摘要:
目的
研究中国农田土壤pH时空变化特征及其主要的驱动因素,为土壤酸化阻控、土壤质量提升和土地可持续利用提供理论基础。
方法
基于农业农村部布置在全国主要农田区域的耕地质量监测点数据 (950个),分析旱地、水旱轮作、水田等不同土地利用类型下土壤pH时空变化特征,并利用提升回归树模型探究影响土壤pH变化的主要驱动因素。
结果
就全国而言,土壤pH及其变异系数表现为旱地 (6.74 ± 1.19和17.63%) > 水旱轮作 (6.54 ± 0.93和14.26%) > 水田 (5.80 ± 0.81和13.95%),其中华南地区农田土壤pH表现为水田 (5.74 ± 0.79) 大于水旱轮作 (5.47 ± 0.56) 和旱地 (5.45 ± 0.91)。从监测初期 (Ⅰ阶段,1988—2000) 到监测中期 (Ⅱ阶段,2001—2010),旱地和水田土壤pH整体上随时间呈降低趋势,下降速率分别为0.065和0.054/年 (P < 0.01),而水旱轮作土壤pH无显著变化;从Ⅱ到Ⅲ阶段 (2001—2018),旱地和水旱轮作土壤pH整体上随时间呈上升趋势,上升速率分别为0.022和0.016/年 (P < 0.05),而水田土壤pH无显著变化。东北、华北、西南、长江中下游地区的旱地土壤pH随时间均呈线性下降趋势 (P < 0.05),而华南地区从Ⅱ到Ⅲ阶段呈线性上升趋势 (P < 0.01);西南、长江中游和华南地区水田土壤pH从Ⅰ到Ⅲ阶段呈线性下降趋势 (P < 0.01),而东北、西南和长江下游地区pH从Ⅱ到Ⅲ阶段呈上升趋势 (P < 0.01);西南地区水旱轮作土壤pH从Ⅰ到Ⅲ阶段呈线性下降趋势 (P < 0.01),而华北、长江下游和华南地区pH从Ⅱ到Ⅲ阶段呈上升趋势 (P < 0.05)。通过Pearson和提升回归树分析发现,年均降雨量是造成土壤pH空间尺度上差异的最主要因素,其次是土壤质地、容重和有机质含量。此外,在旱地土壤上长期的氮肥投入和在水田和水旱轮作土壤上钾肥的投入对pH变化的影响较大。
结论
整体而言,我国旱地和水田土壤pH从监测初期到中期呈快速下降趋势,而旱地和水旱轮作土壤pH从监测中期到2018年呈缓慢增加趋势。东北地区的旱地土壤pH呈持续下降趋势,需要引起重视。氮肥在旱地和钾肥在水田上的施用导致土壤pH的降低,今后应优化水肥运筹,通过改善土壤容重和有机质进而有效调控土壤pH。
Abstract:
Objectives
Exploration of the temporal and spatial changes of soil pH in Chinese farmland and the main driving factors are of great significance in alleviating acidification, soil quality improvement and sustainable land use.
Methods
Based on the national long-term farmland fertilization monitoring data from the Ministry of Agricultural and Rural Affairs (950 experiments), we analyzed the temporal and spatial variations of soil pH in upland field, paddy field and paddy-upland rotation field. The main factors affecting the change of soil pH were analyzed using boosted regression tree model.
Results
The soil pH value and coefficient of variation in China followed the sequence of upland (6.74 ± 1.19 and 17.63%) > upland-paddy rotation field (6.54 ± 0.93 and 14.26%) > paddy field (5.80 ± 0.81 and 13.95%). While
the paddy soil pH (5.74 ± 0.79) was higher than that of upland-paddy field and upland field in South China. From the initial stage of monitoring (I, 1988–2000) to the middle stage (II, 2001–2010), the pH of upland and paddy soils showed a decreasing trend, and the decreasing rates were 0.065 and 0.054 units per year, respectively (P < 0.05).
