首页 > 分享 > The role of jasmonic acid in stress resistance of plants: a review

The role of jasmonic acid in stress resistance of plants: a review

[1]

VANWALLENDAEL A, SOLTANI A, EMERY NC, PEIXOTO MM, OLSEN J, LOWRY DB. A molecular view of plant local adaptation: incorporating stress-response networks[J]. Annual Review of Plant Biology, 2019, 70: 559-583. DOI:10.1146/annurev-arplant-050718-100114

[2]

吴德伟, 汪姣姣, 谢道昕. 茉莉素与植物生物胁迫反应[J]. 生物技术通报, 2018, 34(7): 14-23.
WU DW, WANG JJ, XIE DX. Jasmonate action and biotic stress response in plants[J]. Biotechnology Bulletin, 2018, 34(7): 14-23 (in Chinese).

[3]

KU YS, SINTAHA M, CHEUNG MY, LAM HM. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10): 3206. DOI:10.3390/ijms19103206

[4]

KAMIYA Y. Plant hormones: versatile regulators of plant growth and development[J]. Annual Review of Plant Biology, 2009, 60: 301-307.

[5]

CREELMAN RA, MULLET JE. Biosynthesis and action of jasmonates in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 355-381. DOI:10.1146/annurev.arplant.48.1.355

[6]

HUANG H, LIU B, LIU LY, SONG SS. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 2017, 68(6): 1349-1359. DOI:10.1093/jxb/erw495

[7]

WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6): 1021-1058. DOI:10.1093/aob/mct067

[8]

ZHANG F, YAO J, KE JY, ZHANG L, LAM VQ, XIN XF, ZHOUXE, CHEN J, BRUNZELLE J, GRIFFIN PR, ZHOU MG, XU HE, MELCHER K, HE SY. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling[J]. Nature, 2015, 525(7568): 269-273. DOI:10.1038/nature14661

[9]

XIAO S, DAI LY, LIU FQ, WANG ZL, PENG W, XIE DX. COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence[J]. The Plant Cell, 2004, 16(5): 1132-1142. DOI:10.1105/tpc.020370

[10]

ZIOSI V, BONGHI C, BREGOLI AM, TRAINOTTI L, BIONDI S, SUTTHIWAL S, KONDO S, COSTA G, TORRIGIANI P. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit[J]. Journal of Experimental Botany, 2008, 59(3): 563-573. DOI:10.1093/jxb/erm331

[11]

CAMPOS ML, KANG JH, HOWE GA. Jasmonate-triggered plant immunity[J]. Journal of Chemical Ecology, 2014, 40(7): 657-675. DOI:10.1007/s10886-014-0468-3

[12]

HEIL M, LAND WG. Danger signals-damaged-self recognition across the tree of life[J]. Frontiers in Plant Science, 2014, 5: 578.

[13]

MITHÖFER A, BOLAND W. Recognition of herbivory-associated molecular patterns[J]. Plant Physiology, 2008, 146(3): 825-831. DOI:10.1104/pp.107.113118

[14]

KIM Y, TSUDA K, IGARASHI D, HILLMER RA, SAKAKIBARA H, MYERS CL, KATAGIRI F. Mechanisms underlying robustness and tunability in a plant immune signaling network[J]. Cell Host & Microbe, 2014, 15(1): 84-94.

[15]

CHAUVIN A, CALDELARI D, WOLFENDERJL, FARMER EE. Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals[J]. New Phytologist, 2013, 197(2): 566-575. DOI:10.1111/nph.12029

[16]

GLAUSER G, DUBUGNON L, MOUSAVI SAR, RUDAZ S, WOLFENDER JL, FARMER EE. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis[J]. Journal of Biological Chemistry, 2009, 284(50): 34506-34513. DOI:10.1074/jbc.M109.061432

[17]

HOWE GA, MAJOR IT, KOO AJ. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69: 387-415. DOI:10.1146/annurev-arplant-042817-040047

[18]

GFELLER A, DUBUGNON L, LIECHTI R, FARMER EE. Jasmonate biochemical pathway[J]. Science Signaling, 2010, 3(109): e3109cm3.

[19]

YANG ZR, HUANG Y, YANG JL, YAO SZ, ZHAO K, WANG DH, QIN QQ, BIAN Z, LI Y, LAN Y, ZHOU T, WANG H, LIU C, WANG WM, QI YJ, XU ZH, LI Y. Jasmonate signaling enhances RNA silencing and antiviral defense in rice[J]. Cell Host & Microbe, 2020, 28(1): 89-103.e8.

