Research progress on citrus canker disease and its microbial control
[1] LI XM. Molecular phylogeny of the true citrus fruit trees group (Aurantioideae, Rutaceae) and the origin of cultivated citrus [D]. Chongqing: Doctoral Dissertation of Southwest University, 2010 (in Chinese).
李小孟. 柑橘及其近缘属植物的分子进化与栽培柑橘的起源研究[D]. 重庆: 西南大学博士学位论文, 2010. [2] QI CJ, GU YM, ZENG Y. Progress of citrus industry economy in China. Journal of Huazhong Agricultural University, 2021, 40(1): 58-69. (in Chinese)
祁春节, 顾雨檬, 曾彦. 我国柑橘产业经济研究进展. 华中农业大学学报, 2021, 40(1): 58-69. DOI:10.13300/j.cnki.hnlkxb.2021.01.007 [3] PEI Y, HE CX, LIU HL, SHEN GP, FENG JH. Compositional analysis of four kinds of Citrus fruits with an NMR-based method for understanding nutritional value and rational utilization: from pericarp to juice. Molecules (Basel, Switzerland), 2022, 27(8): 2579. DOI:10.3390/molecules27082579 [4] ANGELOTTI-MENDONÇA J, de OLIVEIRA PN, ANSANTE NF, STIPP LCL, FREITAS-ASTÚA J, HURTADO FMM, BELASQUE J, de ASSIS ALVES MOURÃO FILHO F. Expression of the Citrus sinensis EDS5 gene, MATE family, in Solanum lycopersicum L. cv. Micro-Tom enhances resistance to tomato spot disease. Tropical Plant Pathology, 2022, 47(2): 287-297. DOI:10.1007/s40858-021-00480-y [5] ADHI NY, SUHARJONO S, SRI W. Biological control of Citrus canker pathogen Xanthomonas citri subsp. citri using Rangpur lime endophytic bacteria. Egyptian Journal of Biological Pest Control, 2022, 32(1): 63. DOI:10.1186/s41938-022-00561-3 [6] GOTTWALD TR, GRAHAM JH, SCHUBERT TS. Citrus canker: the pathogen and its impact[J]. Plant Health Progress, 2002, 3(1). https://doi.org/10.1094/PHP-2002-0812-01-RV. [7] LONG YF, LUO RF, XU Z, CHENG SY, LI L, MA HJ, BAO ML, LI M, OUYANG ZG, WANG N, DUAN S. A fluorescent reporter-based evaluation assay for antibacterial components against Xanthomonas citri subsp. citri. Frontiers in Microbiology, 2022, 13: 864963. DOI:10.3389/fmicb.2022.864963 [8] de CARVALHO DU, NEVES CSVJ, da CRUZ MA, LONGHI TV, BEHLAU F, de CARVALHO SA, LEITE RP Jr. Late-season sweet orange selections under huanglongbing and Citrus canker endemic conditions in the Brazilian humid subtropical region. Frontiers in Plant Science, 2022, 13: 915889. DOI:10.3389/fpls.2022.915889 [9] BEHLAU F, BELASQUE J Jr, LEITE RP Jr, FILHO AB, GOTTWALD TR, GRAHAM JH, SCANDELAI LHM, PRIMIANO IV, BASSANEZI RB, AYRES AJ. Relative contribution of windbreak, copper sprays, and leafminer control for Citrus canker management and prevention of crop loss in sweet orange trees. Plant Disease, 2021, 105(8): 2097-2105. DOI:10.1094/PDIS-10-20-2153-RE [10] MACHADO FJ, da SILVA MARIN TG, CANÔAS F, da SILVA GJ Jr, BEHLAU F. Timing of copper sprays to protect mechanical wounds against infection by Xanthomonas citri subsp. citri, causal agent of Citrus canker. European Journal of Plant Pathology, 2021, 160(3): 683-692. DOI:10.1007/s10658-021-02276-x [11] FERREIRA DH, MOREIRA RR, JUNIOR GJS, BEHLAU F. Copper rate and spray interval for joint management