From stage II to III (2001–2018), pH of upland and upland-paddy soil increased with time, and the rising rates were 0.022 and 0.016 units per year, respectively (P < 0.05), but there was no significant change in paddy soils. The soil pH of uplands in Northeast, North China, Southwest, Middle and Lower Reaches of Yangtze River decreased linearly with time (P < 0.05), while opposite trend was found in South China from stage II to III (P < 0.01). The pH of paddy soils in Southwest, Middle Reaches of Yangtze River and South China decreased linearly from stage I to III (P < 0.01), but increased linearly from stage II to III (P < 0.01) in Northeast, Southwest and Lower Reaches of Yangtze River. The pH of upland-paddy soil in Southwest China decreased linearly from stage I to III (P < 0.01), while opposite result was observed in North China, Lower Reaches of Yangtze River and South China from stage II to III (P < 0.05). Pearson’s correlation and boosted regression tree model revealed that mean annual precipitation was the most important factor driving regional soil pH change, followed by soil texture, bulk density and organic matter content. Moreover, the long-term inputs of nitrogen fertilizer in upland and the input of potassium fertilizer in paddy and upland-paddy fields also played key roles in soil pH change.
Conclusions
Overall, soil pH shows a trend of decreasing from the initial stage to the middle stage in upland and paddy soil, then slow increasing from the middle stage to 2018 in upland and upland-paddy soils, except that the pH in upland soil of Northeast China shows durative decrease. The application of nitrogen fertilizer in upland and potash in paddy field has caused soil pH decrease, so reasonable nutrient management, and the soil bulk density and organic matter amelioration should be considered to alleviate the decrease of soil pH in Chinese farmlands.
图 1 三个监测阶段全国及各种植区域旱作土壤pH
[注(Note):Ⅰ, 1988—2000; Ⅱ, 2001—2010; Ⅲ, 2011—2018; MYR—Middle Reaches of the Yangtze River; LYR—Lower Reaches of the Yangtze River;图中箱体上下框分别代表全部数据的75%和25%,箱体上下两条线分别代表全部数据的95%和5%,箱内实线和星号分别表示中位数和平均数,括号里的数字为样品数;柱上不同小写字母表示同一区域不同阶段间差异显著 (P < 0.05) The upper and lower frames of the box represent 75% and 25% of total data, the upper and lower short lines outside the box represent 95% and 5% of total data, the solid line and asterisks inside the box represent the median and average values, and the digitals inside brackets are sample number. Different small letters above the bars indicate significant difference among the monitoring periods in same region (P < 0.05).]
Figure 1. pH of upland soils in each planting area and whole country during the three monitoring periods
图 2 全国和各种植区域3个监测阶段水田土壤的pH
[注(Note):Ⅰ, 1988—2000; Ⅱ, 2001—2010; Ⅲ, 2011—2018; MYR—Middle Reaches of the Yangtze River; LYR—Lower Reaches of the Yangtze River;图中箱体上下框分别代表全部数据的75%和25%,箱体上下两条线分别代表全部数据的95%和5%,箱内实线和星号分别表示中位数和平均数,括号里的数字为样品数;不同小写字母表示同一区域不同阶段间差异显著 (P < 0.05) The upper and lower frames of the box represent 75% and 25% of total data, the upper and lower short lines outside the box represent 95% and 5% of total data, the solid line and asterisks inside the box represent the median and average values, and the digitals inside brackets are sample number. Different small letters above the bars indicate significant difference among the monitoring periods in same region (P < 0.05).]
Figure 2. pH of paddy soils in each planting areas and whole county during the three monitoring periodss
图 3 不同种植区域水旱轮作下土壤pH随时间的变化特征
[注(Note):Ⅰ, 1988—2000; Ⅱ, 2001—2010; Ⅲ, 2011—2018; MYR—Middle Reaches of the Yangtze River; LYR—Lower Reaches of the Yangtze River;图中箱体上下框分别代表全部数据的75%和25%,箱体上下两条线分别代表全部数据的95%和5%,箱内实线和星号分别表示中位数和平均数,括号里的数字为样品数;柱上不同小写字母表示同一区域不同阶段间差异显著 (P < 0.05) The upper and lower frames of the box represent 75% and 25% of total data, the upper and lower short lines outside the box represent 95% and 5% of total data, the solid line and asterisks inside the box represent the median and average values, and the digitals inside brackets are sample number; Different small letters above the bars indicate significant difference among the monitoring periods in same region (P < 0.05).]