[20]

LIECHTI R, FARMER EE. The jasmonate pathway[J]. Science, 2002, 296(5573): 1649-1650. DOI:10.1126/science.1071547

[21]

LI QQ, ZHENG J, LI SZ, HUANG GR, SKILLING SJ, WANG LJ, LI L, LI MY, YUAN LX, LIU P. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling[J]. Molecular Plant, 2017, 10(5): 695-708. DOI:10.1016/j.molp.2017.01.010

[22]

CHINI A, MONTE I, ZAMARREÑO AM, HAMBERG M, LASSUEUR S, REYMOND P, WEISS S, STINTZI A, SCHALLER A, PORZEL A, GARCÍA-MINA JM, SOLANO R. An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis[J]. Nature Chemical Biology, 2018, 14(2): 171-178. DOI:10.1038/nchembio.2540

[23]

WASTERNACK C, STRNAD M. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds[J]. International Journal of Molecular Sciences, 2018, 19(9): 2539. DOI:10.3390/ijms19092539

[24]

BUSSELL JD, REICHELT M, WISZNIEWSKI AAG, GERSHENZON J, SMITH SM. Peroxisomal atp-binding cassette transporter comatose and the multifunctional protein abnormal inflorescence meristem are required for the production of benzoylated metabolites in Arabidopsis seeds[J]. Plant Physiology, 2014, 164(1): 48-54. DOI:10.1104/pp.113.229807

[25]

GUAN L, DENKERT N, EISA A, LEHMANN M, SJUTS I, WEIBERG A, SOLL J, MEINECKE M, SCHWENKERT S. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10568-10575.

[26]

WANG Y, MOSTAFA S, ZENG W, JIN B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses[J]. International Journal of Molecular Sciences, 2021, 22(16): 8568. DOI:10.3390/ijms22168568

[27]

WASTERNACK C, SONG SS. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription[J]. Journal of Experimental Botany, 2017, 68(6): 1303-1321.

[28]

SANDRA F, JOSE MC, ROBERTO S. The jasmonate pathway: the ligand, the receptor and the core signalling module[J]. Current Opinion in Plant Biology, 2009, 12(5): 539-547. DOI:10.1016/j.pbi.2009.07.013

[29]

ALI MS, BAEK KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants[J]. International Journal of Molecular Sciences, 2020, 21(2): 621. DOI:10.3390/ijms21020621

[30]

FONSECA S, CHINI A, HAMBERG M, ADIE B, PORZEL A, KRAMELL R, MIERSCH O, WASTERNACK C, SOLANO R. (+)-7-iso-jasmonoyl- l-isoleucine is the endogenous bioactive jasmonate[J]. Nature Chemical Biology, 2009, 5(5): 344-350. DOI:10.1038/nchembio.161

[31]

KOO AJK, HOWE GA. The wound hormone jasmonate[J]. Phytochemistry, 2009, 70(13/14): 1571-1580.

[32]

XU LH, LIU FQ, LECHNER E, GENSCHIK P, CROSBY WL, MA H, PENG W, HUANG DF, XIE DX. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis[J]. The Plant Cell, 2002, 14(8): 1919-1935. DOI:10.1105/tpc.003368

[33]

CHINI A, FONSECA S, FERNÁNDEZ G, ADIE B, CHICO JM, LORENZO O, GARCÍA-CASADO G, LÓPEZ-VIDRIERO I, LOZANO FM, PONCE MR, MICOL JL, SOLANO R. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154): 666-671. DOI:10.1038/nature06006

[34]

SHEARD LB, TAN X, MAOHB, WITHERS J, BEN-NISSAN G, HINDS TR, KOBAYASHI Y, HSU FF, SHARON M, BROWSE J, HE SY, RIZO J, HOWE GA, ZHENG N. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405. DOI:10.1038/nature09430

[35]

CHOI WG, HILLEARY R, SWANSON SJ, KIM SH, GILROY S. Rapid, long-distance electrical and calcium signaling in plants[J]. Annual Review of Plant Biology, 2016, 67(1): 287-307. DOI:10.1146/annurev-arplant-043015-112130

[36]

RICHARD H, SIMON G. Systemic signaling in response to wounding and pathogens[J]. Current Opinion in Plant Biology, 2018, 43: 57-62. DOI:10.1016/j.pbi.2017.12.009

[37]

RUAN JJ, ZHOU YX, ZHOU ML, YAN J, KHURSHID M, WENG WF, CHENG JP, ZHANG KX. Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479. DOI:10.3390/ijms20102479

[38]

THORPE MR, FERRIERI AP, HERTH MM, FERRIERI RA. 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled[J]. Planta, 2007, 226(2): 541-551. DOI:10.1007/s00425-007-0503-5

[39]

LI MY, WANG FF, LI SZ, YU GH, WANG LJ, LI QQ, ZHU XY, LI Z, YUAN LX, LIU P. Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity[J]. Molecular Plant, 2020, 13(10): 1485-1498. DOI:10.1016/j.molp.2020.08.017

[40]

SUN TJ, ZHANG YL. Short and long-distance signaling in plant defense[J]. The Plant Journal, 2021, 105(2): 505-517. DOI:10.1111/tpj.15068

[41]

CHAUVIN A, LENGLET A, WOLFENDER JL, FARMER E. Paired hierarchical organization of 13-lipoxygenases in Arabidopsis[J]. Plants, 2016, 5(2): 16. DOI:10.3390/plants5020016

[42]

