首页 > 分享 > 种子活力与萌发的生理与分子机制研究进展

种子活力与萌发的生理与分子机制研究进展

0 引言

种子活力主要由胚的生长潜力决定,种子萌发的关键在于储藏mRNA的质量,另外,蛋白质的稳定性和DNA的完整性影响萌发的表型[1]。随着组学(-omics)技术的发展,近几年国外在种子活力与萌发方面取得了一些新的进展,2008年,Catusse等[2]采用蛋白质组学的方法分析了甜菜种子活力的蛋白质组差异及组织表达特异性,2010年,Beuchat等[3]从发育生物学角度报道了BRX等位基因调控拟南芥根活力的自然变异。2013年,Châtelain等[4]研究表明甲硫氨酸亚砜还原酶(MSRs)参与拟南芥种子氧化修复进而延长种子寿命。自2010年以来,国外以“干燥-种子成熟脱水与萌发的桥梁”[5]、“种子活力与萌发”[1]、“种子休眠的分子机制”[6]、“种子活力的分子通路”[7]、“活性氧与种子萌发”[8]、“种子质量的标记”[9]为题的综述性论文先后报道,比较全面地阐述了种子活力的生理与分子机制。基于激素分子ABA和GAs对种子萌发的重要性及信号分子ROS在种子萌发和老化中的“两面性”,关于种子萌发时激素的交互作用(crosstalk) [10],激素与ROS交叉调控的分子网络 [11]在最近的两篇综述中被报道。

2011年,李云海课题组发现DA1参与调节细胞分裂从而控制种子大小[12],DA1同源蛋白DAR2通过影响根尖生长素的局部分布调控拟南芥根分生组织大小[13],而种子局部细胞的伸长生长及细胞分裂对于种子萌发胚根突出是非常重要的。2012年,麻浩和宋松泉课题组报道了耐盐性和盐敏感性大豆品种苗期叶片[14],成熟期高温高湿逆境条件和正常条件下收获的大豆种子[15],不同脱水耐性处理豌豆幼苗胚轴的比较蛋白组学报道[16],预测出一些参与调控种子萌发和幼苗发育的蛋白。2007年孙群等[17]和2013年舒英杰等[18]对种子活力的生理机理、遗传机理、测定方法等进行了综述。2014年,徐恒恒等[19]对种子萌发与激素调控进行了综述,并在文中提出了种子萌发的能量刺激假说。但是,基于种子活力且包含了近5年国内外最新研究进展的综述性文章却十分少见,本文将以“组学”的视野对种子活力形成与丧失,种子成熟脱水与萌发吸水,种子萌发 GA3和ABA的拮抗效应,种子引发与活力,种子萌发ROS的“两面性”,种子萌发的代谢核心甲硫氨酸代谢等内容进行比较全面的阐述,并对该领域今后的研究热点和方向进行展望。

1 种子活力的形成、保持与丧失

种子活力形成于种子发育的脱水阶段,与传统理解的“脱水”不同,近来“组学”证据表明种子脱水不仅仅是一个简单的水分散失过程,更重要的是它还涉及到基因表达和物质代谢。在拟南芥种子中发现,储藏物积累与脱水时期在转录水平上同时上调或者下调表达的基因占21%,上调和下调表达相反的基因占5%,更多比例的基因是在储藏物积累时期稳定表达,而在种子脱水时期上调或者下调表达,共占74%[5]。这说明在种子脱水时期基因表达和代谢不但没有减弱,而且可能还在加强。种子脱水在分子生物学层面更像是一个“开关”,是种子发育的终点,同时也是种子萌发的起点[5],脱水阶段已经在为种子萌发做储备。

种子活力的保持与储藏期间的代谢有关,当自由水含量降低后种子进入休眠或静止状态,有利于活力保持和寿命延长。研究表明在种子脱水过程中伴随着大量的生理生化反应,概括来讲主要包括:二糖和寡糖的积累[20-21],储藏蛋白 [22]、胚胎发育晚期丰度(LEA)蛋白[23-24]和热休克蛋白(HSP)[25]的合成,抗氧化系统的激活[21, 26-27],细胞膜结构的改变[28-29]。随着脱水,种子获得了活力保持的生理和分子基础[5]:种子密度逐渐增大;种子从成熟向静止过渡;种子萌发潜力不断获得和增强;能量代谢,自由基代谢和耗O2量逐渐降低;种子进入一种“理想”的活力保持状态——休眠或静止。

目前,关于种子活力丧失(seed vigor loss)的机制尚不完全清楚,自由基和膜脂过氧化被认为是主要原因,在大量自由基存在而且活跃的情况下,种子膜完整性被破坏,DNA降解,RNA和蛋白合成受损,能量代谢下降[26],种子活力下降。而种子自由基活跃程度受自由水含量的影响,当自由水含量升高时,在高温环境下种子倾向于“劣变式”的活力下降;当自由水在临界点以下或者含量很低时,种子倾向于“生活式”的活力下降。在自然界二者均可能发生,而在种子储藏时,“生活式”活力下降较为普遍。种子“生活式”的活力下降过程可能如下[30]:(1)短期内种子继续脱水完成后熟。(2)自由水散失,种子进入休眠或静止状态。(3)ROS积累,与ROS清除系统相互竞争,保持一种长期的动态平衡。(4)平衡状态被打破,ROS大量积累,种子膜通透性增大,DNA和RNA完整性降低,蛋白质变性。(5)胚根生长潜力下降,幼苗表型变弱。(6)种子批发芽势和发芽率下降。

2 种子活力与萌发

2.1 种子活力与萌发及出苗的关系

种子活力的鉴定方法多种多样,但绝大多数是通过萌发来表现的。种子萌发是指种子吸水膨胀,胚重新恢复生长,胚根突破胚乳和种皮后完成萌发[31]。种子萌发的活力主要由胚的生长潜力决定[1]。而出苗一般指子叶展开,或者子叶退化真叶破土,与胚根突出相比,子叶展开具有滞后性,“出苗”(seedling emergence)之所以被农民广泛关注,是因为在土壤中种子萌发是一个不可观察的事件,而出苗肉眼可见,实则胚根突破胚乳是最为关键的一个环节。与光照条件下的萌发相比,在土壤中萌发的种子的根更短、下胚轴更长,而最明显的区别是黑暗条件下萌发的种苗将形成了一个特有的组织结构顶钩(apical hook),它的一个重要作用就是在种苗顶土时保护顶端分生组织[10]。

2.2 种子萌发与激素调控

激素(hormone)作为一种信号小分子物质,浓度极小甚至趋近于0时仍具有非常重要的作用[31]。在种子萌发时存在一对关键的激素分子,即:ABA和GAs,ABA促进休眠,GAs促进萌发,二者存在拮抗效应,且彼此抑制对方的代谢和信号基因[10]。近来研究表明ABA几乎参与调控了种子发育和萌发的全部过程,GA的作用并不像ABA那样广泛,GA主要在萌发起始和胚根突出时发生作用[1]。

GA和ABA调控种子萌发可能是源于靶标基因——α-淀粉酶基因,它们均可调控α-淀粉酶基因的转录,GAs是通过DELLA依赖的一种方式调控Myb-like型转录因子结合到α-amylase启动子的GA应答元件上激活它们的表达[32-33]。相反,ABA下调α-amylase的表达是通过诱导Ser/Thr激酶PKABA1,PKABA1抑制GAMyb的转录[34]。近来研究表明ABA/GAs的阈值范围调控种子的休眠和萌发[35-37],且ABA和GA彼此抑制对方的合成与分解代谢基因。在GA缺陷突变体ga1中,ABA合成和分解基因分别上调和下调,导致ABA的含量增加[38]。在ABA丰富合成突变体cyp707a2中,GA合成基因(GA3ox1和GA3ox2)部分被抑制,相反,在ABA缺陷突变体aba2中,它们的表达是增强的[39]。但是,在GA信号通路下游抑制ABA代谢的分子组件(molecular components)至今未知,XERICO是一个候选蛋白。另外,光、ABA和GA3在调控种子萌发存在交叉作用,作为光和激素互作的分子开关,光敏色素互作蛋白PIF5连接光信号途径和激素信号途径,但PIL5的下游直接调控GA和ABA代谢的下游元件仍然未知,SOMNUS是一个候选蛋白(

图1

)[10]。

图1 种子萌发时的ABA和GA信号途径[10]

Fig. 1 ABA and GA signaling pathways of seed germination [10]

Full size|PPT slide

除ABA和GA外,其他的一些激素或信号分子,如:乙烯、油菜素内酯、细胞分裂素、生长素、茉莉酸、水杨酸、氧化脂类等在种子萌发时的作用也均有相关文献报道[31, 40-47]。与ABA和GA类似,这些激素的作用往往是交互的,如:最新的一项研究表明生长素通过其响应蛋白ARF10/16调控ABA信号通路中ABI3转录因子的稳定性来调控拟南芥种子休眠与萌发[48]。而这种交互的分子调控网络在种子萌发时导致激素间往往存在协同与拮抗效应。如:GA、ETH、BR促进种子萌发,而ABA抑制种子萌发,GA、ETH、BR均可以拮抗ABA的效应[31]。

2.3 种子萌发的主要生理生化事件

2.3.1 种子吸水 种子萌发时,各组织吸水在物种上存在差异。烟草种子珠孔端的胚乳和胚根吸水能力最强,水分从珠孔进入种子内部,主要贮存在胚根和珠孔端的胚乳中,在萌发过程中供给胚的发育[31]。而发育的云杉种子中水分集中在胚根极点[49],松树种子萌发时水分直接穿透种皮和雌配子体供给胚发育[50],种子萌发时各组织吸水顺序在物种上也存在差异。烟草种子胚根是最早的吸水组织,而在黄松种子中,子叶最开始吸水,其次为胚轴,最后才是胚根[50]。在烟草种子吸胀时发现,当种子吸胀受阻时细胞内将出现许多小囊泡(