Figure 3. Variation characteristics of soil pH with time in upland-paddy soil in different planting areas
图 4 各因素影响土壤pH变化的相对重要性
[注(Note):MAP—年均降雨量 Mean annual precipitation;AP—有效磷 Available phosphorus;BD—容重 Bulk density;Texture—质地;MAT—年均气温 Mean annual temperature;SOM—土壤有机质 Soil organic matter;SAK—缓效钾 Slowly available potassium;AK—速效钾 Available potassium;NF—氮肥 Nitrogen fertilizer;PF—磷肥 Phosphorus fertilizer;TN—全氮 Total nitrogen;KF—钾肥 Potassium fertilizer.]
Figure 4. Relative importance of factors affecting soil pH change
表 1 不同区域土壤pH统计分析 (1988—2018)
Table 1 Statistical analysis of soil pH in different regions from 1988 to 2018
区域表 2 不同种植区域旱作土壤pH (y) 与试验持续时间 (x) 的拟合方程
Table 2 The fitting equations of soil pH (y) and duration time (x) in upland soil in different planting areas
区域 Region监测阶段 Monitoring period方程 EquationR2P 东北地区 Northeast China1998—2010y = –0.0456x + 97.7350.76542.02E-062001—2018y = –0.0192x + 45.0780.65574.48E-04华北地区 North China1988—2018y = –0.0149x + 8.23810.71260.0169西南地区 Southwest China1988—2018y = –0.0256x + 58.0890.45296.34E-05长江中游 MYR1998—2018y = –0.0134x + 33.0510.32730.0259长江下游 LYR1988—2010y = –0.1232x + 253.6600.86752.60E-042001—2018y = –0.0328x + 72.4810.55080.0057华南地区 South China2001—2018y = 0.0354x – 65.7290.47158.27E-04全国 Total1988—2010y = –0.0646x + 136.0200.80624.30E-072001—2018y = 0.0215x – 52.7240.43980.0135 注(Note):MYR—Middle Reaches of the Yangtze River; LYR—Lower Reaches of the Yangtze River; 方程中,各监测阶段内以相应的起始年份开始每隔 3 年获取一个平均值作为 y, 持续时间 x 从该监测期的第二年开始计算 In each equation, y is the average pH value of every three years since the starting of the monitoring, and duration (x) is counted from the second year of the monitoring period.表 3 不同种植区域水田土壤pH (y) 与试验持续时间 (x) 的拟合方程
Table 3 The fitting equations of soil pH (y) and duration time (x) in paddy soil in different planting areas
区域 Region监测阶段 Monitoring period方程 EquationR2P 东北地区 NortheastChina2001—2018y = 0.0260x – 46.1560.54030.0018西南地区 SouthwestChina1988—2010y = –0.0873x + 180.3700.61921.07E-042001—2018y = 0.0815x – 157.8800.70263.45E-04长江中游 MYR1988—2010y = –0.0392x + 84.6170.71834.99E-042001—2018y = –0.0233x + 52.5660.38400.0239长江下游 LYR2001—2018y = 0.0206x – 35.6610.47250.0066华南地区 South China1988—2010y = –0.0557x + 117.1000.56613.15E-042001—2018y = 0.0022x + 1.3330.00450.8206全国 Total1988—2010y = –0.0535x + 112.8100.63896.90E-052001—2018y = 0.0009x + 4.00240.00280.8578 注(Note):MYR—Middle Reaches of the Yangtze River; LYR—Lower Reaches of the Yangtze River; 方程中,各监测阶段内以相应的起始年份开始每隔 3 年获取一个平均值作为 y, 持续时间 x 从该监测期的第二年开始计算 In each equation, y is the average pH value of every three years since the starting of the monitoring, and duration (x) is counted from the second year of the monitoring period.表 4 不同种植区域水旱轮作下土壤pH (y) 与试验持续时间 (x) 的拟合方程
Table 4 Fitting equations of soil pH (y) and duration time (x) in upland-paddy soil in different planting areas