MOUSAVI SAR, CHAUVIN A, PASCAUD F, KELLENBERGER S, FARMER EE. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463): 422-426. DOI:10.1038/nature12478

[43]

JIA MR. Jasmonic acid transport in wound-induced systemic immunity[J]. Molecular Plant, 2020, 13(12): 1673-1675. DOI:10.1016/j.molp.2020.10.005

[44]

KOST C, HEIL M. The defensive role of volatile emission and extrafloral nectar secretion for Lima bean in nature[J]. Journal of Chemical Ecology, 2008, 34(1): 2-13. DOI:10.1007/s10886-007-9404-0

[45]

SCHULZE A, ZIMMER M, MIELKE S, STELLMACH H, MELNYK CW, HAUSE B, GASPERINI D. Wound-induced shoot-to-root relocation of JA-ile precursors coordinates Arabidopsis growth[J]. Molecular Plant, 2019, 12(10): 1383-1394. DOI:10.1016/j.molp.2019.05.013

[46]

CAARLS L, PIETERSE CMJ, van WEES SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling[J]. Frontiers in Plant Science, 2015, 6: 170.

[47]

AL-ZAHRANI W, BAFEEL SO, EL-ZOHRI M. Jasmonates mediate plant defense responses to Spodoptera exigua herbivory in tomato and maize foliage[J]. Plant Signaling & Behavior, 2020, 15(5): 1746898.

[48]

ZHANG PJ, ZHAO C, YE ZH, YU XP. Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato[J]. Pest Management Science, 2020, 76(5): 1893-1901. DOI:10.1002/ps.5720

[49]

CHEN H, GONZALES-VIGIL E, WILKERSON CG, HOWE GA. Stability of plant defense proteins in the gut of insect herbivores[J]. Plant Physiology, 2007, 143(4): 1954-1967. DOI:10.1104/pp.107.095588

[50]

TAN CW, CHIANG SY, RAVUIWASA KT, YADAV J, HWANG SY. Jasmonate-induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not[J]. Arthropod-Plant Interactions, 2012, 6(4): 531-541. DOI:10.1007/s11829-012-9206-3

[51]

ZHANG YT, ZHANG YL, CHEN SX, YIN GH, YANG ZZ, LEE S, LIU CG, ZHAO DD, MA YK, SONG FQ, BENNETT JW, YANG FS. Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer[J]. BMC Genomics, 2015, 16(1): 1-16. DOI:10.1186/1471-2164-16-1

[52]

YE M, LUO SM, XIE JF, LI YF, XU T, LIU Y, SONG YY, ZHU-SALZMAN K, ZENG RS. Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense[J]. PLoS One, 2012, 7(4): e36214. DOI:10.1371/journal.pone.0036214

[53]

XU J, WANG XJ, ZU HY, ZENG X, BALDWIN IT, LOU YG, LI R. Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore[J]. New Phytologist, 2021, 230(4): 1639-1652. DOI:10.1111/nph.17251

[54]

YAN C, FAN M, YANG M, ZHAO JP, ZHANG WH, SU Y, XIAO LT, DENG HT, XIE DX. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis[J]. Molecular Cell, 2018, 70(1): 136-149.e7. DOI:10.1016/j.molcel.2018.03.013

[55]

CAO YY, LIU L, MA KS, WANG WJ, LV HM, GAO M, WANG XM, ZHANG XC, REN SX, ZHANG N, GUO YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus[J]. Journal of Integrative Plant Biology, 2022, 64(5): 1102-1115. DOI:10.1111/jipb.13248

[56]

LI Y, TANG JX, QI YC, YANG F, SU XH, FU J, HAN XN, HE CH, XU YX, ZHAN K, XIA HB, WU JS, WANG L. Elevating herbivore-induced JA-Ile enhances potato resistance to the polyphagous beet armyworm but not to the oligophagous potato tuber moth[J]. Pest Management Science, 2023, 79(1): 357-367. DOI:10.1002/ps.7205

[57]

MAO YB, LIU YQ, CHEN DY, CHEN FY, FANG X, HONG GJ, WANG LJ, WANG JW, CHEN XY. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nature Communications, 2017, 8: 13925. DOI:10.1038/ncomms13925

[58]

LIU DQ, ZHAO Q, CUI XM, CHEN R, LI X, QIU BL, GE F. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate[J]. Genes & Genomics, 2019, 41(12): 1383-1396.

[59]

WANG J, TAN XL, ZHANG ZY, GU SL, LI GY, SHI HF. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling[J]. Plant Science, 2012, 184: 75-82. DOI:10.1016/j.plantsci.2011.12.013

[60]

AMEYE M, AUDENAERT K, de ZUTTER N, STEPPE K, van MEULEBROEK L, VANHAECKE L, de VLEESSCHAUWER D, HAESAERT G, SMAGGHE G. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production[J]. Plant Physiology, 2015, 167(4): 1671-1684. DOI:10.1104/pp.15.00107

[61]

MOOSA A, SAHI ST, ALEEM KHAN S, MALIK AU. Salicylic acid and jasmonic acid can suppress green and blue moulds of citrus fruit and induce the activity of polyphenol oxidase and peroxidase[J]. Folia Horticulturae, 2019, 31(1): 195-204. DOI:10.2478/fhort-2019-0014

[62]

SCALSCHI L, SANMARTÍN M, CAMAÑES G, TRONCHO P, SÁNCHEZ-SERRANO JJ, GARCÍA-AGUSTÍN P, VICEDO B. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea[J]. The Plant Journal, 2015, 81(2): 304-315. DOI:10.1111/tpj.12728

[63]

YUAN HM, LIU WC, LU YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses[J]. Cell Host & Microbe, 2017, 21(2): 143-155.