图2

),大量的自由水集中储存在小囊泡或液泡中。另外除液泡外,局部细胞的细胞壁也具有蓄水特性,在烟草、番茄、生菜、豆类和其他一些植物种子胚乳细胞的细胞壁中发现了大量的甘露聚糖[31, 51],这些甘露聚糖以碳水化合物的形式存在,在种子萌发过程中呈黏液状态,有助于水分的储存,从而降低种子对水匮乏的敏感性[31]。以上结果说明液泡和胚乳细胞壁的作用可能是蓄水,而种皮细胞壁主要是运输水。

图2 吸胀与吸胀受阻时烟草种子液泡的特征

Fig. 2 Characteristics of the vacuole of imbibed and imbibition blocked seeds

a:IAA(1 000 mg·L-1)处理24 h种子亚细胞结构示意图。液泡未完全展开,细胞内有许多小囊泡,抑制种子萌发。b:GA3(100 mg·L-1)处理24 h种子亚细胞结构示意图。液泡展开,种子萌发。c:H2O处理24 h种子亚细胞结构示意图。液泡展开,种子萌发。(李振华,未发表数据) Seed germination abnormally, vacuole not fully expanded, and many follicles bubble were found in cells of seeds treated with IAA (1 000 mg·L-1) (a). Seed germination normally and vacuole completely expanded treated with GA3 (100 mg·L-1) (b) and H2O(c). (Zhen-hua li, unpublished data)

Full size|PPT slide

2.3.2 胚生长 胚是种子萌发的“发动机”,与子叶相比,胚根的突出与种子萌发关系更密切,种子萌发是以胚根长度与种子长度的比值作为判断依据[52],最近发现生长素精细调控胚根的突出,生长素受体Tir1Afb1Afb2Afb3四突变体的种子胚根突出完全受到抑制,而部分种子子叶展开较为正常[48]。前期也发现1 g·L-1吲哚乙酸浸种烟草种子24 h后,胚根生长几乎被完全抑制而子叶展开虽然被延迟但表型还是较为正常的(李振华,数据未发表)。因此猜测IAA精细调控胚根突出从而决定种子萌发。关于生长素参与种子萌发的报道甚少,这可能源于前期的研究热点是在休眠释放和种子萌发起始阶段。但是在根发育方面,生长素的作用被广泛报道,生长素在胚根原细胞特化过程中起着非常重要的作用[53],生长素与细胞分裂素决定胚根极的形成,生长素与细胞分裂素决定根顶端分生组织的形成[10],生长素通过调节赤霉素应答反应促进拟南芥根的伸长[54]。以上研究表明生长素参与了几乎所有的与根生长发育的调控,它可能也是种子萌发时调控胚根突出的关键激素。

2.3.3 大分子物质修复 在种子中已报道的DNA修复方式包括连接修复和氧化损伤修复[7]。在拟南芥种子中研究表明DNA连接酶Ⅵ失活会导致种子萌发延迟,同时lig6突变体种子表现出对老化的超敏反应,这说明LIG6是决定种子质量和寿命的关键蛋白[1, 55]。烟酰胺是参与DNA修复的多聚腺苷二磷酸-核糖聚合酶(PARPs)的抑制剂,在种子萌发前必须降解。近来,通过对烟酰胺的研究间接证明DNA修复是种子萌发所必需的,在成熟的拟南芥中编码烟酰胺酶的基因NIC2表达水平较高,而敲除突变体nic2-1种子烟酰胺酶活性将显著降低,结果导致萌发延迟。说明烟酰胺被NIC2代谢时, 减轻了对PARP活性的抑制,从而允许DNA修复发生[56]。在苜蓿种子萌发早期发现氧化损伤修复酶甲酰嘧啶-DNA-糖基化酶和8-氧化鸟嘌呤DNA糖基化酶/裂解酶基因表达会显著上调[1, 57]。

与DNA修复相似,蛋白质修复也是对已损伤的蛋白质结构进行溯原。近来,在拟南芥中发现当蛋白质L-异天冬氨酸-甲基转移酶Ⅰ(Protein L-isoaspartyl- methyltransferase,PIMT1)过度积累(over accumulation)时,异天冬氨酸(isoAsp)的含量减少,种子寿命延长,萌发活力提高,相反PIMT1的累积减少时,种子寿命缩短,萌发能力下降[58]。在拟南芥T-DNA插入突变体新采收的成熟干种子中,PIMT1积累显著增加,在非生物逆境下种子萌发效率显著提高[58]。说明在种子成熟脱水阶段PIMT1已经参与细胞修复,将isoAsp转化为正常的L-天冬氨酸,从而避免过量的isoAsp的积累而影响种子萌发。另外,PIMT1可能也参与调控ROS和HSPs代谢,避免大量自由基存在,从而导致种子活力降低。

3 引发与种子活力和萌发

引发即允许种子完成吸水阶段Ⅰ和进入吸水阶段Ⅱ,在延长的阶段Ⅱ内,对受伤害的大分子和膜结构进行萌发前的修复[59],经引发-回干(primed-redried)的种子活力提高,可以迅速整齐地萌发。目前,据文献报道引发方式有水引发,渗透引发,营养物质引发,激素引发,氧化还原引发,化学引发,杀菌剂引发,固体基质引发等[60]。概况其功能如下:(1)几乎所有的引发都利于休眠的打破。(2)作为一种外源信号物质参与调控种子萌发的生物学信号,如:外源ABA促进休眠而GA3促进萌发。(3)在种子萌发前建立抗逆性的生物学“基础”。如:NaCl引发抗盐害,H2O2引发抗氧化损伤,CuSO4引发抗病害。(4)在引发溶液中建立合理的渗透势,降低种子吸胀损伤,如:PEGs。引发的关键在于实现种子“萌而未发”,在胚根突出前及时回干(

图3

)。近来,通过比较蛋白组学的方法对引发和老化后再引发处理的种子进行研究,结果表明,种子活力与甲硫氨酸代谢,贮藏物动员,翻译起始,ABA信号通路元件和甲基循环相关[61]。种子引发时储藏蛋白和mRNAs开始执行其功能[62-63],并将这种分子机制“牢记”。

图3 引发处理对烟草种子活力和萌发的影响

Fig. 3 Seed vigor and germination by priming treatment

a:与水引发相比,聚乙二醇引发的烟草种子吸水速度减缓、吸胀后种子含水量降低。在种子吸胀后与胚根突出前,存在一个引发的“回干窗口”,“回干”后短期储藏种子将“记忆”引发事件。b:与对照相比, H2O和GA3引发的种子萌发的速度和整齐性均显著提高 a: Compared with water primed, seeds imbibe more slowly and water content lower with PEG. There is a “Redried window" between seed imbibition and radicle breakout,and the "Redried seeds " would "memory" the primed events in a short term stored. b: Compared with unprimed seeds, seeds primed with H2O and GA3 germinated more quickly and uniformly

Full size|PPT slide

4 ROS与种子萌发

干种子中ROS不活跃,种子吸胀后线粒体,质膜上的过氧化物酶和烟酰胺腺嘌呤二核苷磷酸氧化酶(NADPH oxidases)产生ROS。作为信号分子,ROS参与调控种子休眠释放,胚乳的松弛和贮藏物的动员, ROS过量积累又会转变为毒害分子抑制萌发,但是抗氧化系统将被激活来清除ROS [64]。在种子萌发和幼苗形态建成时,ROS与ABA和GA存在交互作用[65-66],一些学者认为ROS可能抑制ABA由子叶向胚中的运输从而促进萌发[67]。另有学者认为种子萌发时ROS与GA的交互作用比与ABA更关键,ROS可以激发GA的信号和(或)合成,改变ABA/GA的阈值从而促进种子萌发[68]。除ABA和GA外,ROS与其他激素,如:细胞分裂素(CKs)、水杨酸(SA)、茉莉酸(JA)、乙烯等的交互作用也均有相关报道[11, 69]。

近来,蛋白质组学的方法研究表明H2O2处理豌豆种子,幼苗中多种与发育相关的多肽表达上调。如:14-3-3 蛋白、翻译调节肿瘤蛋白(TCTP), 前纤维蛋白(Profilin)、20S蛋白酶体5型亚基(a-type 5 subunit of 20S proteasome)等。其中,14-3-3 蛋白是一类与质膜H+-ATP酶互作的蛋白,其功能是调控种子萌发吸水和贮藏物动员 [70]。TCTP是一个在物种间高度保守的生长发育蛋白,其功能是调节细胞骨架动态变化和细胞生长与增殖 [71]。Profilin是一个肌动蛋白结合蛋白,其功能是调控细胞伸长,细胞形态维持和细胞结构稳定[72-73]。type 5 subunit of 20S proteasome是一类蛋白水解酶复合体,它的功能是在种子萌发时动员和(或)降解种子成熟脱水阶段积累的某些蛋白[46]。

ROS还通过翻译后修饰来调控种子萌发。在拟南芥种子吸胀时积累了几种特定类型的羟基化蛋白质[74],如:特定的代谢酶,翻译因子,分子伴侣。以往认为蛋白羟基化与老化相关,但在种子中蛋白羟基化的作用还不甚清楚。在拟南芥种子中虽然有大量的羟基化蛋白存在,但种子活力仍然很高,推测种子中特定蛋白质的羟基化可能是消耗萌发阶段产生的ROS[75]。此外,幼苗建成期间(seedling establishment)蛋白质的羟基化,其功能可能是改变储藏蛋白的结构,降低其稳定性,增加其水解性,实现种子储藏蛋白的动员和新蛋白的合成。另外,糖酵解酶也是羟基化对象之一,研究表明当糖酵解(EMP)途径受阻时、戊糖磷酸途径(PPP)就会被激活[76],PPP可以为种子萌发和幼苗生长硫氧化蛋白(TRX)系统提供还原力(NADPH)[77]。