区域 Region监测阶段 Monitoring period方程 EquationR2P 华北地区 Northeast China2001—2018y = 0.0403x – 74.6030.65268.36E-04西南地区 Southwest China1988—2010y = –0.0494x + 105.6600.59361.83E-042001—2018y = –0.0076x + 6.8010.03630.93444长江中游 MYR1988—2018y = 0.0104x – 14.3810.14530.0661长江下游 LYR1988—2010y = –0.0087x + 24.0010.11370.21912001—2018y = 0.0201x – 33.9120.34030.0465华南地区 South China2001—2018y = 0.0256x – 46.1250.33550.0300全国 Total1988—2010y = –0.0107x + 28.0640.11590.14172001—2018y = 0.0160x – 25.7430.48280.0177 注(Note):MYR—Middle Reaches of the Yangtze River; LYR—Lower Reaches of the Yangtze River; 方程中,各监测阶段内以相应的起始年份开始每隔 3 年获取一个平均值作为 y, 持续时间 x 从该监测期的第二年开始计算 In each equation, y is the average pH value of every three years since the starting of the monitoring, and duration (x) is counted from the second year of the monitoring period.表 5 各因素与土壤pH之间的Pearson相关性分析
Table 5 Pearson correlation analysis between soil pH and each factor
项目 Item旱地 Upland soil水田 Paddy soil水旱轮作 Upland-paddy soilrPnrPnrPn 氮肥 N fertilizer–0.277 < 0.0012593–0.0720.0031648–0.160 < 0.0011502磷肥 P fertilizer0.0160.07925930.0270.2651648–0.0050.8391502钾肥 K fertilizer–0.131 < 0.0012593–0.125 < 0.0011648–0.196 < 0.0011502土壤有机质SOM–0.312 < 0.00127070.219 < 0.0011668–0.108 < 0.0011510全氮 Total N0.296 < 0.00127000.252 < 0.0011646–0.0710.0061504有效磷 Available P–0.34 < 0.0012685–0.050.0431656–0.0780.0021524有效钾 Available K0.116 < 0.00126730.187 < 0.00116560.207 < 0.0011520缓效钾 SAK0.465 < 0.00121000.102 < 0.00112270.411 < 0.0011187容重 Bulk density–0.292 < 0.00127070.179 < 0.0011668–0.118 < 0.0011510年均气温 MAT–0.071 < 0.0012708–0.133 < 0.0011674–0.347 < 0.0011533年均降雨量 MAP–0.485 < 0.0012708–0.286 < 0.0011674–0.378 < 0.0011533 注(Note):n—样本数 Sample number; SOM—Soil organic matter; SAK—Slowly available potassium; MAT—Mean annual temperature; MAP—Mean annual precipitation. [1]Hou E Q, Xiang H M, Li J L, et al. Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment[J]. Pedosphere, 2015, 25: 82–92. DOI: 10.1016/S1002-0160(14)60078-3
[2]Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification[J]. Science, 2007, 318: 1737–1742. DOI: 10.1126/science.1152509
[3] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160–167.Xu R K, Li J Y, Zhou S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160–167.
[4]Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008–1010. DOI: 10.1126/science.1182570
[5]Li Q, Li S, Xiao Y, et al. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012[J]. Catena, 2019, 175: 278–285. DOI: 10.1016/j.catena.2018.12.025
[6]Zhu J, He N, Wang Q, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J]. Science of the Total Environment, 2015, 511: 777–785. DOI: 10.1016/j.scitotenv.2014.12.038
[7]Minasny B, Hong S Y, Hartemink A E, et al. Soil pH increase under paddy in South Korea between 2000 and 2012[J]. Agriculture, Ecosystems and Environment, 2016, 221: 205–213. DOI: 10.1016/j.agee.2016.01.042
[8]Yang Y H, Ji C J, Ma W H, et al. Significant soil acidification across northern China's grasslands during 1980s-2000s[J]. Global Change Biology, 2012, 18(7): 2292–2300. DOI: 10.1111/j.1365-2486.2012.02694.x
[9]Li Q, Li A, Yu X, et al. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s[J]. Science of the Total Environment, 2020, 698: 134320. DOI: 10.1016/j.scitotenv.2019.134320
[10] 汪吉东, 许仙菊, 宁运旺, 等. 土壤加速酸化的主要农业驱动因素研究进展[J]. 土壤, 2015, 47(04): 627–633.Wang J D, Xu X J, Ning Y W, et al. Progresses in agricultural driving factors on accelerated acidification of soils[J]. Soils, 2015, 47(4): 627–633.