[64]

LIU WC, HAN TT, YUAN HM, YU ZD, ZHANG LY, ZHANG BL, ZHAI S, ZHENG SQ, LU YT. CATALASE2 functions for seedling postgerminative growth by scavenging H2O2 and stimulating ACX2/3 activity in Arabidopsis[J]. Plant, Cell & Environment, 2017, 40(11): 2720-2728.

[65]

ZHANG Y, SONG RF, YUAN HM, LI TT, WANG LF, LU KK, GUO JX, LIU WC. Overexpressing the N-terminus of CATALASE2 enhances plantjasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10[J]. Molecular Plant Pathology, 2021, 22(10): 1226-1238. DOI:10.1111/mpp.13106

[66]

JING YX, LIU J, LIU P, MING DF, SUN JQ. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat[J]. Scientific Reports, 2019, 9: 5691. DOI:10.1038/s41598-019-42177-y

[67]

HOU YX, WANG YF, TANG LQ, TONGXH, WANG L, LIU LM, HUANG SW, ZHANG J. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance[J]. iScience, 2019, 16: 499-510. DOI:10.1016/j.isci.2019.06.009

[68]

UJI Y, KASHIHARA K, KIYAMA H, MOCHIZUKI S, AKIMITSU K, GOMI K. Jasmonic acid-induced VQ-motif-containing protein OsVQ13 influences the OsWRKY45 signaling pathway and grain size by associating with OsMPK6 in rice[J]. International Journal of Molecular Sciences, 2019, 20(12): 2917. DOI:10.3390/ijms20122917

[69]

KE YG, KANG YR, WU MX, LIU HB, HUI SG, ZHANG QL, LI XH, XIAO JH, WANG SP. Jasmonic acid-involved OsEDS1 signaling in rice-bacteria interactions[J]. Rice, 2019, 12(1): 1-12. DOI:10.1186/s12284-018-0262-x

[70]

LI Q, HU AH, QI JJ, DOU WF, QIN XJ, ZOU XP, XU LZ, CHEN SC, HE YR. CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling[J]. Horticulture Research, 2020, 7: 42. DOI:10.1038/s41438-020-0263-y

[71]

LONG Q, XIE Y, HE YR, LI Q, ZOU XP, CHEN SC. Abscisic acid promotes jasmonic acid accumulation and plays a key role in citrus canker development[J]. Frontiers in Plant Science, 2019, 10: 1634. DOI:10.3389/fpls.2019.01634

[72]

BRENYA E, CHEN ZH, TISSUE D, PAPANICOLAOU A, CAZZONELLI CI. Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens[J]. BMC Plant Biology, 2020, 20(1): 1-16. DOI:10.1186/s12870-019-2170-7

[73]

YAN C, XIE DX. Jasmonate in plant defence: sentinel or double agent?[J]. Plant Biotechnology Journal, 2015, 13(9): 1233-1240. DOI:10.1111/pbi.12417

[74]

MEI CS, QI M, SHENG GY, YANG YN. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Molecular Plant-Microbe Interactions®, 2006, 19(10): 1127-1137. DOI:10.1094/MPMI-19-1127

[75]

ZHANG C, DING ZM, WU KC, YANG L, LI Y, YANG Z, SHI S, LIU XJ, ZHAO SS, YANG ZR, WANG Y, ZHENG LP, WEI J, DU ZG, ZHANG AH, MIAO HQ, LI Y, WU ZJ, WU JG. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Molecular Plant, 2016, 9(9): 1302-1314. DOI:10.1016/j.molp.2016.06.014

[76]

LI LL, ZHANG HH, CHEN CH, HUANG HJ, TAN XX, WEI ZY, LI JM, YAN F, ZHANG CX, CHEN JP, SUN ZT. A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2016673118.