of Citrus canker and citrus black spot in orange orchards. European Journal of Plant Pathology, 2022, 163(4): 891-906. DOI:10.1007/s10658-022-02527-5 [12] CARVALHO CR, DIAS AC, HOMMA SK, CARDOSO EJ. Phyllosphere bacterial assembly in citrus crop under conventional and ecological management. PeerJ, 2020, 8: e9152. DOI:10.7717/peerj.9152 [13] RICHARD D, BOYER C, LEFEUVRE P, PRUVOST O. Complete genome sequence of a copper-resistant bacterium from the Citrus phyllosphere, Stenotrophomonas sp. strain LM091, obtained using long-read technology. Genome Announcements, 2016, 4(6): e01327-16. [14] PRUVOST O, RICHARD D, BOYER K, JAVEGNY S, BOYER C, CHIROLEU F, GRYGIEL P, PARVEDY E, ROBÈNE I, MAILLOT-LEBON V, HAMZA A, LOBIN KK, NAIKEN M, VERNIÈRE C. Diversity and geographical structure of Xanthomonas citri pv. citri on Citrus in the south west Indian Ocean region. Microorganisms, 2021, 9(5): 945. DOI:10.3390/microorganisms9050945 [15] XIAO C, ZHANG H, XIE F, PAN ZY, QIU WM, TONG Z, WANG ZQ, HE XJ, XU YH, SUN ZH. Evolution, gene expression, and protein-protein interaction analyses identify candidate CBL-CIPK signalling networks implicated in stress responses to cold and bacterial infection in citrus. BMC Plant Biology, 2022, 22(1): 420. DOI:10.1186/s12870-022-03809-0 [16] AMANCIO L, BAIA ADB, SOUZA EB, SALES JÚNIOR R, NEGREIROS AMP, BALBINO VQ, GAMA MAS. First Report of Xanthomonas citri subsp. citri causing Citrus Canker on lime in Rio Grande do Norte, Brazil. Plant Disease, 2021, 105(12): 4148. [17] REHMAN MSNU. First report of Xanthomonas citri subsp. citri causing Citrus canker on grape fruit (Citrus paradisi), Washington naval (Citrus sinensis), kaghzi Limon (Citrus aurantifolia Swingle), lemon (Citrus lim). Pakistan Journal of Agricultural Sciences, 2021, 58(04): 1373-1377. DOI:10.21162/PAKJAS/21.9701 [18] LICCIARDELLO G, CARUSO P, BELLA P, BOYER C, SMITH MW, PRUVOST O, ROBENE I, CUBERO J, CATARA V. Pathotyping Citrus ornamental relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii refines our understanding of their susceptibility to these pathogens. Microorganisms, 2022, 10(5): 986. DOI:10.3390/microorganisms10050986 [19] QIAN JL, ZHANG T, TANG S, ZHOU LL, LI KT, FU XQ, YU SJ. Biocontrol of Citrus canker with endophyte Bacillus amyloliquefaciens QC-Y. Plant Protection Science, 2021, 57(1): 1-13. DOI:10.17221/62/2020-PPS [20] PUCCI N, SCALA V, TATULLI G, L'AURORA A, LUCCHESI S, SALUSTRI M, LORETI S. Intra-laboratory evaluation of DNA extraction methods and assessment of a droplet digital PCR for the detection of Xanthomonas citri pv. citri on different Citrus species. International Journal of Molecular Sciences, 2022, 23(9): 4975. DOI:10.3390/ijms23094975 [21] GRAHAM JH, GOTTWALD TR, CUBERO J, ACHOR DS. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of Citrus canker. Molecular Plant Pathology, 2004, 5(1): 1-15. DOI:10.1046/j.1364-3703.2004.00197.x [22] GIRALDO-GONZÁLEZ JJ, de SOUZA CARVALHO FM, FERRO JA, HERAI RH, CHAVES BEDOYA G, RODAS MENDOZA EF. Transcriptional changes involved in kumquat (Fortunella spp) defense response to Xanthomonas citri subsp. citri in early stages of infection. Physiological and Molecular Plant Pathology, 2021, 116: 101729. DOI:10.1016/j.pmpp.2021.101729 [23] BRUNINGS AM, GABRIEL DW. Xanthomonas citri: breaking the surface. Molecular Plant Pathology, 2003, 4(3): 141-157. DOI:10.1046/j.1364-3703.2003.00163.x [24] WANG Y, FU XZ, LIU JH, HONG N. Differential structure and physiological response to canker challenge between 'Meiwa' kumquat and 'Newhall' navel orange with contrasting resistance. Scientia Horticulturae, 2011, 128(2): 115-123. DOI:10.1016/j.scienta.2011.01.010 [25] BANSAL K, KUMAR S, PATIL PB. Phylo-taxonogenomics supports revision of taxonomic status of 20 Xanthomonas pathovars to Xanthomonas citri. Phytopathology®, 2022, 112(6): 1201-1207. DOI:10.1094/PHYTO-08-21-0342-SC [26] SHARMA A, FERENCE CM, SHANTHARAJ D, BALDWIN EA, MANTHEY JA, JONES JB. Transcriptomic analysis of changes in Citrus × microcarpa gene expression post Xanthomonas citri subsp. citri infection. European Journal of Plant Pathology, 2022, 162(1): 163-181. DOI:10.1007/s10658-021-02394-6 [27] PATANÉ JSL, MARTINS J Jr, RANGEL LT, BELASQUE J, DIGIAMPIETRI LA, FACINCANI AP, FERREIRA RM, JACIANI FJ, ZHANG YZ, VARANI AM, ALMEIDA NF, WANG N, FERRO JA, MOREIRA LM, SETUBAL JC. Origin and diversification of Xanthomonas citri subsp. citri pathotypes revealed by inclusive phylogenomic, dating, and biogeographic analyses. BMC Genomics, 2019, 20(1): 700. DOI:10.1186/s12864-019-6007-4 [28] FONSECA NP, FELESTRINO ÉB, CANESCHI WL, SANCHEZ AB, CORDEIRO IF, LEMES CGC, ASSIS RAB, CARVALHO FMS, FERRO JA, VARANI AM, BELASQUE J, SETUBAL JC, TELLES GP, AGUENA DS, ALMEIDA NF, MOREIRA LM. Detection and identification of Xanthomonas pathotypes associated with citrus diseases using comparative genomics and multiplex PCR. PeerJ, 2019, 7: e7676. DOI:10.7717/peerj.7676 [29] HYUN JW, KIM HJ, YI PH, HWANG RY, PARK EW. Mode of action of streptomycin resistance in the Citrus canker pathogen (Xanthomonas smithii subsp. citri) in jeju island. The Plant Pathology Journal, 2012, 28(2): 207-211. DOI:10.5423/PPJ.2012.28.2.207 [30] NAQVI SAH, WANG J, MALIK MT, UMAR UUD, ATEEQ-UR-REHMAN, HASNAIN A, SOHAIL MA, SHAKEEL MT, NAUMAN M, HAFEEZ-UR-REHMAN, HASSAN MZ, FATIMA M, DATTA R. Citrus canker—distribution, taxonomy, epidemiology, disease cycle, pathogen biology, detection, and management: a critical review and future research agenda. Agronomy, 2022, 12(5): 1075. DOI:10.3390/agronomy12051075 [31] ZOU XP, DU MX, LIU YN, WU L, XU LZ, LONG Q, PENG AH, HE YR, ANDRADE M, CHEN SC. CsLOB1 regulates susceptibility to Citrus canker through promoting cell proliferation in citrus. The Plant Journal: for Cell and Molecular Biology, 2021, 106(4): 1039-1057. DOI:10.1111/tpj.15217 [32] HU Y, ZHANG JL, JIA HG, SOSSO D, LI T, FROMMER WB, YANG B, WHITE FF, WANG N, JONES JB. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): E521-E529. [33] JIA HG, ORBOVIC V, JONES JB, WANG N. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB1.3 infection. Plant Biotechnology Journal, 2016, 14(5): 1291-1301. DOI:10.1111/pbi.12495 [34] RAEISI H, SAFARNEJAD MR, ALAVI SM, FARROKHI N, ALI ELAHINIA S. Transient expression of an scFvG8 antibody in plants and characterization of its effects on the virulence factor pthA of Xanthomonas citri subsp. citri. Transgenic Research, 2022, 31(2): 269-283. DOI:10.1007/s11248-022-00301-1 [35] LI N, HUANG L, LIU LP, LI DZ, DAI SM, DENG ZN. The relationship between PthA expression and the pathogenicity of Xanthomonas axonopodis pv. citri. Molecular Biology Reports, 2014, 41(2): 967-975. DOI:10.1007/s11033-013-2941-4 [36] ABE VY, BENEDETTI CE. Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector-binding elements of Citrus canker susceptibility genes. Molecular Plant Pathology, 2016, 17(8): 1223-1236. DOI:10.1111/mpp.12359 [37] de SOUZA-NETO RR, N C VASCONCELOS F, TEPER D, CARVALHO IGB, TAKITA MA, BENEDETTI CE, WANG N, de SOUZA AA. The expansin gene CsLIEXP1 is a direct target of CsLOB1 in citrus. Phytopathology, 2023. DOI:10.1094/PHYTO-11-22-0424-R [38] SANTOS SOPRANO A, ABE VY, SMETANA JHC, BENEDETTI CE. Citrus MAF1, a repressor of RNA polymerase Ⅲ, binds the Xanthomonas citri canker elicitor PthA4 and suppresses Citrus canker development. Plant Physiology, 2013, 163(1): 232-242. DOI:10.1104/pp.113.224642 [39] SHIMO HM, TERASSI C, LIMA SILVA CC, ZANELLA JL, MERCALDI GF, ROCCO SA, BENEDETTI CE. Role of the Citrus sinensis RNA deadenylase CsCAF1 in Citrus canker resistance. Molecular Plant Pathology, 2019, 20(8): 1105-1118. DOI:10.1111/mpp.12815 [40] SHI Y, YANG XB, YE XX, FENG JY, CHENG TF, ZHOU XF, LIU DX, XU LH, WANG JX. The methyltransferase HemK regulates the virulence and nutrient utilization of the phytopathogenic bacterium Xanthomonas citri subsp. citri. International Journal of Molecular Sciences, 2022, 23(7): 3931. DOI:10.3390/ijms23073931 [41] DUNGER G, GUZZO CR, ANDRADE MO, JONES JB, FARAH CS. Xanthomonas citri subsp. citri type Ⅳ Pilus is required for twitching motility, biofilm development, and adherence. Molecular Plant-Microbe Interactions®, 2014, 27(10): 1132-1147. DOI:10.1094/MPMI-06-14-0184-R [42] SOUZA DP, OKA GU, ALVAREZ-MARTINEZ CE, BISSON-FILHO AW, DUNGER G, HOBEIKA L, CAVALCANTE NS, ALEGRIA MC, BARBOSA LRS, SALINAS RK, GUZZO CR, FARAH CS. Bacterial killing via a type Ⅳ secretion system. Nature Communications, 2015, 6: 6453. DOI:10.1038/ncomms7453 [43] CHOI HW, KIM DS, KIM NH, JUNG HW, HAM JH, HWANG BK. Xanthomonas filamentous hemagglutinin-like protein Fha1 interacts with pepper hypersensitive-induced reaction protein CaHIR1 and functions as a virulence factor in host plants. Molecular Plant-Microbe Interactions: MPMI, 2013, 26(12): 1441-1454. DOI:10.1094/MPMI-07-13-0204-R [44] GOTTIG N, GARAVAGLIA BS, GAROFALO CG, ORELLANO EG, OTTADO J. A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for