为了阐明免耕和常规翻耕20 cm下花生不同器官铁累积利用差异,在鲁东花生主产区3个典型棕壤试验点(望城、夏甸和齐山)系统研究了免耕和常规翻耕下花生铁营养特性变化。结果表明,相比免耕处理,常规翻耕20 cm增加了花生籽仁铁的累积,在望城点、夏甸点和齐山点分别增加了38.4%、20.2%和51.2%,且籽仁铁的累积与籽仁氮的累积及花生产量呈极显著正相关(P<0.01)。免耕处理促进了花生茎、叶、果针和果壳等器官中铁的奢侈累积,在望城点、夏甸点和齐山点,这4个器官铁的累积量比常规翻耕处理分别提高了6.0%、32.1%和14.7%,同时花生累积带走的总铁量高于常规翻耕处理,从而造成土壤有效铁含量及土壤铁活化系数均比常规翻耕处理下降了15.1%~32.9%。综上,土壤翻耕措施能够有效增加花生籽仁铁的累积分配,降低茎、叶、果针和果壳等器官中铁的无效累积,从而提高花生铁的利用效率,该研究结果为花生田铁营养合理管理提供了理论依据。
The accumulations and allocations of iron (Fe) in different organs of peanut (Arachis hypogaea L.) under no tillage and conventional tillage measurements were investigated in three typical brown soils of main peanut producing sites (Wangcheng, Xiadian and Qishan) in Eastern Shandong, which was used to determine the difference in Fe nutrition characteristics of peanut. Results showed that conventional tillage treatment (soil plowing with 20 cm) improved the Fe accumulation in kernel of peanut while it was increased by 38.4%, 20.2% and 51.2% at Wangcheng, Xiadian and Qishan sites, respectively. The promotion of Fe in kernel significantly correlated with N accumulation in kernel and peanut yield (P<0.01). No tillage treatment induced the luxury accumulations of Fe in the parts of stem, leaf, peg and shell, and the Fe accumulations of four parts were increased respectively by 6.0%, 32.1% and 14.7% at Wangcheng, Xiadian and Qishan sites compared with conventional tillage treatment. Meanwhile, total Fe accumulation in the whole plant of peanut was also higher under no tillage treatment than conventional tillage treatment. Soil available Fe content and soil Fe activation coefficiency were decreased by 15.1~32.9% under no tillage treatment compared with conventional tillage treatment. In conclusion, soil tillage measurement could significantly promote the Fe content and allocation in kernel of peanut and decrease the invalid accumulation of Fe in the parts of stem, leaf, peg and shell, which effectively increased the Fe use efficiency in peanut field. This study will provide a theoretical basis for the rational Fe nutrition management in peanut field.
花生 /荚果产量 /累积分配 /有效铁 /活化系数{{custom_keyword}} /
peanut /pod yield /accumulation and allocation /available Fe /activation coefficiency{{custom_keyword}} /
[1] 王才斌, 万书波. 花生生理生态学[M]. 北京:中国农业出版社, 2011
[2] 万书波. 花生品种改良与高产优质栽培[M]. 北京:中国农业出版社, 2008
[3] 左元梅, 张福锁. 不同禾本科作物与花生混作对花生根系质外体铁的累积和还原力的影响[J]. 应用生态学报, 2004, 15(2): 221-225
[4] 张智猛, 万书波, 戴良香, 张成松. 花生铁营养状况研究[J].花生学报, 2003, 32(增刊): 361-367
[5] 李春俭. 高级植物营养学[M]. 北京:中国农业大学出版社, 2008
[6] 丁红, 宋文武, 张智猛. 花生铁营养研究进展[J]. 花生学报, 2011, 40(1): 39-43
[7] Zuo Y, Zhang F, Li X, Cao Y. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil[J]. Plant Soil, 2000, 220(1): 13-25