[11]Zhao Y H, Zhang L, Chen Y F, et al. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance[J]. Atmospheric Environment, 2017, 153: 32–40. DOI: 10.1016/j.atmosenv.2017.01.018
[12]Tian D S, Niu S L. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019
[13] 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6): 1900–1908.Zhang L Y, Zhao X Q, Shen R F. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6): 1900–1908.
[14]Xie E, Zhao Y, Li H, et al. Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China, 1980–2015[J]. Agriculture, Ecosystems & Environment, 2019, 272: 95–104.
[15] 姬钢, 徐明岗, 文石林, 等. 不同植被类型下红壤pH和交换性酸的剖面特征[J]. 应用生态学报, 2015, 26(9): 2639–2645.Ji G, Xu M G, Wen S L, et al. Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation[J]. Journal of Applied Ecology, 2015, 26(9): 2639–2645.
[16] 赵凯丽, 蔡泽江, 王伯仁, 等. 不同母质和植被类型下红壤pH和交换性酸的剖面特征[J]. 中国农业科学, 2015, 48(23): 4818–4826. DOI: 10.3864/j.issn.0578-1752.2015.23.023Zhao K L, Cai Z J, Wang B R, et al. Changes in pH and exchangeable acidity at depths of red soils derived from 4 parent materials under 3 vegetations[J]. Scientia Agricultura Sinica, 2015, 48(23): 4818–4826. DOI: 10.3864/j.issn.0578-1752.2015.23.023
[17] 韩天富, 马常宝, 黄晶, 等. 基于Meta分析中国水稻产量对施肥的响应特征[J]. 中国农业科学, 2019, 52(11): 1918–1929. DOI: 10.3864/j.issn.0578-1752.2019.11.007Han T F, Ma C B, Huang J, et al. Variation in rice yield response to fertilization in China: Meta-analysis[J]. Scientia Agricultura Sinica, 2019, 52(11): 1918–1929. DOI: 10.3864/j.issn.0578-1752.2019.11.007
[18] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 北京: 中国农业出版社, 2006.National Agricultural Technology Extension Service Center. Technical specification for soil analysis[M]. Beijing: China Agricultural Press, 2006.
[19]Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology 2008, 77: 802–813. DOI: 10.1111/j.1365-2656.2008.01390.x
[20] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.Huang C Y. Soil science[M]. Beijing: China Agricultural Press, 2000.
[21] 王志刚, 赵永存, 廖启林, 等. 近20年来江苏省土壤pH值时空变化及其驱动力[J]. 生态学报, 2008, (2): 720–727. DOI: 10.3321/j.issn:1000-0933.2008.02.033Wang Z G, Zhao Y C, Liao Q L, et al. Spatio-temporal variation and associated affecting factors of soil pH in the past 20 years of Jiangsu Province, China[J]. Acta Ecologica Sinica, 2008, (2): 720–727. DOI: 10.3321/j.issn:1000-0933.2008.02.033
[22] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238–244.Xu R K. Research progresses in soil acidification and its control[J]. Soil, 2015, 47(2): 238–244.
[23]Chen S, Lin B, Li Y, et al. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China[J]. Geoderma, 2020, 357.
[24] 朱安繁, 邵华, 张龙华. 江西省耕地土壤酸化现状与改良措施[J]. 江西农业学报, 2014, 26(4): 43–45, 49. DOI: 10.3969/j.issn.1001-8581.2014.04.012Zhu A F, Shao H, Zhang L H. Current situation and improvement measures of cultivated land soil acidification in Jiangxi Province[J]. Acta Agriculturae Jiangxi, 2014, 26(4): 43–45, 49. DOI: 10.3969/j.issn.1001-8581.2014.04.012
[25] 胡敏, 向永生, 张智, 等. 恩施州耕地土壤pH近30年变化特征[J]. 应用生态学报, 2017, 28(4): 1289–1297.Hu M, Xiang Y S, Zhang Z, et al. Variation characteristics of farmland soil pH in the past 30 years of Enshi Autonomous Prefecture, Hubei, China[J]. Journal of Applied Ecology, 2017, 28(4): 1289–1297.