5 种子活力与萌发的管家代谢—甲硫氨酸代谢

5.1 甲硫氨酸合成途径

Met代谢是所有生物的管家代谢,与高等动物只能从食物中获取Met不同,植物可以利用无机硫酸盐合成Met [78]。在植物中,Met有两条合成途径(

图4

):1)从头合成途径:首先O-磷酸高丝氨酸(OPH)在胱硫醚γ-合酶的催化下反应生成胱硫醚(Cyst);其次Cyst在胱硫醚β-裂解酶催化的反应中生成同型半胱氨酸(Hcy);最后Hcy在钴胺素作为辅酶的N5-甲基四氢叶酸转甲基酶的催化下反应生成Met [79-80]。2)Met再循环途径:首先经 AdoMet﹕Met S-甲基转移酶催化,甲基由AdoMet转移给Met,合成S-甲基甲硫氨酸(SMM)。然后经 SMM﹕Hcy甲基转移酶催化,SMM将甲基转移给Hcy后恢复为Met。

5.2 甲硫氨酸代谢酶

在水稻[81-82]、豌豆[14]、拟南芥[83-85]种子萌发过程中甲硫氨酸合酶或S-腺苷甲硫氨酸合成酶积累增加。在拟南芥种子中还发现甲硫氨酸合酶的积累发生在胚根突出前;而胚根突出时甲硫氨酸合酶没有进一步积累 [83-85],因此,猜测Met参与调控种子萌发胚根的突出。通过外源化学物质抑制试验进一步证实Met代谢酶在种子萌发过程中的重要性,DL-炔丙基甘氨酸是甲硫氨酸合酶的特异性抑制剂,它可以有效的延迟拟南芥种子萌发并抑制幼苗生长,而在延迟萌发的种子中再外源添加Met,这种抑制作用可以被部分恢复[84]。9-(S)-(2, 3-二羟基)-腺嘌呤是一种S-腺苷高半胱氨酸水解酶抑制剂,它显著延迟了烟草种子萌发和幼苗生长[86]。叶酸类似物氨甲蝶呤和氨喋呤可以有效抑制拟南芥种子萌发[87]。叶酸的功能包括参与DNA和RNA组成单位酸胸腺嘧啶和嘌呤的合成,在甘氨酸与丝氨酸、同型半胱氨酸与甲硫氨酸互相转化过程中充当一碳单位的载体(

图4

)。在拟南芥中,抑制氨基端甲硫氨酸的切除将显著的影响拟南芥幼苗建成,然而靶向切除甲硫氨酸后将促进种子萌发和幼苗建成[88]。

5.3 活性的Met——S-腺苷甲硫氨酸参与甲基化反应

AdoMet是活性的Met,是一种参与甲基、硫、丙氨基转移反应的辅酶,存在于所有的真核细胞中。作为甲基供体,在植物细胞中AdoMet参与了多个甲基化反应,而每种反应都是由特异性的S-腺苷甲硫氨酸依赖的甲基转移酶催化完成的。其中,蛋白质L-异天冬氨酸-甲基转移酶和DNA甲基转移酶作用于染色质结构,而目前已经证实DNA甲基化修饰[89-90]和染色体重塑[91]与种子萌发有关。镁-原卟啉 IX O-甲基转移酶可以与ABA受体镁螯合酶亚基H[92]形成一个紧密复合物[93],催化叶绿素生物合成途径中前期几个连续性的步骤,而它们中任何的基因发生突变都会影响种子萌发与幼苗建成[93-94]。SABATH甲基转移酶可以对植物激素,如:JA、SA、IAA和GA等进行N位或O位的甲基化,生成的甲酯类代谢物活性很低 [95-98],因此猜测SABATH可以通过甲基化修饰调节种子体内激素的活性水平来调控种子萌发。异戊二烯化蛋白羧基端半胱氨酸的甲基化是真核细胞中一种重要的翻译后修饰,可促进蛋白-膜和蛋白-蛋白相互作用,过表达异戊烯半胱氨酸甲基转移酶(isoprenylcysteine methyltransferase)和异戊烯半胱氨酸甲基酯酶(isoprenylcysteine methylesterase)拟南芥植株,种子在萌发时对ABA的敏感性发生显著变化,说明它们可能参与ABA信号的调节 [99]。作为丙氨基供体,S-腺苷基甲硫氨酸参与多胺的生物合成,而在种子萌发中关于多胺的作用已经被广泛的报道。

图4 种子萌发的管家代谢——甲硫氨酸代谢[9]

Fig. 4 Met metabolism is central to seed germination[9]

a:种子萌发甲硫氨酸代谢调控网络:(1)胱硫醚γ-合成酶,(2)胱硫醚γ-裂解酶。(3)甲硫氨酸合成酶,(4)S-腺苷甲硫氨酸合成酶,(5)S-腺苷甲硫氨酸依赖的甲基转移酶,(6)S-腺苷高半胱氨酸水解酶,(7)S-腺苷甲硫氨酸:甲硫氨酸S-甲基转移酶,(8)S-甲基甲硫氨酸:同型半胱氨酸 S-甲基转移酶,(9)苏氨酸合成酶,(10)γ-谷酰基-半胱氨酸合成酶,(11)谷胱甘肽合成酶。b:种子萌发的生化过程及其与激素和化学活性物质信号通路。c:激素之间及其与化学活性物质之间的信号通路 a: Met metabolism in seed germination : (step 1) cystathionine (Cyst) γ-synthase, (step 2) Cyst γ-lyase, (step 3) Met synthase, (step 4) AdoMet synthetase, (step 5) AdoMet-dependent transmethylases, (step 6) S-adenosylhomocysteine (AdoHcy) hydrolase, (step 7) AdoMet:Met S-methyltransferase, (step 8) S-methylmethionine:homocysteine (SMM:Hcy) S-methyltransferase, (step 9) Thr synthase, (step 10) γ-glutamyl-cysteine (γ-glutamyl-Cys) synthase, (step 11) glutathione (GSH) synthase. b: Iinformation transfer from internal metabolites to biochemical pathways playing a role in seed germination. c: Information transfer from biochemical pathways to hormones or chemical stimulants of seed germination

Full size|PPT slide

5.4 活性的Met——S-腺苷甲硫氨酸是萌发调控物质的前体

AdoMet在生物体内是多种与种子萌发相关物质的前体,如:ETH、生物素(Biotin)、多胺(Polyamine)等[79, 100]。乙烯通过促进胚根外围包被组织的松弛和破裂以及拮抗ABA的抑制作用来调控种子萌发[40]。且在控制种子萌发时乙烯与脱落酸,细胞分裂素和活性氧信号存在交互作用[41, 101-102]。生物素合成代谢酶7-酮基-8-氨基壬酸合酶(KAPA)的特异性抑制剂三苯基锡乙酸盐可以抑制种子萌发,而在生物素存在时种子萌发又恢复,因此,猜测种子萌发需要生物素[103](

图4

)。植物含有一种种子中特有的生物素化的蛋白质SBP65,SBP65属于LEA蛋白群体,而LEA广泛的参与种子成熟脱水的调控,SBP65在种子成熟后期阶段积累,在种子萌发期间迅速消失,因此,猜测SBP65的功能是沉积生物素,并抑制静止种子的代谢[104]。

5.5 甲硫氨酸前体——半胱氨酸

半胱氨酸是植物将无机硫转变为有机硫的第一个含硫有机物,通常情况下植物将环境中的无机硫(主要是SO42-)通过根细胞膜上的专一转运蛋白吸入细胞,在根细胞质体或叶肉细胞叶绿体中经过一系列酶促还原后成为硫化物(主要是H2S)[105-106]。在半胱氨酸合成酶的催化下, H2S-与O-乙酰丝氨酸反应生成半胱氨酸(Cys)[107-108],Cys作为植物硫代谢的中心[109-110],可以直接或间接代谢为其他含硫物质。Cys是Met的前体(

图4

),如上文所述Met广泛的参与种子萌发调控。Cys也是抗氧化剂谷胱甘肽(GSH)的前体,GSH参与种子萌发的多个代谢过程,如:GSH和抗坏血酸循环[111],又如形成NO的储藏物质S-硝基谷胱甘肽(GSNO)[112]。

半胱氨酸蛋白酶具有双重功能,在种子成熟时水解加工储藏蛋白促进其沉积,而在种子萌发和幼苗生长时则降解储藏蛋白提供养分。在成熟的蓖麻种子、萌发的蚕豆种子、大豆子叶和拟南芥的多个器官中分离到一类半胱氨酸蛋白酶,即豆类天冬氨酸蛋白内切酶(legumain)[113],它的功能是降解液泡或细胞壁中的蛋白[114],而液泡和细胞壁是种子重要的蓄水器官,因此,推测它们可能参与调控种子萌发的吸水过程。半胱氨酸编码基因Cyp15a在干种子中mRNA含量较低,而在吸胀4 d之内,mRNA含量迅速增加[115],猜测其功能为降解和动员储藏蛋白。

S-腺苷高半胱氨酸水解酶功能主要是催化细胞S-腺苷高半胱氨酸可逆水解为高半胱氨酸和腺苷,从而阻止S-腺苷高半胱氨酸积累到有毒水平。近来发现S-腺苷高半胱氨酸水解酶在种子萌发前染色体重塑中起作用,如:HOG1是DNA甲基化所依赖的基因沉默所必需的[116],PICKLE参与调控组蛋白H3的三甲基化[91],S-腺苷高半胱氨酸水解酶还可以通过极大的亲和力与细胞分裂素结合从而干扰细胞分裂素信号,导致ABA/GA的平衡状态改变[117]。

5.6 甲硫氨酸前体—天门冬氨酸

天门冬氨酸是甲硫氨酸、赖氨酸和苏氨酸的合成前体。植物中的天冬氨酸代谢途径可以分为2个分支,一个是赖氨酸的生物合成,另一个是经O-磷酰-L-高丝氨酸(OPH)合成苏氨酸、异亮氨酸和甲硫氨酸[118-119]。在拟南芥中,增强赖氨酸合成代谢,抑制其分解代谢,虽然赖氨酸的含量显著提高,但结果导致种子萌发延迟。转录组学和代谢组学分析表明赖氨酸的积累不利于三羧酸(TCA)循环,同时赖氨酸的积累还会拮抗促进幼苗建成所必须的几个生理代谢的特异性转录,如:光合作用的起始或种子胚代谢的恢复。因此猜测天门冬氨酸的分解代谢为种子萌发的自养生长阶段提供能量[120]。