[77]

TAN XX, ZHANG HH, YANG ZH, WEI ZY, LI YJ, CHEN JP, SUN ZT. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice[J]. PLoS Pathogens, 2022, 18(5): e1010548. DOI:10.1371/journal.ppat.1010548

[78]

WANG J, SONG L, GONG X, XU JF, LI MH. Functions of jasmonic acid in plant regulation and response to abiotic stress[J]. International Journal of Molecular Sciences, 2020, 21(4): E1446. DOI:10.3390/ijms21041446

[79]

DING YL, SHI YT, YANG SH. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222(4): 1690-1704. DOI:10.1111/nph.15696

[80]

HU YR, JIANG YJ, HAN X, WANG HP, PAN JJ, YU DQ. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones[J]. Journal of Experimental Botany, 2017, 68(6): 1361-1369. DOI:10.1093/jxb/erx004

[81]

WANG YC, XU HF, LIU WJ, WANG N, QU CZ, JIANG SH, FANG HC, ZHANG ZY, CHEN XS. Methyl jasmonate enhances apple' cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2019, 136(1): 75-84. DOI:10.1007/s11240-018-1493-7

[82]

LIU WH, WANG HY, CHEN YP, ZHU SQ, CHEN M, LAN XZ, CHEN GP, LIAO ZH. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate[J]. Biotechnology and Applied Biochemistry, 2017, 64(3): 305-314. DOI:10.1002/bab.1493

[83]

JIEUN SEO, GIBUM Y, JEONG GL, JEONG HC, EUN JL. Seed browning in pepper (Capsicum annuum L.) fruit during cold storage is inhibited by methyl jasmonate or induced by methyl salicylate[J]. Postharvest Biology and Technology, 2020, 166: 111210. DOI:10.1016/j.postharvbio.2020.111210

[84]

SCHROEDER JI, KWAK JM, ALLEN GJ. Guard cell abscisic acid signalling and engineering drought hardiness in plants[J]. Nature, 2001, 410(6826): 327-330. DOI:10.1038/35066500

[85]

XU ZZ, ZHOU GS, SHIMIZU H. Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654.

[86]

SAVCHENKO T, KOLLA VA, WANG CQ, NASAFI Z, HICKS DR, PHADUNGCHOB B, CHEHAB WE, BRANDIZZI F, FROEHLICH J, DEHESH K. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought[J]. Plant Physiology, 2014, 164(3): 1151-1160. DOI:10.1104/pp.113.234310

[87]

DASZKOWSKA-GOLEC A, SZAREJKO I. Open or close the gate-stomata action under the control of phytohormones in drought stress conditions[J]. Frontiers in Plant Science, 2013, 4: 138.

[88]

SINGH AP, MANI B, GIRI J. OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice[J]. Plant Physiology and Biochemistry, 2021, 162: 161-170. DOI:10.1016/j.plaphy.2021.02.042

[89]

FU J, WU H, MA SQ, XIANG DH, LIU RY, XIONG LZ. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Frontiers in Plant Science, 2017, 8: 2108. DOI:10.3389/fpls.2017.02108

[90]

SEO JS, JOO J, KIM MJ, KIM YK, NAHM BH, SONG SI, CHEONG JJ, LEE JS, KIM JK, DO CHOI Y. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. The Plant Journal, 2011, 65(6): 907-921. DOI:10.1111/j.1365-313X.2010.04477.x

[91]

XIONG J, LIU L, MAXC, LI FF, TANG CL, LI ZH, LÜ BW, ZHOU T, LIAN XF, CHANG YY, TANG MJ, XIE SX, LU XP. Characterization of PtAOS1 promoter and three novel interacting proteins responding to drought in Poncirus trifoliata[J]. International Journal of Molecular Sciences, 2020, 21(13): 4705. DOI:10.3390/ijms21134705

[92]

GE YX, ZHANG LJ, LI FH, CHEN ZB. Relationship between jasmonic acid accumulation and senescence in drought-stress[J]. African Journal of Agricultural Research, 2010, 15(5): 1978-1993.

[93]

MOHAMED HI, LATIF HH. Improvement of drought tolerance of soybean plants by using methyl jasmonate[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 545-556. DOI:10.1007/s12298-017-0451-x

[94]

FAHAD S, HUSSAIN S, MATLOOB A, KHAN FA, KHALIQ A, SAUD S, HASSAN S, SHAN D, KHAN F, ULLAH N, FAIQ M, KHAN MR, TAREEN AK, KHAN A, ULLAH A, ULLAH N, HUANG JL. Phytohormones and plant responses to salinity stress: a review[J]. Plant Growth Regulation, 2015, 75(2): 391-404. DOI:10.1007/s10725-014-0013-y

[95]

de DOMENICO S, TAURINO M, GALLO A, POLTRONIERI P, PASTOR V, FLORS V, SANTINO A. Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses[J]. Physiologia Plantarum, 2019, 165(2): 198-208. DOI:10.1111/ppl.12810

[96]

VALENZUELA CE, ACEVEDO-ACEVEDO O, MIRANDA GS, VERGARA-BARROS P, HOLUIGUE L, FIGUEROA CR, FIGUEROA PM. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root[J]. Journal of Experimental Botany, 2016, 67(14): 4209-4220. DOI:10.1093/jxb/erw202

[97]

ZHANG MZ, YU ZM, ZENG DQ, SI C, ZHAO CH, WANG HB, LI CM, HE CM, DUAN J. Transcriptome and metabolome reveal salt-stress responses of leaf tissues from Dendrobium officinale[J]. Biomolecules, 2021, 11(5): 736. DOI:10.3390/biom11050736