[26] 郑超, 郭治兴, 袁宇志, 等. 广东省不同区域农田土壤酸化时空变化及其影响因素[J]. 应用生态学报, 2019, 30(2): 593–601.Zheng C, Guo Z X, Yuan Y Z, et al. Spatial and temporal changes of farmland soil acidification and their influencing factors in different regions of Guangdong Province, China[J]. The Journal of Applied Ecology, 2019, 30(2): 593–601.
[27]Zhu Q C, Liu X J, Hao T X, et al. Cropland acidification increases risk of yield losses and food insecurity in China[J]. Environmental Pollution, 2020, 256: 113145. DOI: 10.1016/j.envpol.2019.113145
[28] 周晓阳, 徐明岗, 周世伟, 等. 长期施肥下我国南方典型农田土壤的酸化特征[J]. 植物营养与肥料学报, 2015, 21(6): 1615–1621. DOI: 10.11674/zwyf.2015.0629Zhou X Y, Xu M G, Zhou S Wei, et al. Soil acidification characteristics in southern China's croplands under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1615–1621. DOI: 10.11674/zwyf.2015.0629
[29]Guo X, Li H, Yu H, et al. Drivers of spatio-temporal changes in paddy soil pH in Jiangxi Province, China from 1980 to 2010[J]. Scientific Reports, 2018, 8: 2702. DOI: 10.1038/s41598-018-20873-5
[30] 李伟峰, 叶英聪, 朱安繁, 等. 近30a江西省农田土壤pH时空变化及其与酸雨和施肥量间关系[J]. 自然资源学报, 2017, 32(11): 1942–1953. DOI: 10.11849/zrzyxb.20161089Li W F, Ye Y C, Zhu A F, et al. Spatio-temporal variation of ph in cropland of Jiangxi province in the past 30 years and its relationship with acid rain and fertilizer application[J]. Journal of Natural Resources, 2017, 32(11): 1942–1953. DOI: 10.11849/zrzyxb.20161089
[31] 武红亮, 王士超, 槐圣昌, 等. 近30年来典型黑土肥力和生产力演变特征[J]. 植物营养与肥料学报, 2018, 24(6): 1456–1464. DOI: 10.11674/zwyf.18238Wu H L, Wang S C, Huai S C, et al. Evolutionary characteristics of fertility and productivity of typical black soil in recent 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1456–1464. DOI: 10.11674/zwyf.18238
[32] 张万付. 黑土地区土壤酸化产生机理、危害及控制措施[J]. 现代农业, 2018, (04): 43–44. DOI: 10.3969/j.issn.1008-0708.2018.04.033Zhang W F. Mechanism, harm and control measures of soil acidification in black soil area[J]. Modern agriculture, 2018, (04): 43–44. DOI: 10.3969/j.issn.1008-0708.2018.04.033
[33] 白树彬, 裴久渤, 李双异, 等. 30年来辽宁省耕地土壤有机质与pH时空动态变化[J]. 土壤通报, 2016, 47(03): 636–644.Bai S B, Pei J B, Li S Y, et al. Temporal and Spatial Dynamics of Soil Organic Matter and pH in Cultivated Land of Liaoning Province during the Past 30 Years[J]. Chinese Journal of Soil Science, 2016, 47 (3): 636–644.
[34] 刘忆莹, 裴久渤, 汪景宽. 东北典型黑土区耕地有机质与pH的空间分布规律及其相互关系[J]. 农业资源与环境学报, 2019, 36(6): 738–743.Liu Y Y, Pei J B, Wang J K. Spatial distribution and relationship between organic matter and pH in the typical black soil region of north-east China[J]. Journal of Agricultural Resources and Environment, 2019, 36 (6): 738 –743.
[35] 李春杰. 冷浆型水田的改良技术[J]. 现代农业, 2014, (6): 38.Li C J. Improvement technology of cold pulp paddy field[J]. Modern agriculture, 2014, (6): 38.
[36] 农业农村部耕地质量监测保护中心. 30 年耕地质量演变规律[M]. 北京: 中国农业出版社, 2019.Center of Arable Land Quality Monitoring and Protection, Ministry of Agricultural and Rural Affairs. The evolution of cultivated land quality in past 30 years[M]. Beijing: China Agricultural Press, 2019.