5.7 甲硫氨酸亚砜还原酶决定种子的寿命

在ROS含量增加时,种子蛋白容易被氧化[74, 76, 121],尤其是蛋白中一些含硫的残基[122],但多数情况含硫残基的氧化是可逆的。如:在种子成熟时,半胱氨酸残基之间形成二硫键,导致结构压缩而蛋白活性降低或者失活[76],在种子萌发时,这个过程是可逆的,硫氧还原蛋白(TRX)调控了它的可逆反应。甲硫氨酸在生物体的可逆反应已经被广泛报道,甲硫氨酸经氧化后生成甲硫氨酸亚砜 [123],甲硫氨酸亚砜经甲硫氨酸亚砜还原酶(MSRS)还原为Met[124-125]。近来,研究表明甲硫氨酸亚砜还原酶修复系统决定种子的寿命[7]。关于甲硫氨酸还原酶的功能在其他生物上被广泛报道,它在生物应对氧化逆境时起到非常重要的作用[123, 126-127];它决定微生物、哺乳动物和种子的寿命[4, 128-131];它是所有有机体老化的分子标记[132];它是活细胞执行基本功能必需的极少数蛋白之一[133]。由于种子寿命与活力紧密连锁,因此,猜测甲硫氨酸亚砜还原酶也可能决定种子的活力,是种子活力一个新的标记。

6 展望

种子活力在种子发育过程中形成,在多种作物上发现储藏物积累完成后种子已经获得了最大的萌发潜力,后续的人工干燥完全可以代替自然脱水。人工脱水的基础是种子获得脱水耐性,在烤烟上果皮颜色是一项重要的指标(

图1

),当果皮由黄变褐,人工干燥处理种子活力不会降低。在玉米上乳线是一个重要的感官依据,当乳腺到达籽粒中部位置时采收的种子活力即达到最大 [134]。但是,目前对于种子活力形成的感官依据及分子机制研究甚少。

种子萌发的早期阶段,新的转录和翻译并不是必须的,种子成熟脱水过程中储存的mRNA和蛋白质可以保证种子萌发的起始,但萌发后新的转录和翻译是幼苗建成必需的,由此可知,种子萌发的活力主要由种子发育状况决定,而幼苗生长潜力还需要种子萌发阶段新的代谢储备,这有助于理解高活力的种子在田间幼苗长势差异的原因,但是关于是否存在一个关键的分子标记来表示活力仍然是一个科学难题,猜测BRX可能是种子活力非常重要的一个分子标记。

在种子休眠与萌发时激素的作用被广发报道。近来,经过一系列突变体试验表明生长素依赖于脱落酸的信号调控拟南芥种子休眠。通过引发试验发现生长素不仅调控休眠,还精确调控了烟草种子萌发胚根的突出,相对于胚根突出,其对子叶展开的调控是较为宽松的。目前,关于生长素参与调控种子萌发的报道甚少,而众所周知胚根突出是种子萌发非常关键的一个环节,细胞的伸长生长是胚根突出所必需的,所以关于生长素在种子萌发时的作用应该引起足够的重视。

在种子萌发的生理代谢活性中,甲硫氨酸代谢是中心[1]。甲硫氨酸代谢产物与种子萌发关系非常密切。近来研究表明甲硫氨酸硫氧化物还原酶参与种子氧化修复系统进而延长种子寿命,同时它可能是种子活力的一个新的分子标记[4]。作为代谢中心,甲硫氨酸在种子萌发中的作用十分关键,有趣的是甲硫氨酸的密码子AUG同时也是起始密码子,目前,这种双重功能的生物学意义尚不清楚。

种子活力是一个复杂的性状,而关于其评价方法多种多样,但多数情况与萌发有关。与田间出苗相比,种子活力检验是在“恒定”的条件下完成的,而在自然界种子要经历一个更加复杂的生态环境,所以要依据主要限制因素来选择适宜的检验方法,低温出苗选择冷冻和冷浸发芽试验,干旱出苗选择萌发速度,耐储藏性选择人工老化试验,种苗破土能力选择“顶钩”的形成试验等等。

{{custom_citation.pmid}42}

=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.pmid}38}{{custom_citation.pmid}25}[1]Rajjou L

,

Duval M

,

Gallardo K

,

Catusse J

,

Bally J

,

Job C

,

Job D.

Seed germination and vigor.Annual Review of Plant Biology, 2012, 63: 507-533.

{{custom_citation.pmid}13}https://doi.org/{{custom_citation.url}99}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}75}{{custom_citation.url}51}本文引用 [{{custom_citation.url}02}]摘要{{custom_citation.url}90}[2]Catusse J

,

Strub J M

,

Job C

,

Dorsselaer A V

,

Job D.

Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 10262-10267.

{{custom_citation.url}88}https://doi.org/{{custom_citation.url}64}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}40}{{custom_citation.url}26}本文引用 [{{custom_ref.citedCount>0}77}]摘要0}9} && {{custom_ref.citedCount>0}68}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_ref.citedCount>0}56}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_ref.citedCount>0}45}[3]Beuchat J

,

Li S W

,

Ragni L

,

Shindo C

,

Kohn M H

,

Hardtke C S.

A hyperactive quantitative trait locus allele of Arabidopsis BRX contributes to natural variation in root growth vigor.Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8475-8480.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_ref.citedCount>0}33}0}2} && {{custom_ref.citedCount>0}21}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_ref.citedCount>0}09}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}85}{{custom_citationIndex}61}本文引用 [{{custom_citationIndex}12}]摘要{{custom_citationIndex}00}[4]Châtelain E

,

Satour P

,

Laugier E

,

Vu B L

,

Payet N

,

Rey P

,

Montrichard F.

Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity.Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3633-3638.

{{custom_ref.citationList}98}https://doi.org/{{custom_ref.citationList}74}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}50}{{custom_ref.citationList}36}本文引用 [{{custom_ref.id}87}]摘要{{custom_ref.id}75}[5]Angelovici R

,

Galili G

,

Fernie A R

,

Fait A.

Seed desiccation: A bridge between maturation and germination.Trends in Plant Science, 2010, 15(4): 211-218.

{{custom_ref.id}63}https://doi.org/{{custom_ref.id}49}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}25}{{custom_ref.id}01}本文引用 [{{custom_ref.citedCount}52}]摘要{{custom_ref.citedCount}40}[6]Graeber K

,

Nakabayashi K

,

Miatton E

, Leubner-metzger G, Soppe W J J. Molecular mechanisms of seed dormancy.Plant, Cell and Environment, 2012, 35: 1769-1786.

{{custom_ref.citedCount}38}https://doi.org/{{custom_ref.citedCount}14}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}90}{{custom_citation.annotation}76}本文引用 [{{custom_citation.annotation}27}]摘要{{custom_citation.annotation}15}[7]Ventura L

,

Donà M

,

Macovei A

,

Carbonera D

,

Buttafava A

,

Mondoni A

,

Rossi G

,

Balestrazzi A.

Understanding the molecular pathways associated with seed vigor.Plant Physiology and Biochemistry, 2012, 60: 196-206.

{{custom_citation.annotation}03}https://doi.org/{{custom_citation.content}89}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}65}{{custom_citation.content}41}本文引用 [{{custom_citation.doi}92}]摘要{{custom_citation.doi}80}[8]Gomes M P

,

Garcia Q S.

Reactive oxygen species and seed germination.Biologia, 2013, 68(3): 351-357.

{{custom_citation.doi}78}https://doi.org/{{custom_citation.doi}54}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}30}{{custom_citation.doi}16}本文引用 [{{custom_citation.doi}67}]摘要{{custom_citation.doi}55}[9]Corbineau F.

Markers of seed quality: From present to future.Seed Science Research, 2012, 22: S61-S68.

{{custom_citation.doi}43}https://doi.org/{{custom_citation.doi}29}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}05}{{custom_citation.pmid}81}本文引用 [{{custom_citation.pmid}32}]摘要{{custom_citation.pmid}20}[10]Vanstraelen M

,

Benková E.

Hormonal interactions in the regulation of plant development.Annual Review of Cell and Developmental Biology, 2012, 28: 463-487.

{{custom_citation.pmid}18}https://doi.org/{{custom_citation.pmid}94}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}70}{{custom_citation.pmid}56}本文引用 [{{custom_citation.pmid}07}]摘要{{custom_citation.url}95}[11]Diaz-Vivancos P

,

Barba-Espín G

,

Hernández J A.

Elucidating hormonal/ROS networks during seed germination: Insights and perspectives.Plant Cell Reports, 2013, 32: 1491-1502.

{{custom_citation.url}83}https://doi.org/{{custom_citation.url}69}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}45}{{custom_citation.url}21}本文引用 [{{custom_citation.url}72}]摘要{{custom_citation.url}60}[12]Xu R

,

Li Y H.

Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana.Development, 2011, 138: 4545-4554.

{{custom_citation.url}58}https://doi.org/{{custom_citation.url}34}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}10}{{custom_ref.citedCount>0}96}本文引用 [{{custom_ref.citedCount>0}47}]摘要0}9} && {{custom_ref.citedCount>0}38}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_ref.citedCount>0}26}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_ref.citedCount>0}15}[13]Peng Y C

,

Ma W Y

,

Chen L L

,

Yang L

,

Li S J

,

Zhao H T

,

Zhao Y K

,

Jin W H

,

Li N

,

Bevan M W

,

Li X

,

Tong Y P

,

Li Y H.

Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.Plant Physiology, 2013, 161(3): 1542-1556.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_ref.citedCount>0}03}0}2} && {{custom_citationIndex}91}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}79}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}55}{{custom_citationIndex}31}本文引用 [{{custom_ref.citationList}82}]摘要{{custom_ref.citationList}70}[14]Ma H Y

,

Song L R

,

Shu Y J

,

Wang S

,

Niu J

,

Wang Z K

,

Yu T

,

Gu W H

,

Ma H.

Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 2012, 75: 1529-1546.

{{custom_ref.citationList}68}https://doi.org/{{custom_ref.citationList}44}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}20}{{custom_ref.citationList}06}本文引用 [{{custom_ref.id}57}]摘要{{custom_ref.id}45}[15]Wang L Q

,

Ma H

,

Song L R

,

Shu Y J

,

Gu W H.

Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of Proteomics, 2012, 75: 2109-2127.

{{custom_ref.id}33}https://doi.org/{{custom_ref.id}19}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}95}{{custom_ref.citedCount}71}本文引用 [{{custom_ref.citedCount}22}]摘要{{custom_ref.citedCount}10}[16]Wang W Q

,

Møllerb I M

,

Song S Q.

Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. Journal of Proteomics, 2012, 77: 68-86.

{{custom_ref.citedCount}08}https://doi.org/{{custom_citation.annotation}84}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}60}{{custom_citation.annotation}46}本文引用 [{{custom_citation.content}97}]摘要{{custom_citation.content}85}[17]孙群

,

王建华

,

孙宝启

. 种子活力的生理和遗传机理研究进展. 中国农业科学, 2007, 40(1): 48-53.

Sun Q

,

Wang J H

,

Sun B Q.

Advances on seed vigor physiological and genetic mechanisms.Scientia Agricultura Sinica, 2007, 40(1): 48-53. (in Chinese)

{{custom_citation.content}73}https://doi.org/{{custom_citation.content}59}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}35}{{custom_citation.content}11}本文引用 [{{custom_citation.doi}62}]摘要{{custom_citation.doi}50}[18]舒英杰

,

陶源

,

王爽

,

马洪雨

,

宋利茹

,

于兴旺

,

麻浩

. 高等植物种子活力的生物学研究进展. 西北植物学报, 2013, 33(8): 1709-1716.

Shu Y J

,

Tao Y

,

Wang S

,

Ma H Y

,

Song L R

,

Yu X W

,

Ma H.

Research progress on seed vigor of biology of higher plant.Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1709-1716. (in Chinese)

{{custom_citation.doi}48}https://doi.org/{{custom_citation.doi}24}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}00}{{custom_citation.doi}86}本文引用 [{{custom_citation.doi}37}]摘要{{custom_citation.doi}25}[19]徐恒恒

,

黎妮

,

刘树君

,

王伟青

,

王伟平

,

张红

,

程红焱

,

宋松泉

. 种子萌发及其调控的研究进展. 作物学报, 2014, 40(7): 1141-1156.

Xu H H

,

Li N

,

Liu S J

,

Wang W Q

,

Wang W P

,

Zhang H

,

Cheng H Y

,

Song S Q.

Research progress in seed germination and its control.Acta Agronomica Sinica, 2014, 40(7): 1141-1156. (in Chinese)

{{custom_citation.doi}13}https://doi.org/{{custom_citation.pmid}99}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}75}{{custom_citation.pmid}51}本文引用 [{{custom_citation.pmid}02}]摘要{{custom_citation.pmid}90}[20]Bailly C

,

Audigier C

,

Ladonne F

,

Wagner M H

,

Coste F

,

Corbineau F

,

Côme D.

Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. Journal of Experimental Botany, 2001, 52: 701-708.

{{custom_citation.pmid}88}https://doi.org/{{custom_citation.pmid}64}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}40}{{custom_citation.pmid}26}本文引用 [{{custom_citation.url}77}]摘要{{custom_citation.url}65}[21]Leprince O

, Hendry G A F, McKersie B D. The mechanisms of desiccation tolerance in developing seeds.Seed Science Research, 1993, 3: 231-246.

{{custom_citation.url}53}https://doi.org/{{custom_citation.url}39}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}15}{{custom_citation.url}91}本文引用 [{{custom_citation.url}42}]摘要{{custom_citation.url}30}[22]Verdier J

,

Thompson R D.

Transcriptional regulation of storage protein synthesis during dicotyledon seed filling.Plant and Cell Physiology, 2008, 49: 1263-1271.

{{custom_citation.url}28}https://doi.org/{{custom_citation.url}04}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}80}{{custom_ref.citedCount>0}66}本文引用 [{{custom_ref.citedCount>0}17}]摘要0}9} && {{custom_ref.citedCount>0}08}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_citationIndex}96}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_citationIndex}85}[23]Farrant J M

,

Bailly C

,

Leymarie J

,

Hamman B

,

Côme D

,

Corbineau F.

Wheat seedlings as a model to understand desiccation tolerance and sensitivity.Physiologia Plantarum, 2004, 120: 563-574.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_citationIndex}73}0}2} && {{custom_citationIndex}61}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}49}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}25}{{custom_citationIndex}01}本文引用 [{{custom_ref.citationList}52}]摘要{{custom_ref.citationList}40}[24]Tunnacliffe A

,

Wise M J.

The continuing conundrum of the LEA proteins.Naturwissenschaften, 2007, 94: 791-812.

{{custom_ref.citationList}38}https://doi.org/{{custom_ref.citationList}14}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}90}{{custom_ref.id}76}本文引用 [{{custom_ref.id}27}]摘要{{custom_ref.id}15}[25]Wehmeyer N

,

Hernandez L D

,

Finkelstein R R

,

Vierling E.

Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation.Plant Physiology, 1996, 112: 747-757.

{{custom_ref.id}03}https://doi.org/{{custom_ref.citedCount}89}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}65}{{custom_ref.citedCount}41}本文引用 [{{custom_citation.annotation}92}]摘要{{custom_citation.annotation}80}[26]Bailly C.

Active oxygen species and antioxidants in seed biology.Seed Science Research, 2004, 14: 93-107.

{{custom_citation.annotation}78}https://doi.org/{{custom_citation.annotation}54}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}30}{{custom_citation.annotation}16}本文引用 [{{custom_citation.content}67}]摘要{{custom_citation.content}55}[27]Rajjou L

,

Debeaujon I.

Seed longevity: Survival and maintenance of high germination ability of dry seeds.Comptes Rendus Biologies, 2008, 331: 796-805.

{{custom_citation.content}43}https://doi.org/{{custom_citation.content}29}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}05}{{custom_citation.doi}81}本文引用 [{{custom_citation.doi}32}]摘要{{custom_citation.doi}20}[28]Wolkers W F

, Tetteroo F A A, Alberda M, Hoekstra F A. Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ fourier transform infrared spectroscopic study.Plant Physiology, 1999, 120: 153-163.

{{custom_citation.doi}18}https://doi.org/{{custom_citation.doi}94}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}70}{{custom_citation.doi}56}本文引用 [{{custom_citation.doi}07}]摘要{{custom_citation.pmid}95}[29]Sun W Q

,

Irving T C

,

Leopold A C.

The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance.Physiologia Plantarum, 1994, 90: 621-628.

{{custom_citation.pmid}83}https://doi.org/{{custom_citation.pmid}69}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}45}{{custom_citation.pmid}21}本文引用 [{{custom_citation.pmid}72}]摘要{{custom_citation.pmid}60}[30]李振华

,

林永杰

,

刘一灵

,

孙娜娜

,

陈尧

,

龙明锦

. 常温低湿储藏对烤烟种子活力和萌发特性的影响. 中国农业大学学报, 2014, 19(1): 80-86.

Li Z H

,

Lin Y J

,

Liu Y L

,

Sun N N

,

Chen Y

,

Long M J.

Variation on seed vigor and germination stored at room temperature and low humidity situation.Journal of China Agricultural University, 2014, 19(1): 80-86. (in Chinese)

{{custom_citation.pmid}58}https://doi.org/{{custom_citation.pmid}34}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}10}{{custom_citation.url}96}本文引用 [{{custom_citation.url}47}]摘要{{custom_citation.url}35}[31]Kucera B

,

Cohn M A

,

Leubner-Metzger G.

Plant hormone interactions during seed dormancy release and germination.Seed Science Research, 2005(15): 281-307.

{{custom_citation.url}23}https://doi.org/{{custom_citation.url}09}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}85}{{custom_citation.url}61}本文引用 [{{custom_citation.url}12}]摘要{{custom_citation.url}00}[32]Gubler F

,

Jacobsen J V.

Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. The Plant Cell, 1992, 4: 1435-1441.

{{custom_ref.citedCount>0}98}https://doi.org/{{custom_ref.citedCount>0}74}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}50}{{custom_ref.citedCount>0}36}本文引用 [{{custom_citationIndex}87}]摘要0}9} && {{custom_citationIndex}78}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_citationIndex}66}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_citationIndex}55}[33]Rogers J C

,

Rogers S W.

Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes.The Plant Cell, 1992, 4: 1443-1451.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_citationIndex}43}0}2} && {{custom_citationIndex}31}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}19}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}95}{{custom_ref.citationList}71}本文引用 [{{custom_ref.citationList}22}]摘要{{custom_ref.citationList}10}[34]Gómez-Cadenas A

,

Zentella R

, Walker-Simmons M K, Ho T H D. Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell, 2001, 13: 667-679.

{{custom_ref.citationList}08}https://doi.org/{{custom_ref.id}84}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}60}{{custom_ref.id}46}本文引用 [{{custom_ref.citedCount}97}]摘要{{custom_ref.citedCount}85}[35]Nambara E

,

Okamoto M

,

Tatematsu K

,

Yano R

,

Seo M

,

Kamiya Y.

Abscisic acid and the control of seed dormancy and germination.Seed Science Research, 2010, 20: 55-67.

{{custom_ref.citedCount}73}https://doi.org/{{custom_ref.citedCount}59}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}35}{{custom_ref.citedCount}11}本文引用 [{{custom_citation.annotation}62}]摘要{{custom_citation.annotation}50}[36]Yamaguchi S.

Gibberellin metabolism and its regulation.Annual Review of Plant Biology, 2008, 59: 225-251.