[98]

ABOUELSAAD I, RENAULT S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress[J]. Journal of Plant Physiology, 2018, 226: 136-144. DOI:10.1016/j.jplph.2018.04.009

[99]

QIU ZB, GUO JL, ZHU AJ, ZHANG L, ZHANG MM. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and Environmental Safety, 2014, 104: 202-208. DOI:10.1016/j.ecoenv.2014.03.014

[100]

SHETEIWY MS, SHAO HB, QI WC, DALY P, SHARMA A, SHAGHALEH H, ALHAJ HAMOUD Y, EL-ESAWI MA, PAN RH, WAN Q, LU HY. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings[J]. Journal of the Science of Food and Agriculture, 2021, 101(5): 2027-2041. DOI:10.1002/jsfa.10822

[101]

CHEN YM, WANG Y, HUANG JG, ZHENG CC, CAI CX, WANG QM, WU CA. Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway[J]. Plant Science, 2017, 261: 1-9. DOI:10.1016/j.plantsci.2017.05.005

[102]

WANG JJ, LV PH, YAN D, ZHANG ZD, XU XM, WANG T, WANG Y, PENG Z, YU CX, GAO YR, DUAN LS, LI RZ. Exogenous melatonin improves seed germination of wheat (Triticum aestivum L.) under salt stress[J]. International Journal of Molecular Sciences, 2022, 23(15): 8436. DOI:10.3390/ijms23158436

[103]

ZEID A, Al-Othman. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources[J]. Arabian Journal of Chemistry, 2016, 9: S1555-S1562. DOI:10.1016/j.arabjc.2012.04.006

[104]

LEI GJ, SUN L, SUN Y, ZHU XF, LI GX, ZHENG SJ. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation[J]. Journal of Integrative Plant Biology, 2020, 62(2): 218-227. DOI:10.1111/jipb.12801

[105]

ZHAO SY, MA QF, XU X, LI GZ, HAO L. Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress[J]. Journal of Plant Growth Regulation, 2016, 35(3): 603-610. DOI:10.1007/s00344-015-9563-0

[106]

AZEEM U. Ameliorating nickel stress by jasmonic acid treatment in Zea mays L[J]. Russian Agricultural Sciences, 2018, 44(3): 209-215. DOI:10.3103/S1068367418030035

[107]

NORIEGA G, CRUZ DS, BATLLE A, TOMARO M, BALESTRASSE K. Heme oxygenase is involved in the protection exerted by jasmonic acid against cadmium stress in soybean roots[J]. Journal of Plant Growth Regulation, 2012, 31(1): 79-89. DOI:10.1007/s00344-011-9221-0

[108]

BALI SG, LAKSHMI JAMWAL V, KOHLI SK, KAUR P, TEJPAL R, BHALLA V, OHRI P, GANDHI SG, BHARDWAJ R, AL-HUQAIL AA, SIDDIQUI MH, ALI HM, AHMAD P. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression[J]. Chemosphere, 2019, 235: 734-748. DOI:10.1016/j.chemosphere.2019.06.188

[109]

DAI H, WEI SH, POGRZEBA M, RUSINOWSKI S, KRZYŻAK J, JIA G. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110176. DOI:10.1016/j.ecoenv.2020.110176

[110]

KAZAN K, MANNERS J. Jasmonate signaling: toward an integrated view[J]. Plant Physiology, 2008, 146(4): 1459-1468. DOI:10.1104/pp.107.115717

[111]

徐刚, 姚银安. 水杨酸、茉莉酸和乙烯介导的防卫信号途径相互作用的研究进展[J]. 生物学杂志, 2009, 26(1): 48-51.
XU G, YAO YA. The cross-talk between salicylic acid, jasmonic acid and ethylene defense pathway[J]. Journal of Biology, 2009, 26(1): 48-51 (in Chinese).

[112]

XU P, ZHAO PX, CAI XT, MAO JL, MIAO ZQ, XIANG CB. Integration of jasmonic acid and ethylene into auxin signaling in root development[J]. Frontiers in Plant Science, 2020, 11: 271. DOI:10.3389/fpls.2020.00271

[113]

QI LL, YAN J, LI YN, JIANG HL, SUN JQ, CHEN Q, LI HX, CHU JF, YAN CY, SUN XH, YU YJ, LI CB, LI CY. Arabidopsis thaliana plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola[J]. New Phytologist, 2012, 195(4): 872-882. DOI:10.1111/j.1469-8137.2012.04208.x

[114]

LIU H, TIMKO MP. Jasmonic acid signaling and molecular crosstalk with other phytohormones[J]. International Journal of Molecular Sciences, 2021, 22(6): 2914. DOI:10.3390/ijms22062914

[115]

JIANG YJ, LIANG G, YANG SZ, YU DQ. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. The Plant Cell, 2014, 26(1): 230-245. DOI:10.1105/tpc.113.117838

[116]

JIANG YJ, YU DQ. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology, 2016, 171(4): 2771-2782. DOI:10.1104/pp.16.00747

[117]