[37] 马丽, 王青, 沈凇涛, 等. 岷江上游杂谷脑流域耕作区壤土和粉壤土的理化性质及肥力异质性[J]. 干旱区资源与环境, 2018, 32(11): 144–149.Ma L, Wang Q, Shen S T, et al. The heterogeneity of physicochemical properties of cultivated soil and silt loam in Zagunao river basin, the upper Minjiang River[J]. Journal of Arid Land Resources and Environment, 2018, 32(11): 144–149.
[38]Haynes R J, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutrient Cycling in Agroecosystems, 1998, 51(2): 123–137. DOI: 10.1023/A:1009738307837
[39] 高海峰, 白军红, 王庆改, 等. 霍林河下游典型洪泛区湿地土壤pH值和土壤含水量分布特征[J]. 水土保持研究, 2011, 18(1): 268–271.Gao H F, Bai J H, Wang Q G, et al. Distribution of soil ph values and soil water contents in floodplain wetlands in the lower reach of Huolin river[J]. Research of Soil and Water Conservation, 2011, 18(1): 268–271.
[40] 刘书田. 中国农田土壤有机碳时空分布规律及影响因素研究[D]. 长春: 吉林农业大学博士学位论文, 2016.Liu S T. The rule of temporal and spatial distribution of soil organic carbon of cropland and its influencing factors in China[D]. Changchun: PhD Dissertation of Jilin Agricultural University, 2016.
[41] 戴万宏, 黄耀, 武丽, 等. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报, 2009, 46(5): 851–860. DOI: 10.3321/j.issn:0564-3929.2009.05.013Dai W H, Huang Y, Wu L, et al. Relationships between soil organic matter content and pH in topsoil of zonal soils in China[J]. Acta Pedologica Sinica, 2009, 46(5): 851–860. DOI: 10.3321/j.issn:0564-3929.2009.05.013
[42]Yao L, Chen C, Liu G, et al. Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake[J]. Science of the Total Environment, 2017, 616–617: 899–907.
[43]Gong P, Liang L, Zhang Q. China must reduce fertilizer use too[J]. Nature, 2011, 473(7347): 284–285.
[44] 张驭航, 李玲, 王秀丽, 等. 河南省土壤pH值时空变化特征分析[J]. 土壤通报, 2019, 50(5): 1091–1100.Zhang Y H, Li L, Wang X L, et al. Temporal and spatial variation of soil pH in Henan[J]. Chinese Journal of Soil Science, 2019, 50(5): 1091–1100.
[45]Zhu Q, Liu X, Hao T, et al. Modeling soil acidification in typical Chinese cropping systems[J]. Science of the Total Environment, 2018, 613–614: 1339–1348.
[46]Cai Z J, Wang B R, Xu M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15: 260–270.
[47]Li Z G, Xia S J, Zhang R H, et al. N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils[J]. Environmental Pollution, 2020, 265.
[48] 宣立民, 王淑艳, 韩春玉, 等. 化学肥料的常见种类及使用方法[J]. 吉林农业, 2015, (3): 90.Xuan L M, Wang S Y, Han C Y, et al. Common types and application methods of chemical fertilizers[J]. Agriculture of Jilin, 2015 (3): 90.
[49]Römheld V, Kirkby E A. Research on potassium in agriculture: needs and prospects[J]. Plant Soil, 2010, 335: 155–180. DOI: 10.1007/s11104-010-0520-1
[50]Dobermann B A, Fairhurst T H. Rice straw management[J]. Better Crops International, 2002, 16(S): 7–9.
相关知识
近30年中国农作物种植结构时空变化分析
近10 a阿克苏流域植被覆盖时空演变特征及影响因素
我室在黄河流域植被碳汇功能时空演变特征和驱动因素方面取得进展
汞矿区周边农田土壤微生物群落结构特征及其环境驱动因子
流域植被覆盖格局时空演变研究综述
土壤酸化成因及其对农田土壤-微生物-作物系统影响的研究进展
基于长期定位试验的土壤健康研究与展望
近30年来典型黑土肥力和生产力演变特征
中国农田土壤重金属污染防治挑战与对策
徐明岗团队30多年研究成果的系统总结:农田土壤有机质提升理论与实践
网址: 近30年中国主要农田土壤pH时空演变及其驱动因素 https://m.huajiangbk.com/newsview1065408.html
上一篇: 工业大麻种植技巧——土壤的选择 |
下一篇: 龙血树对土壤的要求知识有哪些?如 |