{{custom_citation.annotation}48}https://doi.org/{{custom_citation.annotation}24}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}00}{{custom_citation.content}86}本文引用 [{{custom_citation.content}37}]摘要{{custom_citation.content}25}[37]Morris K

,

Linkies A

,

Müller K

,

Oracz K

,

Wang X

,

Lynn J R

,

Leubner-Metzger G

, Finch-Savage W E. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: A global tissue-specific transcript analysis.Plant Physiology, 2011, 155(4): 1851-1870.

{{custom_citation.content}13}https://doi.org/{{custom_citation.doi}99}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}75}{{custom_citation.doi}51}本文引用 [{{custom_citation.doi}02}]摘要{{custom_citation.doi}90}[38]Oh E

,

Yamaguchi S

,

Hu J

,

Yusuke J

,

Jung B

,

Paik I

,

Lee H S

,

Sun T P

,

Kamiya Y

,

Choi G.

PIL5, a phytochrome-interacting bHLH protein,regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds.The Plant Cell, 2007, 19: 1192-1208.

{{custom_citation.doi}88}https://doi.org/{{custom_citation.doi}64}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}40}{{custom_citation.doi}26}本文引用 [{{custom_citation.pmid}77}]摘要{{custom_citation.pmid}65}[39]Seo M

,

Hanada A

,

Kuwahara A

,

Endo A

,

Okamoto M

,

Yamauchi Y

,

North H

,

Marion-Poll A

,

Sun T P

,

Koshiba T

,

Kamiya Y

,

Yamaguchi S

,

Nambara E.

Regulation of hormone metabolism in Arabidopsis seeds: Phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.The Plant Journal, 2006, 48: 354-366.

{{custom_citation.pmid}53}https://doi.org/{{custom_citation.pmid}39}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}15}{{custom_citation.pmid}91}本文引用 [{{custom_citation.pmid}42}]摘要{{custom_citation.pmid}30}[40]Linkies A

,

Müller K

,

Morris K

,

Turecková V

,

Wenk M

,

Cadman C S

,

Corbineau F

,

Strnad M

,

Lynn J R

, Finch-Savage W E, Leubner- Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana.The Plant Cell, 2009, 21: 3803-3822.

{{custom_citation.pmid}28}https://doi.org/{{custom_citation.pmid}04}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}80}{{custom_citation.url}66}本文引用 [{{custom_citation.url}17}]摘要{{custom_citation.url}05}[41]Subbiah V

,

Reddy K J.

Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis.Journal of Biosciences, 2010, 35: 451-458.

{{custom_citation.url}93}https://doi.org/{{custom_citation.url}79}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}55}{{custom_citation.url}31}本文引用 [{{custom_ref.citedCount>0}82}]摘要{{custom_ref.citedCount>0}70}[42]Chiwocha S D S

,

Cutler A J

,

Abrams S R

,

Ambrose S J

,

Yang J

,

Ross A R S

,

Kermode A R

. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination.The Plant Journal, 2005, 42: 35-48.

{{custom_ref.citedCount>0}68}https://doi.org/{{custom_ref.citedCount>0}44}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}20}{{custom_ref.citedCount>0}06}本文引用 [{{custom_citationIndex}57}]摘要0}9} && {{custom_citationIndex}48}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_citationIndex}36}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_citationIndex}25}[43]Belin C

,

Megies C

,

Hauserova E

,

Lopez-Molina L.

Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling.The Plant Cell, 2009, 21: 2253-2268.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_citationIndex}13}0}2} && {{custom_citationIndex}01}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_ref.citationList}89}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}65}{{custom_ref.citationList}41}本文引用 [{{custom_ref.id}92}]摘要{{custom_ref.id}80}[44]Preston J

,

Tatematsu K

,

Kanno Y

,

Hobo T

,

Kimura M

,

Jikumaru Y

,

Yano R

,

Kamiya Y

,

Nambara E.

Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: A comparative study on dormant and non-dormant accessions.Plant and Cell Physiology, 2009, 50: 1786-1800.

{{custom_ref.id}78}https://doi.org/{{custom_ref.id}54}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}30}{{custom_ref.id}16}本文引用 [{{custom_ref.citedCount}67}]摘要{{custom_ref.citedCount}55}[45]Lee S

,

Kim S G

,

Park C M.

Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis.New Phytologist, 2010, 188: 626-637.

{{custom_ref.citedCount}43}https://doi.org/{{custom_ref.citedCount}29}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}05}{{custom_citation.annotation}81}本文引用 [{{custom_citation.annotation}32}]摘要{{custom_citation.annotation}20}[46]Rajjou L

,

Belghazi M

,

Huguet R

,

Robin C

,

Moreau A

,

Job C

,

Job D.

Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.Plant Physiology, 2006, 141: 910-923.

{{custom_citation.annotation}18}https://doi.org/{{custom_citation.content}94}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}70}{{custom_citation.content}56}本文引用 [{{custom_citation.content}07}]摘要{{custom_citation.doi}95}[47]Dave A

,

Hernández M L

,

He Z

,

Andriotis V M

,

Vaistij F E

,

Larson T R

,

Graham I A.

12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis.The Plant Cell, 2011, 23: 583-599.

{{custom_citation.doi}83}https://doi.org/{{custom_citation.doi}69}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}45}{{custom_citation.doi}21}本文引用 [{{custom_citation.doi}72}]摘要{{custom_citation.doi}60}[48]Liu X D

,

Zhang H

,

Zhao Y

,

Feng Z Y

,

Li Q

,

Yang H Q

,

Luan S

,

Li J M

,

He Z H.

Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation inArabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490.

{{custom_citation.doi}58}https://doi.org/{{custom_citation.doi}34}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}10}{{custom_citation.pmid}96}本文引用 [{{custom_citation.pmid}47}]摘要{{custom_citation.pmid}35}[49]Carrier D J

,

Kendall E J

,

Bock C A

,

Cunningham J E

,

Dunstan D I.

Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds.Journal of Experimental Botany, 1999, 50: 1359-1364.

{{custom_citation.pmid}23}https://doi.org/{{custom_citation.pmid}09}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}85}{{custom_citation.pmid}61}本文引用 [{{custom_citation.pmid}12}]摘要{{custom_citation.pmid}00}[50]Terskikh V V

,

Feurtado J A

,

Ren C

,

Abrams S R

,

Kermode A R.

Water uptake and oil distribution during imbibition of seeds of western pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging.Planta, 2005, 221: 17-27.

{{custom_citation.url}98}https://doi.org/{{custom_citation.url}74}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}50}{{custom_citation.url}36}本文引用 [{{custom_citation.url}87}]摘要{{custom_citation.url}75}[51]Bewley J D.

Breaking down the walls: A role for endo-β-mannanase in release from seed dormancy?Trends in Plant Science, 1997, 2: 464-469.

{{custom_citation.url}63}https://doi.org/{{custom_citation.url}49}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}25}{{custom_citation.url}01}本文引用 [{{custom_ref.citedCount>0}52}]摘要{{custom_ref.citedCount>0}40}[52]

International rules for seed testing. Zurich, International Seed Testing Association, 2006.

{{custom_ref.citedCount>0}38}https://doi.org/{{custom_ref.citedCount>0}14}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}90}{{custom_citationIndex}76}本文引用 [{{custom_citationIndex}27}]摘要0}9} && {{custom_citationIndex}18}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_citationIndex}06}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_ref.citationList}95}[53]Wolters H

,

Jurgens G.

Survival of the flexible: Hormonal growth control and adaptation in plant development.Nature Reviews Genetics, 2009, 10: 305-317.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_ref.citationList}83}0}2} && {{custom_ref.citationList}71}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_ref.citationList}59}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}35}{{custom_ref.citationList}11}本文引用 [{{custom_ref.id}62}]摘要{{custom_ref.id}50}[54]Fu X

,

Harberd N P.

Auxin promotes Arabidopsis root growth by modulating gibberellin response.Nature, 2003, 421: 740-743.

{{custom_ref.id}48}https://doi.org/{{custom_ref.id}24}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}00}{{custom_ref.citedCount}86}本文引用 [{{custom_ref.citedCount}37}]摘要{{custom_ref.citedCount}25}[55]Waterworth W M

,

Masnavi G

,

Bhardwaj R M

,

Jiang Q

,

Bray C M

,

West C E.

A plant DNA ligase is an important determinant of seed longevity.The Plant Journal, 2010, 63: 848-860.

{{custom_ref.citedCount}13}https://doi.org/{{custom_citation.annotation}99}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}75}{{custom_citation.annotation}51}本文引用 [{{custom_citation.annotation}02}]摘要{{custom_ref.label}90}[56]Hunt L

,

Holdsworth M J

,

Gray J E.

Nicotinamidase activity is important for germination.The Plant Journal, 2007, 51: 341-351.

{{custom_ref.label}88}https://doi.org/{{custom_ref.label}64}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.label}40}{{custom_ref.label}26}本文引用 [{{custom_citation.content}77}]摘要{{custom_citation.content}65}[57]Macovei A

,

Balestrazzi A

,

Confalonieri M

,

Faé M

,

Carbonera D.

New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition.Plant Physiology and Biochemistry, 2011, 49: 1040-1050.

{{custom_citation.content}53}https://doi.org/{{custom_citation.content}39}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}15}{{custom_citation.doi}91}本文引用 [{{custom_citation.doi}42}]摘要{{custom_citation.doi}30}[58]Ogé L

,

Bourdais G

,

Bove J

,

Collet B

,

Godin B

,

Granier F

,

Boutin J P

,

Job D

,

Jullien M

,

Grappin P.

Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis.The Plant Cell, 2008, 20: 3022-3037.

{{custom_citation.doi}28}https://doi.org/{{custom_citation.doi}04}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}80}{{custom_citation.doi}66}本文引用 [{{custom_citation.doi}17}]摘要{{custom_citation.doi}05}[59]宋松泉

,

程红焱

,

姜孝成

. 种子生物学. 北京: 科学出版社, 2008: 154-164.