Citrus canker, is involved in bacterial virulence. PLoS One, 2009, 4(2): e4358. DOI:10.1371/journal.pone.0004358 [45] GARAVAGLIA BS, ZIMARO T, ABRIATA LA, OTTADO J, GOTTIG N. XacFhaB adhesin, an important Xanthomonas citri ssp. citri virulence factor, is recognized as a pathogen-associated molecular pattern. Molecular Plant Pathology, 2016, 17(9): 1344-1353. DOI:10.1111/mpp.12364 [46] BAYER-SANTOS E, LIMA LDP, CESETI LM, RATAGAMI CY, de SANTANA ES, Da SILVA AM, FARAH CS, ALVAREZ-MARTINEZ CE. Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF σ factor and cognate Ser/Thr kinase. Environmental Microbiology, 2018, 20(4): 1562-1575. DOI:10.1111/1462-2920.14085 [47] GUO YP, SAGARAM US, KIM JS, WANG N. Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in Planta of Xanthomonas citri subsp. citri. Applied and Environmental Microbiology, 2010, 76(7): 2234-2242. DOI:10.1128/AEM.02897-09 [48] SENA-VÉLEZ M, GRAHAM JH, GIRÓN JA, REDONDO C, CUBERO J. Characterization of the extracellular matrix of biofilms formed by Xanthomonas citri subsp. citri strains with different host ranges. Tropical Plant Pathology, 2020, 45(3): 306-319. DOI:10.1007/s40858-020-00339-8 [49] GOLMOHAMMADI M, LLOP P, SCUDERI G, GELL I, GRAHAM JH, CUBERO J. mRNA from selected genes is useful for specific detection and quantification of viable Xanthomonas citri subsp. citri. Plant Pathology, 2012, 61(3): 479-488. DOI:10.1111/j.1365-3059.2011.02526.x [50] CAICEDO JC, VILLAMIZAR S, FERRO MIT, KUPPER KC, FERRO JA. Bacteria from the citrus phylloplane can disrupt cell-cell signalling inXanthomonas citriand reduce Citrus canker disease severity. Plant Pathology, 2016, 65(5): 782-791. DOI:10.1111/ppa.12466 [51] MARTINS PMM, WOOD TK, de SOUZA AA. Persister cells form in the plant pathogen Xanthomonas citri subsp. citri under different stress conditions. Microorganisms, 2021, 9(2): 384. DOI:10.3390/microorganisms9020384 [52] RAJAGOPAL L, SUNDARI CS, BALASUBRAMANIAN D, SONTI RV. The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Letters, 1997, 415(2): 125-128. DOI:10.1016/S0014-5793(97)01109-5 [53] SENA-VÉLEZ M, FERRAGUD E, REDONDO C, GRAHAM JH, CUBERO J. Chemotactic responses of Xanthomonas with different host ranges. Microorganisms, 2022, 11(1): 43. DOI:10.3390/microorganisms11010043 [54] ANDRADE MO, Da SILVA JC, SOPRANO AS, SHIMO HM, LEME AFP, BENEDETTI CE. Suppression of Citrus canker disease mediated by flagellin perception. Molecular Plant Pathology, 2023, 24(4): 331-345. DOI:10.1111/mpp.13300 [55] RABBEE MF, ISLAM N, BAEK KH. Biocontrol of citrus bacterial canker caused by Xanthomonas citri subsp. citri by Bacillus velezensis. Saudi Journal of Biological Sciences, 2022, 29(4): 2363-2371. DOI:10.1016/j.sjbs.2021.12.005 [56] VILLAMIZAR S, FERRO JA, CAICEDO JC, ALVES LC. Bactericidal effect of entomopathogenic bacterium Pseudomonas entomophila against Xanthomonas citri reduces Citrus canker disease severity. Frontiers in Microbiology, 2020, 11: 1431. DOI:10.3389/fmicb.2020.01431 [57] MICHAVILA G, ADLER C, de GREGORIO PR, LAMI MJ, CARAM di SANTO MC, ZENOFF AM, de CRISTOBAL RE, VINCENT PA. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for Citrus canker biocontrol agent. Plant Biology (Stuttgart, Germany), 2017, 19(4): 608-617. DOI:10.1111/plb.12556 [58] DONG YL, TANG QJ, YI TY, XIAO QM. Screening and identification of antagonistic bacteria against Citrus aanker from soil and determination of its control efficacy. Hunan Agricultural Sciences, 2012(9): 77-80. (in Chinese)
董玉兰, 唐前君, 易图永, 肖启明. 柑橘溃疡病土壤拮抗菌的筛选、鉴定及防效测定. 湖南农业科学, 2012(9): 77-80. DOI:10.3969/j.issn.1006-060X.2012.09.025 [59] VIEIRA G, PURIĆ J, MORÃO LG, dos SANTOS JA, INFORSATO FJ, SETTE LD, FERREIRA H, SASS DC. Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri. Letters in Applied Microbiology, 2018, 67(1): 64-71. DOI:10.1111/lam.12890 [60] VIEIRA G, KHALIL ZG, CAPON RJ, SETTE LD, FERREIRA H, SASS DC. Isolation and agricultural potential of penicillic acid against Citrus canker. Journal of Applied Microbiology, 2022, 132(4): 3081-3088. DOI:10.1111/jam.15413 [61] XIE MM, ZHANG YC, LIU LP, ZOU YN, WU QS, KUČA K. Mycorrhiza regulates signal substance levels and pathogen defense gene expression to resist Citrus canker. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(4): 1161-1167. DOI:10.15835/nbha47411561 [62] YAN ZL, CHEN JP, NONG XX, LI X, LUO HY, WEI LL, RUAN JH, GUAN XY, LU S. Isolation and identification of endophytic fungi from citrus cultivars and their inhibitory activity against Xanthomonas citri subsp. citri causing Citrus canker. Guihaia, 2021, 41(7): 1196-1208. (in Chinese)
颜桢灵, 陈洁萍, 农小霞, 李鑫, 骆海玉, 韦柳柳, 阮家欢, 关祥媛, 陆莎. 柑橘内生真菌的分离鉴定及其发酵产物对柑橘溃疡病菌的抑制活性. 广西植物, 2021, 41(7): 1196-1208. [63] ALI AHMAD A, ASKORA A, KAWASAKI T, FUJIE M, YAMADA T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of Citrus canker disease. Frontiers in Microbiology, 2014, 5: 321. [64] AHMAD AA, OGAWA M, KAWASAKI T, FUJIE M, YAMADA T. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri. Applied and Environmental Microbiology, 2014, 80(1): 77-85. DOI:10.1128/AEM.02310-13 [65] YOSHIKAWA G, ASKORA A, BLANC-MATHIEU R, KAWASAKI T, LI YZ, NAKANO M, OGATA H, YAMADA T. Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes. Scientific Reports, 2018, 8: 4486. DOI:10.1038/s41598-018-22239-3 [66] BALOGH B, CANTEROS BI, STALL RE, JONES JB. Control of Citrus canker and Citrus bacterial spot with bacteriophages. Plant Disease, 2008, 92(7): 1048-1052. DOI:10.1094/PDIS-92-7-1048 [67] IBRAHIM YE, SALEH AA, AL-SALEH MA. Management of Asiatic Citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Disease, 2017, 101(5): 761-765. DOI:10.1094/PDIS-08-16-1213-RE [68] XIAO X, DING L, CONG Y, XU XL, QIAO H, HE SL, XU WJ, XU TS. Isolation and identification of a lytic bacteriophage infecting Xanthomonas axonopodis pv. citri. Acta Horticulturae Sinica, 2021, 48(12): 2349-2359. (in Chinese)