[8] Sheehy J, Regina K, Alakukku L, Six J. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems[J]. Soil and Tillage Research, 2015, 150(7): 107-113
[9] TerAvest D, Carpenter-Boggs L, Thierfelder C, Reganold J P. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi[J]. Agriculture, Ecosystems & Environment, 2015, 212(12): 285-296
[10] 朱启红. 免耕对土壤环境的影响研究[J]. 农机化研究, 2008, 38(11): 234-236
[11] 余海英, 彭文英, 马秀, 张科利. 免耕对北方旱作玉米土壤水分及物理性质的影响[J]. 应用生态学报, 2011, 22(1): 99-104
[12] 刘秀梅, 李琪, 梁文举, 姜勇, 闻大中. 潮棕壤免耕农田土壤酶活性的动态变化[J]. 应用生态学报, 2006, 17(12): 2347-2351
[13] 彭文英. 免耕措施对土壤水分及利用效率的影响[J]. 土壤通报, 2007, 38(2): 379-383
[14] 肖剑英, 张磊, 谢德体, 魏朝富. 长期免耕稻田的土壤微生物与肥力关系研究[J].西南农业大学学报, 2002, 24(1):82-85
[15] 谢宏峰, 迟玉成, 许曼琳, 樊堂群, 禹山林. 保护性耕作的优势及其在花生生产中的应用前景[J]. 湖北农业科学, 2011, 50(20): 4109-4111
[16] 李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 田云龙. 长期不同耕作措施对土壤团聚体特征及微生物多样性的影响[J]. 应用生态学报, 2014, 25(8): 2341-2348
[17] 石彦琴, 陈源泉, 隋鹏, 聂紫瑾, 高旺盛. 农田土壤紧实的发生、影响及其改良[J]. 生态学杂志, 2010, 29(10): 2057-2064
[18] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2005
[19] 国家统计局编. 中国统计年鉴[M]. 北京: 中国统计出版社, 2015
[20] 万书波. 中国花生栽培学[M]. 上海: 上海科学技术出版社, 2003
[21] Shen H, Xiong H, Guo X, Wang P, Duan P, Zhang L, Zhang F, Zuo Y. AhDMT1, a Fe 2+ transporter, is involved in improving iron nutrition and N 2 fixation in nodules of peanut intercropped with maize in calcareous soils[J]. Planta, 2014, 239(5): 1065-1077
[22] Zuo Y, Zhang F. The effects of peanut intercropping with different gramineous species and their intercropping model on iron nutrition of peanut[J]. Agricultural Sciences in China, 2003, 2(3): 289-296
[23] 陈琳. 水稻幼苗铁吸收与转运的基因型差异及生理机制研究[D]. 南京:南京农业大学, 2014
[24] 张国红, 张振贤, 黄延楠, 梁勇. 土壤紧实程度对其某些相关理化性状和土壤酶活性的影响[J]. 土壤通报, 2006, 37(6): 1094-1097
[25] 庞绪, 何文清, 严昌荣, 刘恩科, 刘爽, 殷涛. 耕作措施对土壤水热特性和微生物生物量碳的影响[J]. 生态学报, 2013, 33(4): 1308-1316
[26] 沈浦,孙秀山,王才斌,石程仁,于天一. 花生磷利用特性及磷高效管理措施研究进展与展望[J]. 核农学报,2015, 29(11): 2246-2251
[27] 张建军, 樊廷录, 赵刚, 党翼, 王磊, 李尚中. 旱地玉米留膜留茬免耕栽培的土壤水热及产量效应[J]. 核农学报, 2016, 30(11): 2274-2281
[28] 丰娟, 肖芳, 李丽娜, 汪剑鸣. 红壤区花生耕作方式对土壤微生物区系的影响[J]. 安徽农业科学, 2013, 41(19): 8166-8167
[29] Leskovar D, Othman Y, Dong X. Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon[J]. Soil and Tillage Research, 2016, 163(11): 266-273
[30] Gary D B, Mary K T, Francis R, Marie-Claude M, Martin W. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regions[J]. Soil Biology and Biochemistry, 2004, 36(11): 1785-1792
国家自然科学基金(41501330/31571617),山东省重点研发计划项目(2016GGH4518),山东省农业科学院创新工程项目(CXGC2016A05)
{{custom_fund}}相关知识
免耕与翻耕对夏大豆生育进程及产量的对比研究
可适用于花卉的环保免耕栽培方法
玉米/花生间作改善花生铁营养的分子生态调控机制
如何正确使用免深耕土壤调理剂
多年保护性耕作对双季稻
近30 年中国农田耕层土壤有机质含量变化
旱作条件下保护性耕作对土壤结构和容重影响试验研究
翻耕与改良剂施用对土壤植烟适应性的影响
土壤的孔性結构性与耕性.ppt
不同农作区土壤轮耕模式与生态效应研究进展
网址: 免耕和翻耕下典型棕壤花生铁营养特性差异 https://m.huajiangbk.com/newsview1125474.html
上一篇: 濮花33号>>>RiceData |
下一篇: 绿叶宝肥料怎么使用,撒施或翻耕土 |