Song S Q

,

Cheng H Y

, Jiang X C. Seed Biology.Beijing: Science Press, 2008: 154-164. (in Chinese)

{{custom_citation.pmid}93}https://doi.org/{{custom_citation.pmid}79}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}55}{{custom_citation.pmid}31}本文引用 [{{custom_citation.pmid}82}]摘要{{custom_citation.pmid}70}[60]Jisha K C

,

Vijayakumari K

,

Puthur Jos T.

Seed priming for abiotic stress tolerance: An overview.Acta Physiologiae Plantarum, 2013, 35: 1381-1396.

{{custom_citation.pmid}68}https://doi.org/{{custom_citation.pmid}44}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}20}{{custom_citation.pmid}06}本文引用 [{{custom_citation.url}57}]摘要{{custom_citation.url}45}[61]Catusse J

,

Meinhard J

,

Job C

,

Strub J M

,

Fischer U

,

Pestsova E

,

Westhoff P

,

Dorsselaer A V

,

Job D.

Proteomics reveals potential biomarkers of seed vigor in sugarbeet.Proteomics, 2011, 11: 1569-1580.

{{custom_citation.url}33}https://doi.org/{{custom_citation.url}19}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}95}{{custom_citation.url}71}本文引用 [{{custom_citation.url}22}]摘要{{custom_citation.url}10}[62]Kimura M

,

Nambara E.

Stored and neosynthesized mRNA in Arabidopsis seeds: Effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition.Plant Molecular Biology, 2010, 73: 119-129.

{{custom_citation.url}08}https://doi.org/{{custom_ref.citedCount>0}84}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}60}{{custom_ref.citedCount>0}46}本文引用 [{{custom_citationIndex}97}]摘要0}9} && {{custom_citationIndex}88}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_citationIndex}76}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_citationIndex}65}[63]Rajjou L

,

Gallardo K

,

Debeaujon I

,

Vandekerckhove J

,

Job C

,

Job D.

The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination.Plant Physiology, 2004, 134: 1598-1613.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_citationIndex}53}0}2} && {{custom_citationIndex}41}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}29}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}05}{{custom_ref.citationList}81}本文引用 [{{custom_ref.citationList}32}]摘要{{custom_ref.citationList}20}[64]El-Maarouf-Bouteau H

,

Bailly C

. Oxidative signaling in seed germination and dormancy.Plant Signaling and Behavior, 2008, 3: 332-341.

{{custom_ref.citationList}18}https://doi.org/{{custom_ref.id}94}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}70}{{custom_ref.id}56}本文引用 [{{custom_ref.id}07}]摘要{{custom_ref.citedCount}95}[65]Barba-Espín G

,

Diaz-Vivancos P

, Clemente-Moreno M J, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández J A. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings.Plant Cell and Environment, 2010, 33: 981-994.

{{custom_ref.citedCount}83}https://doi.org/{{custom_ref.citedCount}69}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}45}{{custom_ref.citedCount}21}本文引用 [{{custom_citation.annotation}72}]摘要{{custom_citation.annotation}60}[66]Barba-Espín G

,

Diaz-Vivancos P

,

Job D

,

Belghazi M

,

Job C

,

Hernández J A.

Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach.Plant Cell and Environment, 2011, 34: 1907-1919.

{{custom_citation.annotation}58}https://doi.org/{{custom_citation.annotation}34}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}10}{{custom_fn.content}96}本文引用 [{{custom_fn.content}47}]摘要{{custom_fn.content}35}[67]Barba-Espín G

, Clemente M M J, Nicolas E, Almansa M S, Cantero E, Albacete A, Hernandez J A, Diaz-Vivancos P. Role of thioproline on seed germination: Interaction ROS-ABA and effects on antioxidative metabolism.Plant Physiology and Biochemistry, 2012, 59: 30-36.

{{custom_fn.content}23}https://doi.org/{{custom_fn.content}09}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}85}{{custom_fund}61}本文引用 [{{custom_fund}12}]摘要{{custom_fund}00}[68]Bahin E

,

Bailly C

,

Sotta B

,

Kranner I

,

Corbineau F

,

Leymarie J.

Crosstalk between reactive oxygen species and hormonal signalling pathway regulates grain dormancy in barley.Plant Cell and Environment, 2011, 34: 980-993.

{{custom_citation.content}8}https://doi.org/{{custom_citation.content}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}0}{{custom_citation.doi}6}本文引用 [{{custom_citation.doi}7}]摘要{{custom_citation.doi}5}[69]Ishibashi Y

,

Koda Y

,

Zheng S H

,

Yuasa T

,

Iwaya-Inoue M.

Regulation of soybean seed germination through ethylene production in response to reactive oxygen species.Annals of Botany, 2013, 111: 95-102.

{{custom_citation.doi}3}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}5}{{custom_citation.doi}1}本文引用 [{{custom_citation.pmid}2}]摘要{{custom_citation.pmid}0}[70]Fulgosi H

,

Soll J

,

Maraschin S F

, Korthout H A A J, Wang M, Testerink C. 14-3-3 proteins and plant development.Plant Molecular Biology, 2002, 50: 1019-1029.

{{custom_citation.pmid}8}https://doi.org/{{custom_citation.pmid}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}0}{{custom_citation.pmid}6}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}5}[71]Feng Y

,

Liu D

,

Yao H

,

Wang J.

Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR.Archives of Biochemistry and Biophysics, 2007, 467: 48-57.

{{custom_citation.url}3}https://doi.org/{{custom_citation.url}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}1}本文引用 [{{custom_citation.url}2}]摘要{{custom_citationIndex}0}[72]Ramachandran S

,

Christensen H E

,

Ishimaru Y

,

Dong C H

,

Chao M W

,

Cleary A L.

Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis.Plant Physiology, 2000, 124: 1637-1647.

{{custom_ref.citationList}8}https://doi.org/{{custom_ref.citationList}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要0}9} && {{custom_ref.citedCount>0}8}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_ref.citedCount>0}6}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_ref.citedCount>0}5}[73]Kandasamy M K

,

Burgos-Rivera B

, McKinney E C, Ruzicka D R. Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. The Plant Cell, 2007, 19: 3111-3126.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_ref.citedCount>0}3}0}2} && {{custom_ref.citedCount>0}1}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}5}{{custom_citationIndex}1}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.id}0}[74]Job C

,

Rajjou L

,

Lovigny Y

,

Belghazi M

,

Job D.

Patterns of protein oxidation in Arabidopsis seeds and during germination.Plant Physiology, 2005, 138: 790-802.

{{custom_ref.citedCount}8}https://doi.org/{{custom_ref.citedCount}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}0}{{custom_citationIndex}6}本文引用 [{{custom_ref.citationList}7}]摘要{{custom_ref.bodyP_ids}5}[75]Kranner I

,

Roach T

,

Beckett R P

,

Whitaker C

,

Minibayeva F V.

Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.Journal of Plant Physiology, 2010, 167: 805-811.

{{custom_ref.bodyP_ids}3}https://doi.org/{{custom_ref.id}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}5}{{custom_ref.id}1}本文引用 [{{custom_bodyP_id}2}]摘要{{custom_citation.annotation}0}[76]Buchanan B B

,

Balmer Y.

Redox regulation: A broadening horizon.Annual Review of Plant Biology, 2005, 56: 187-220.

{{custom_citation.annotation}8}https://doi.org/{{custom_citation.annotation}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要{{custom_citation.annotation}5}[77]Lozano R M

,

Wong J H

,

Yee B C

,

Peters A

,

Kobrehel K

,

Buchanan B B.

New evidence for a role of thioredoxin h in germination and seedling development.Planta, 1996, 200: 100-106.

{{custom_citation.annotation}3}https://doi.org/{{custom_citation.annotation}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}5}{{custom_citation.annotation}1}本文引用 [{{custom_citation.annotation}2}]摘要{{custom_ref.citationList}0}[78]Griffith O W.

Mammalian sulfur amino acid metabolism: An overview.Methods in Enzymology, 1987, 143: 366-376.

{{custom_citation.content}8}https://doi.org/{{custom_citation.content}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}0}{{custom_citation.doi}6}本文引用 [{{custom_citation.doi}7}]摘要{{custom_citation.doi}5}[79]Ravanel S

,

Gakière G

,

Job D

,

Douce R.

The specific features of methionine biosynthesis and metabolism in plants.Proceedings of the National Academy of Sciences of the United States of America, 2008, 95: 7805-7812.

{{custom_citation.doi}3}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}5}{{custom_citation.doi}1}本文引用 [{{custom_citation.pmid}2}]摘要{{custom_citation.pmid}0}[80]Ravanel S

,

Job D

,

Douce R.

Purification and properties of cystathionine beta-lyase from Arabidopsis thaliana overexpressed in Escherichia coli.Biochemical Journal, 1996, 320: 383-392.

{{custom_citation.pmid}8}https://doi.org/{{custom_citation.pmid}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}0}{{custom_citation.pmid}6}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}5}[81]Kim S T

,

Kang S Y

,

Wang Y

,

Kim S G

,

Hwang D H

,

Kang K Y.

Analysis of embryonic proteome modulation by GA and ABA from germination rice seeds.Proteomics, 2008, 8: 3577-3587.

{{custom_citation.url}3}https://doi.org/{{custom_citation.url}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}1}本文引用 [{{custom_citation.url}2}]摘要{{custom_citationIndex}0}[82]Kim S T

,

Wang Y

,

Kang S Y

,

Kim S G

,

Rakwal R

,

Kim Y C

,

Kang K Y.

Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination.Journal of Proteome Research, 2009, 8: 3598-3605.

{{custom_ref.citationList}8}https://doi.org/{{custom_ref.citationList}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要0}9} && {{custom_ref.citedCount>0}8}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_ref.citedCount>0}6}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_ref.citedCount>0}5}[83]Gallardo K

,

Job C

, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of Arabidopsis seed germination and priming.Plant Physiology, 2001, 126: 835-848.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_ref.citedCount>0}3}0}2} && {{custom_ref.citedCount>0}1}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}5}{{custom_citationIndex}1}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.id}0}[84]Gallardo K

,

Job C

, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth.Physiologia Plantarum, 2002, 116: 238-247.