肖逍, 丁良, 丛郁, 徐旭凌, 乔欢, 何四龙, 许文建, 徐天舜. 柑橘溃疡病菌噬菌体的分离鉴定. 园艺学报, 2021, 48(12): 2349-2359. DOI:10.16420/j.issn.0513-353x.2020-0866 [69] WATTANA-AMORN P, CHAROENWONGSA W, WILLIAMS C, CRUMP MP, APICHAISATAIENCHOTE B. Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Natural Product Research, 2016, 30(17): 1980-1983. DOI:10.1080/14786419.2015.1095747 [70] HABIBOLLAHI F, HOSSEINIPOUR A, LOHRASBI-NEJAD A. Antibacterial activity of theCAP18peptide against Xanthomonas citris sp. citri, the causative agent of Citrus canker, as evaluated by in vitro and in silico studies. Annals of Applied Biology, 2022, 181(1): 93-106. DOI:10.1111/aab.12762 [71] WANG X, LIANG LQ, SHAO H, YE XX, YANG XB, CHEN XY, SHI Y, ZHANG LH, XU LH, WANG JX. Isolation of the novel strain Bacillus amyloliquefaciens F9 and identification of lipopeptide extract components responsible for activity against Xanthomonas citri subsp. citri. Plants (Basel, Switzerland), 2022, 11(3): 457. [72] CHEN L, WANG ZK, HUANG GJ, CAO YQ, XIA YX, YIN Y. Evaluation of Bacillus subtilis strain CQBS03 against Xanthomonas axonopodis pv. citri. Scientia Agricultura Sinica, 2008, 41(8): 2537-2545. (in Chinese)
陈力, 王中康, 黄冠军, 曹月青, 夏玉先, 殷幼平. 柑橘溃疡病生防菌株CQBS03的鉴定及其培养特性研究. 中国农业科学, 2008, 41(8): 2537-2545. DOI:10.3864/j.issn.0578-1752.2008.08.046 [73] YANG RH, SHI Q, HUANG TT, YAN YC, LI SZ, FANG Y, LI Y, LIU LL, LIU LY, WANG XZ, PENG YZ, FAN JB, ZOU LF, LIN SJ, CHEN GY. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens. Nature Communications, 2023, 14: 734. DOI:10.1038/s41467-023-36433-z [74] RAMOS YG, DUIN IM, DA SILVA MRL, J NIOR RPL. Bioactive copper and Bacillus subtilis for the control and resistance induction against Citrus canker in sweet orange [Citrus sinensis (L.) Osbeck] orchard establishment. Scientia Horticulturae, 2022, 303: 111238. DOI:10.1016/j.scienta.2022.111238 [75] LAI JH, SONG SL, LIU B. Effects of three endophytic bacteria with the characteristic of controlling Citrus canker on the activity of several defensive enzymes in navel orange. Acta Agriculturae Zhejiangensis, 2020, 32(11): 1994-2000. (in Chinese)
赖家豪, 宋水林, 刘冰. 三株柑橘溃疡病生防内生细菌对脐橙感染溃疡病后几种防御酶活性的影响. 浙江农业学报, 2020, 32(11): 1994-2000. DOI:10.3969/j.issn.1004-1524.2020.11.09 [76] RIERA N, WANG H, LI Y, LI JY, PELZ-STELINSKI K, WANG N. Induced systemic resistance against Citrus canker disease by rhizobacteria. Phytopathology, 2018, 108(9): 1038-1045. DOI:10.1094/PHYTO-07-17-0244-R [77] GE J, LI D, DING J, XIAO X, LIANG Y. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: a review. Environmental Research, 2023, 222: 115298. DOI:10.1016/j.envres.2023.115298 [78] MACHADO D, MAISTRENKO OM, ANDREJEV S, KIM Y, BORK P, PATIL KR, PATIL KR. Polarization of microbial communities between competitive and cooperative metabolism. Nature Ecology & Evolution, 2021, 5(2): 195-203. [79] FREY-KLETT P, BURLINSON P, DEVEAU A, BARRET M, TARKKA M, SARNIGUET A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews: MMBR, 2011, 75(4): 583-609. DOI:10.1128/MMBR.00020-11 [80] RAAIJMAKERS JM, MAZZOLA