1.77a10.24±1.21b62.39,<0.001多年生竹数量19.13±5.82a15.88±3.16b17.33±3.21ab2.45, 0.097多年生竹高371.10±97.05a310.89±56.24b193.98±24.97c31.36,<0.001多年生竹基径21.14±3.64a19.14±1.26b10.80±1.27c94.73,<0.001表 3 不同竹种生境变量之间的差异性
Table 3 Differences of habitat variables among different bamboo species
变量Variables丰实箭竹F. ferax石棉玉山竹Y. lineolata峨热竹A. spanostachyaANOVA (F, P) 海拔2064.06±165.10a2561.76±126.61b2896.35±128.31c145.81,<0.001坡度35.94±24.57a18.47±16.17b18.82±16.06b4.40, 0.02水源距离63.69±81.79a197.12±142.78b133.82±110.76ab5.54, 0.01乔木高20.56±8.0422.29±7.7018.24±4.931.44, 0.25乔木胸径20.31±10.16a24.65±10.99a38.35±11.69b12.27,<0.001乔木数量36.56±14.74a30.82±19.60a13.94±5.86b10.89,<0.001乔木郁闭度46.19±18.33a48.06±15.20a26.12±10.62b11.13,<0.001灌木高3.53±0.783.03±0.923.51±0.931.74, 0.19灌木盖度22.31±10.5217.47±14.6519.82±12.920.59, 0.56灌木数量20.63±10.26a14.12±12.94ab9.29±3.98b5.54, 0.01表 4 竹子生境变量标准化的判别函数
Table 4 Standardized discriminant functions of bamboo habitat variables
变量Variables标准系数Standardized coefficients判别函数1表 5 竹子生境变量的判别预测
Table 5 Discriminant prediction of bamboo habitat variables
竹种Zhao S, Zheng P, Dong S, et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation[J]. Nature Genetics, 2013, 45(1): 67−U99. DOI: 10.1038/ng.2494
[4]Jin C, Ciochon R L, Dong W, et al. The first skull of the earliest giant panda[J]. Proceedings of the National Academy of Sciences, 2007, 104(26): 10932−10937. DOI: 10.1073/pnas.0704198104
[5]Wei F, Feng Z, Wang Z, et al. Feeding strategy and resource partitioning between giant and red pandas[J]. Mammalia, 2009, 63(4): 417−429.
[6]Wei F W, Hu Y B, Yan L et al. Giant Pandas Are Not an Evolutionary cul-de-sac: Evidence from Multidisciplinary Research[J]. Molecular Biology & Evolution, 2015(1): 4−12.
[7]Wei F W, Swaisgood R R, Hu Y B, et al. Progress in the ecology and conservation of giant pandas[J]. Conservation. Biology, 2015(29): 1497−1507.
[8]Hu Y B, Wu Q, Ma S, et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas[J]. Proceedings of the National Academy of Sciences, 2017, 114(5): 1081−1086. DOI: 10.1073/pnas.1613870114
[9]Hong M S, Yuan S B, Yang Z S et al. Comparison of microhabitat selection and trace abundance of giant pandas between primary and secondary forests in Liziping Natur Reserve, China: Effects of selective loggingMammalian Biology, 2015, 80, 373–379.
[10]Hong, M S, Wei W, Yang Z S, et al. Effects of timber harvesting on Arundinaria spanostachya bamboo and feeding-site selection by giant pandas in liziping nature reserve, China[J]. Forest Ecology and Management, 2016, 373: 74−80. DOI: 10.1016/j.foreco.2016.04.039
[11] 潘文石, 吕植, 朱小健, 等. 2001. 继续生存的机会. 北京大学出版社, 2001, 北京. [12]Wu Q, Wang X, Ding Y, et al. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas[J]. Proceedings of the Royal Society B Biological Sciences, 2017, 284(1862): 20170955. DOI: 10.1098/rspb.2017.0955
[13] 魏辅文,冯祚建,王祖望. 相岭山系大熊猫和小熊猫对生境的选择[J]. 动物学报,1999,45(1):57−63. DOI: 10.3969/j.issn.1674-5507.1999.01.009 [14] 四川省林业厅. 2015. 四川的大熊猫: 四川省第四次大熊猫调查报告. 四川科技出版社, 2015, 成都. [15] 洪明生,王继成,杨旭煜,et al. 原始林与次生林中大熊猫微生境结构的比较[J]. 西华师范大学学报(自然科学版),2012(04):356−361. [16]Xie J M, Hong M S. Effects of ecological factors on growth of Arundinaria spanostachya shoots in Liziping National Nature Reserve, China[J]. Global Ecology and Conservation, 2020, 23: e01121. DOI: 10.1016/j.gecco.2020.e01121
[17]Hong M S, Wei W, Zhou H, et al. Creative conservation in China: releasing captive giant pandas into the wild[J]. Environmental Science and Pollution Research, 2019, 26: 31548−31549. DOI: 10.1007/s11356-019-06384-4
[18]Zhang L Y, Gan X H, Hou Z Y, et al. Grazing by wild giant pandas does not affect the regeneration of Arundinaria spanostachya[J]. Journal of Forestry Research, 2018: 1−8.
[19] 周宏,袁施彬,杨志松,等. 四川栗子坪自然保护区夏季大熊猫食性与主食竹生物量的关系[J]. 兽类学报,2014,34(001):93−99. [20]Lei M W, Yuan S B, Yang Z S, et al. Comparison of microhabitats and foraging strategies between the captive-born Zhangxiang and wild giant pandas: implications for future reintroduction[J]. Environmental Science and Pollution Research, 2015, 22: 15089−15096. DOI: 10.1007/s11356-015-4720-3
[21]He K, Dai Q, Foss-Grant A, et al. Movement and activity of reintroduced giant pandas[J]. Ursus, 2019, 29(2): 163. DOI: 10.2192/URSUS-D-17-00030.1
[22]Nie Y G, Zhang Z J, Raubenheimer D, et al. Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry[J]. Functional Ecology, 2014, 29: 26−34.
[23]Wei W F, Nie Y G, Zhang Z J, et al. Hunting bamboo: Foraging patch selection and utilization by giant pandas and implications for conservation[J]. Biological Conservation, 2015, 186: 260−267. DOI: 10.1016/j.biocon.2015.03.023
[24]Zhang M C, Zhang Z Z, Li Z, et al. Giant panda foraging and movement patterns in response to bamboo shoot growth[J]. Environmental Science and Pollution Research, 2018, 25: 8636e8643.
[25]Huang C, Wang L, Gong X, et al. Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations[J]. Science of The Total Environment, 2020: 136846.
相关知识
唐家河国家级自然保护区
汶川地震对大熊猫栖息地的影响与恢复对策
花坪国家级自然保护区
【广西花坪国家级自然保护区】广西花坪国家级自然保护区电话,广西花坪国家级自然保护区地址
红花尔基樟子松林国家级自然保护区野生经济植物资源初探
喜迎COP15丨云南乌蒙山国家级自然保护区:野生动植物的天
哪个自然保护区是保护大熊猫的
广西桂林花坪国家级自然保护区
花萼山国家级自然保护区
生态话题
网址: 四川栗子坪国家级自然保护区大熊猫主食竹形态特征及其立地环境初探 https://m.huajiangbk.com/newsview1064078.html
上一篇: 10个大熊猫冷知识,发现你不知道 |
下一篇: 大熊猫每天的一半时间 用在“吃饭 |