HE YQ, ZHANG HH, SUN ZT, LI JM, HONG GJ, ZHU QS, ZHOU XB, MACFARLANE S, YAN F, CHEN JP. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to rice black streaked dwarf virus infection in rice[J]. New Phytologist, 2017, 214(1): 388-399. DOI:10.1111/nph.14376

[118]

ZHANG HH, TAN XX, LI LL, HE YQ, HONG GJ, LI JM, LIN L, CHENG Y, YAN F, CHEN JP, SUN ZT. Suppression of auxin signalling promotes rice susceptibility to rice black streaked dwarf virus infection[J]. Molecular Plant Pathology, 2019, 20(8): 1093-1104. DOI:10.1111/mpp.12814

[119]

RONZAN M, PIACENTINI D, FATTORINI L, FEDERICA DR, CABONI E, EICHE E, ZIEGLER J, HAUSE B, RIEMANN M, BETTI C, ALTAMURA MM, FALASCA G. Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure[J]. Environmental and Experimental Botany, 2019, 165: 59-69. DOI:10.1016/j.envexpbot.2019.05.013

[120]

HOU SJ, TSUDA K. Salicylic acid and jasmonic acid crosstalk in plant immunity[J]. Essays in Biochemistry, 2022, 66(5): 647-656. DOI:10.1042/EBC20210090

[121]

CUI HT, QIU JD, ZHOU Y, BHANDARI DD, ZHAO C, BAUTOR J, PARKER JE. Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity[J]. Molecular Plant, 2018, 11(8): 1053-1066. DOI:10.1016/j.molp.2018.05.007

[122]

AERTS N, PEREIRA MENDES M, van WEES SCM. Multiple levels of crosstalk in hormone networks regulating plant defense[J]. The Plant Journal, 2021, 105(2): 489-504. DOI:10.1111/tpj.15124

[123]

PAN G, LIU YQ, JI LS, ZHANG X, HE J, HUANG J, QIU ZY, LIU DM, SUN ZG, XU TT, LIU LL, WANG CM, JIANG L, CHENG XN, WAN JM. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice[J]. Journal of Experimental Botany, 2018, 69(18): 4433-4442. DOI:10.1093/jxb/ery223

[124]

范东哲, 陈青, 梁晓, 伍春玲, 刘迎, 窦宏双, 吴岩. 桃蚜取食对抗、感蚜辣椒品种水杨酸、茉莉酸信号途径的影响[J]. 热带作物学报, 2021, 42(10): 2972-2978.
FAN DZ, CHEN Q, LIANG X, WU CL, LIU Y, DOU HS, WU Y. Myzus persicae feeding effects salicylic acid and jasmonic acid signaling pathways in aphid-resistant and aphid-susceptible pepper cultivars[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2972-2978 (in Chinese). DOI:10.3969/j.issn.1000-2561.2021.10.030

[125]

CRISTINA M, PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants[J]. Annual Review of Plant Biology, 2010, 61: 621-649. DOI:10.1146/annurev-arplant-042809-112252

[126]

FANG XP, CHAI WG, LI SG, ZHANG LQ, YU H, SHEN JS, XIAO WF, LIU AC, ZHOU BQ, ZHANG XY. HSP17.4 mediates salicylic acid and jasmonic acid pathways in the regulation of resistance to Colletotrichum gloeosporioides in strawberry[J]. Molecular Plant Pathology, 2021, 22(7): 817-828. DOI:10.1111/mpp.13065

[127]

ZHENGXY, SPIVEY NW, ZENG WQ, LIU PP, FU ZQ, KLESSIG DF, HE SY, DONG XN. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host & Microbe, 2012, 11(6): 587-596.

[128]

HICKMAN R, MENDES MP, van VERK MV, van DIJKEN AV, DI SORA J, DENBY K, PIETERSE C, van WEES SV. Transcriptional dynamics of the salicylic acid response and its interplay with the jasmonic acid pathway[J]. Cold Spring Harbor Laboratory, 2019.

[129]

LUO J, XIA WX, CAO P, XIAO ZA, ZHANG Y, LIUMY, ZHAN C, WANG N. Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar[J]. Biomolecules, 2019, 9(1): 12. DOI:10.3390/biom9010012

[130]

ULLAH C, SCHMIDT A, REICHELT M, TSAI CJ, GERSHENZON J. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar[J]. New Phytologist, 2022, 235(2): 701-717. DOI:10.1111/nph.18148

[131]

LACKMAN P, GONZÁLEZ-GUZMÁN M, TILLEMAN S, CARQUEIJEIRO I, PÉREZ AC, MOSES T, SEO M, KANNO Y, HÄKKINEN ST, van MONTAGU MCE, THEVELEIN JM, MAAHEIMO H, OKSMAN-CALDENTEY KM, RODRIGUEZ PL, RISCHER H, GOOSSENS A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5891-5896.