M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 2012, 50: 403-424. DOI:10.1146/annurev-phyto-081211-172908 [81] BLASEY N, REHRMANN D, RIEBISCH AK, MÜHLEN S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type Ⅲ and Type Ⅳ secretion systems. Frontiers in Cellular and Infection Microbiology, 2023, 12: 1065561. DOI:10.3389/fcimb.2022.1065561 [82] FENG YM, LONG ZQ, XIANG HM, RAN JN, ZHOU X, YANG S. Research on diffusible signal factor-mediated quorum sensing in Xanthomonas: a mini-review. Molecules, 2023, 28(2): 876. DOI:10.3390/molecules28020876 [83] YE T, ZHOU T, LI QT, XU XD, FAN XH, ZHANG LH, CHEN SH. Cupriavidus sp. HN-2, a novel quorum quenching bacterial isolate, is a potent biocontrol agent against Xanthomonas campestris pv. campestris. Microorganisms, 2019, 8(1): 45. DOI:10.3390/microorganisms8010045 [84] TRAN TM, MA ZM, TRIEBL A, NATH S, CHENG YY, GONG BQ, HAN X, WANG JQ, LI JF, WENK MR, TORTA F, MAYOR S, YANG L, MIAO YS. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. bioRxiv, 2020, 3(10): e202000720. [85] YE T, ZHOU T, FAN XH, BHATT P, ZHANG LH, CHEN SH. Acinetobacter lactucae strain QL-1, a novel quorum quenching candidate against bacterial pathogen Xanthomonas campestris pv. campestris. Frontiers in Microbiology, 2019, 10: 2867. DOI:10.3389/fmicb.2019.02867 [86] FENG GD, LI JL, PAN MK, DENG XQ, CHEN M, YAO Q, ZHU HH. Sphingomonas folii sp. nov., Sphingomonas citri sp. nov. and Sphingomonas citricola sp. nov., isolated from citrus phyllosphere. International Journal of Systematic and Evolutionary Microbiology, 2022. DOI:10.1099/ijsem.0.005492 [87] GAO H, FENG GD, FENG ZW, YAO Q, LI JL, DENG XQ, LI XR, ZHU HH. Pseudomonas citri sp. nov, a potential novel plant growth promoting bacterium isolated from rhizosphere soil of citrus. Antonie Van Leeuwenhoek, 2023, 116(3): 281-289. DOI:10.1007/s10482-022-01803-y [88] PAN MK, FENG GD, YAO Q, LI JL, LIU CJ, ZHU HH. Erwinia phyllosphaerae sp. nov., a novel bacterium isolated from phyllosphere of pomelo (Citrus maxima). International Journal of Systematic and Evolutionary Microbiology, 2022, 72(4): 005316.
相关知识
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Application of Rhizospheric Biocontrol Consortia and the Potential M echanisms of Their Enhancing Efficacy on Disease
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
Advances in biofertilizer research and development in China
Spatial pattern of soil microbial biomass carbon and its driver in temperate grasslands of Inner Mongolia
The role of jasmonic acid in stress resistance of plants: a review
Prospect of microbial fertilizer in saline soil
Research Progress of Vegetative Vivipary in Plants
Research Progress of Terrestrial Plants N/P Ecological Stoichiometry under Global Change
白及的化学成分、药理作用及其应用的研究进展 Research Progress on Chemical Composition, Pharmacological Action and Application of Bletilla striata
网址: Research progress on citrus canker disease and its microbial control https://m.huajiangbk.com/newsview117214.html