[132]

ALEMAN F, YAZAKI J, LEE M, TAKAHASHI Y, KIM AY, LIZX, KINOSHITA T, ECKER JR, SCHROEDER JI. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling[J]. Scientific Reports, 2016, 6: 28941. DOI:10.1038/srep28941

[133]

ANDERSON JP, BADRUZSAUFARI E, SCHENK PM, MANNERS JM, DESMOND OJ, EHLERT C, MACLEAN DJ, EBERT PR, KAZAN K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis[J]. The Plant Cell, 2004, 16(12): 3460-3479. DOI:10.1105/tpc.104.025833

[134]

KIM H, SEOMUN S, YOON Y, JANG G. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid[J]. Agronomy, 2021, 11(9): 1886. DOI:10.3390/agronomy11091886

[135]

BROSSA R, LÓPEZ-CARBONELL M, JUBANY-MARÍ T, ALEGRE L. Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants[J]. Journal of Plant Growth Regulation, 2011, 30(3): 322-333. DOI:10.1007/s00344-011-9194-z

[136]

LIU L, LIU CY, WANG H, YU SY, GUAN TS, HUANG YF, LI RC. The abscisic acid receptor gene VvPYL4 positively regulates grapevine resistance to Plasmopara viticola[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 142: 483-492. DOI:10.1007/s11240-020-01872-9

[137]

GHORBEL M, BRINI F, SHARMA A, LANDI M. Role of jasmonic acid in plants: the molecular point of view[J]. Plant Cell Reports, 2021, 40(8): 1471-1494. DOI:10.1007/s00299-021-02687-4

[138]

ZOU XP, LONG JH, ZHAO K, PENG AH, CHEN M, LONG Q, HE YR, CHEN SC. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck)[J]. PLoS One, 2019, 14(12): e0220017. DOI:10.1371/journal.pone.0220017

[139]

邹修平, 龙俊宏, 彭爱红, 陈敏, 龙琴, 陈善春. 超量表达CsGH3.6通过抑制生长素信号转导增强柑橘溃疡病抗性[J]. 中国农业科学, 2019, 52(21): 3806-3818.
ZOU XP, LONG JH, PENG AH, CHEN M, LONG Q, CHEN SC. Overexpression of CsGH3.6 enhanced resistance to citrus canker disease by inhibiting auxin signaling transduction[J]. Scientia Agricultura Sinica, 2019, 52(21): 3806-3818 (in Chinese). DOI:10.3864/j.issn.0578-1752.2019.21.009

[140]

龙俊宏. 黄龙病菌SDE70和SDE695效应子在病原菌与柑橘互作中的功能研究[D]. 重庆: 西南大学硕士学位论文, 2021.
LONG JH. Study of functions of the SDE70 and SDE695 effectors interaction between Candidatus Liberibacter Asiaticus and citrus[D]. Chongqing: Master's Thesis of Southwest University, 2021 (in Chinese).

[141]

PENG AH, ZOU XP, HE YR, CHEN SC, LIU XF, ZHANG JY, ZHANG QW, XIE Z, LONG JH, ZHAO XC. Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis[J]. Plant Cell Reports, 2021, 40(3): 529-541. DOI:10.1007/s00299-020-02648-3

[142]

GROVER S, PURI H, XIN ZG, SATTLER SE, LOUIS J. Dichotomous role ofjasmonic acid in modulating Sorghum defense against aphids[J]. Molecular Plant-Microbe Interactions®, 2022, 35(9): 755-767. DOI:10.1094/MPMI-01-22-0005-R

[143]

GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43: 205-227. DOI:10.1146/annurev.phyto.43.040204.135923

[144]

AN JP, ZHANG CL, LI HL, WANG GL, YOU CX. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein[J]. The Plant Journal, 2022, 111(2): 457-472. DOI:10.1111/tpj.15808

[145]

PENG AH, CHEN SC, LEI TG, XU LZ, HE YR, WU L, YAO LX, ZOU XP. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal, 2017, 15(12): 1509-1519. DOI:10.1111/pbi.12733

[146]

LI YH, QIU LN, ZHANG Q, ZHUANSUN XX, LI HF, CHEN X, KRUGMAN T, SUN QX, XIE CJ. Exogenous sodium diethyldithiocarbamate, a jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat[J]. Plant Direct, 2020, 4(4): e00212. DOI:10.1002/pld3.212

相关知识

华中农业大学教师主页平台管理系统 产祝龙
缺钾对棉花幼苗根系生长的影响及其生理机制
菊花转录因子CmTGAs的克隆及同源遗传转化研究
华中农业大学教师主页平台管理系统 Yanping Wang
植物愈伤组织培养的生物技术应用
低温胁迫下棉花幼苗对外源水杨酸的生理响应
In silico cloning, expression and bioinformatics analysis of StZnT11 in Solanum tuberosum
Phytoremediation of heavy metal contaminated soils by plant growth
花生硬脂酰
贺超英

网址: The role of jasmonic acid in stress resistance of plants: a review https://m.huajiangbk.com/newsview113639.html

所属分类:花卉
上一篇: 生命科学学院孟祥宗课题组在植物抗
下一篇: 使用精油提升你的免疫力