{{custom_ref.citedCount}8}https://doi.org/{{custom_ref.citedCount}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}0}{{custom_citationIndex}6}本文引用 [{{custom_ref.citationList}7}]摘要{{custom_ref.bodyP_ids}5}[85]Gallardo K

,

Job C

, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination: A comparative study of wild-type and gibberellin-deficient seeds.Plant Physiology, 2002, 129: 823-837.

{{custom_ref.bodyP_ids}3}https://doi.org/{{custom_ref.id}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}5}{{custom_ref.id}1}本文引用 [{{custom_bodyP_id}2}]摘要{{custom_citation.annotation}0}[86]Fulneček J

,

Matyášek R

,

Votruba I

,

Holý A

, Křížová K, Kovařík A. Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco.Molecular Genetics and Genomics, 2011, 285: 225-236.

{{custom_citation.annotation}8}https://doi.org/{{custom_citation.annotation}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要{{custom_citation.annotation}5}[87]Bassel G W

,

Fung P

, Chow T F F, Foong J A, Provart N J, Cutler S R. Elucidating the germination transcriptional program using small molecules.Plant Physiology, 2008, 147: 143-155.

{{custom_citation.annotation}3}https://doi.org/{{custom_citation.annotation}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}5}{{custom_citation.annotation}1}本文引用 [{{custom_citation.annotation}2}]摘要{{custom_ref.citationList}0}[88]Holman T J

,

Jones P D

,

Russell L

,

Medhurst A

,

Ubeda Tomás S

,

Talloji P

,

Marquez J

,

Schmuths H

,

Tung S A

,

Taylor I

,

Footitt S

,

Bachmair A

,

Theodoulou F L

,

Holdsworth M J.

The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis.Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 4549-4554.

{{custom_citation.content}8}https://doi.org/{{custom_citation.content}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}0}{{custom_citation.doi}6}本文引用 [{{custom_citation.doi}7}]摘要{{custom_citation.doi}5}[89]Kim J Y

,

Kwak K J

,

Jung H J

,

Lee H J

,

Kang H.

MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-like protein3 mRNA. Plant and Cell Physiology, 2010, 51: 1079-1083.

{{custom_citation.doi}3}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}5}{{custom_citation.doi}1}本文引用 [{{custom_citation.pmid}2}]摘要{{custom_citation.pmid}0}[90]Nakabayashi K

,

Okamoto M

,

Koshiba T

,

Kamiya Y

,

Nambara E.

Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed.The Plant Journal, 2005, 41: 697-709.

{{custom_citation.pmid}8}https://doi.org/{{custom_citation.pmid}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}0}{{custom_citation.pmid}6}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}5}[91]Zhang H

,

Rider S D

,

Henderson J T

,

Fountain M

,

Chuang K

,

Kandachar V

,

Simons A

,

Edenberg H J

,

Romero-Severson J

,

Muir W M

,

Ogas J.

The CHD3 remodeler PICKLE promotes trimethylation of histone H3 Lysine 27.Journal of Biological Chemistry, 2008, 283: 22637-22648.

{{custom_citation.url}3}https://doi.org/{{custom_citation.url}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}1}本文引用 [{{custom_citation.url}2}]摘要{{custom_citationIndex}0}[92]Wu F Q

,

Xin Q

,

Cao Z

,

Liu Z Q

,

Du SY

,

Mei C

,

Zhao C X

,

Wang X F

,

Shang Y

,

Jiang T

,

Zhang X F

,

Yan L

,

Zhao R

,

Cui Z N

,

Liu R

,

Sun H L

,

Yang X L

,

Su Z

,

Zhang D P.

The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis.Plant Physiology, 2009, 150:1940-1954.

{{custom_ref.citationList}8}https://doi.org/{{custom_ref.citationList}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要0}9} && {{custom_ref.citedCount>0}8}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">0}7} && {{custom_ref.citedCount>0}6}!=''" class="mag_main_zhengwen_left_div_ckwx_table_ckwx_xiangqing">{{custom_ref.citedCount>0}5}[93]Sawicki A

,

Willows R D.

BchJ and BchM interact in a 1:1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. Febs Journal, 2010, 277: 4709-4721.

0}4}" m-for-val="custom_citation" m-for-index="custom_citationIndex">{{custom_ref.citedCount>0}3}0}2} && {{custom_ref.citedCount>0}1}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_citationIndex}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}5}{{custom_citationIndex}1}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.id}0}[94]Pontier D

,

Albrieux C

,

Joyard J

,

Lagrange T

,

Block M A.

Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplastto- nucleus signaling.Journal of Biological Chemistry, 2007, 282: 2297-2304.

{{custom_ref.citedCount}8}https://doi.org/{{custom_ref.citedCount}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}0}{{custom_citationIndex}6}本文引用 [{{custom_ref.citationList}7}]摘要{{custom_ref.bodyP_ids}5}[95]Song M S

,

Kim D G

,

Lee S H.

Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper (Capsicum annuum L.).Journal of Plant Biology, 2005, 48: 292-297.

{{custom_ref.bodyP_ids}3}https://doi.org/{{custom_ref.id}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}5}{{custom_ref.id}1}本文引用 [{{custom_bodyP_id}2}]摘要{{custom_citation.annotation}0}[96]Varbanova M

,

Yamaguchi S

,

Yang Y

, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2.The Plant Cell, 2007, 19: 32-45.

{{custom_citation.annotation}8}https://doi.org/{{custom_citation.annotation}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要{{custom_citation.annotation}5}[97]Xing S F

,

Qin G J

,

Shi Y

,

Ma Z Q

,

Chen Z L

,

Gu H Y

,

Qu L J.

GAMT2 encodes a methyltransferase of gibberellic acid that is involved in seed maturation and germination in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49: 368-381.

{{custom_citation.annotation}3}https://doi.org/{{custom_citation.annotation}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}5}{{custom_citation.annotation}1}本文引用 [{{custom_citation.annotation}2}]摘要{{referenceList}0}[98]Zhao N

,

Ferrer J L

,

Ross J

,

Guan J

,

Yang Y

,

Pichersky E

,

Noel J P

,

Chen F.

Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.Plant Physiology, 2008, 146: 455-467.

{{custom_ref.id}8}https://doi.org/{{custom_ref.id}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}0}{{custom_index}6}本文引用 [{{custom_ref.nian}7}]摘要{{custom_ref.citedCount}5}[99]Huizinga D H

,

Omosegbon O

,

Omery B

,

Crowell D N.

Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis.The Plant Cell, 2008, 20: 2714-2728.

{{custom_ref.citedCount}3}https://doi.org/{{custom_ref.label}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.label}5}{{custom_ref.label}1}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_citation.content}0}[100]Takahashi H

,

Kopriva S

,

Giordano M

,

Saito K

,

Hell R.

Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes.Annual Review of Plant Biology, 2011, 62: 157-184.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}0}{{custom_citation.doi}6}本文引用 [{{custom_citation.doi}7}]摘要{{custom_citation.doi}5}[101]Apel K

,

Hirt H.

Reactive oxygen species: Metabolism, oxidative stress, and signal transduction.Annual Review of Plant Biology, 2004, 55: 373-399.

{{custom_citation.doi}3}https://doi.org/{{custom_citation.pmid}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}5}{{custom_citation.pmid}1}本文引用 [{{custom_citation.pmid}2}]摘要{{custom_citation.pmid}0}[102]Oracz K

, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination.Plant Physiology, 2009, 150: 494-505.

{{custom_citation.pmid}8}https://doi.org/{{custom_citation.pmid}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}0}{{custom_citation.url}6}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}5}[103]Hwang I T

,

Choi J S

,

Song H Y

,

Cho S J

,

Lim H K

,

Park N J

,

Lee D H.

Validation of 7-keto-8-aminopelargonic acid synthase as a potential herbicide target with lead compound triphenyltin acetate.Pesticide Biochemistry and Physiology, 2010, 97: 24-31.

{{custom_citation.url}3}https://doi.org/{{custom_citation.url}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}1}本文引用 [{{custom_citationIndex}2}]摘要{{custom_ref.citationList}0}[104]Alban C

,

Job D

,

Douce R.

Biotin metabolism in plants.Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 17-47.

{{custom_citation.annotation}8}https://doi.org/{{custom_citation.annotation}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.annotation}6}本文引用 [{{custom_ref.citedCount>0}7}]0}6}=={{custom_ref.citedCount>0}5}.length-1" m-for-val="custom_bodyP_id" m-for-array="{{custom_ref.citedCount>0}4}">0}3}" value="{{custom_ref.citedCount>0}2}">0}1} && {{custom_ref.citedCount>0}0}!=''" style="color: #666;">摘要{{custom_citationIndex}5}[105]Leustek T

,

Martin M N

,

Bick J A

,

Davies J P.

Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies.Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 141-165.

{{custom_citationIndex}3}https://doi.org/{{custom_ref.citationList}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}5}{{custom_ref.citationList}1}本文引用 [{{custom_ref.id}2}]摘要{{custom_ref.citedCount}0}[106]Hawkesford M J

,

Wray J L.

Molecular genetics of sulfate assimilation.Advances in Botanical Research, 2000, 33: 159-223.

{{custom_citationIndex}8}https://doi.org/{{custom_citationIndex}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}0}{{custom_ref.citationList}6}本文引用 [{{custom_ref.bodyP_ids}7}]摘要{{custom_ref.id}5}[107]Bick J A

,

Leustek T.

Plant sulfur metabolism-the reduction of sulfate to sulfite.Current Opinion in Plant Biology, 1998, 1: 240-244.

{{custom_ref.id}3}https://doi.org/{{custom_bodyP_id}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_bodyP_id}5}{{custom_bodyP_id}1}本文引用 [{{custom_citation.annotation}2}]摘要{{custom_citation.annotation}0}[108]Ravina C G

,

Chang C I

,

Tsakraklides G P

, McDermott J P, Vega J M, Leustek T, Gotor C, Davies J P. The sac mutants of chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis.Plant Physiology, 2002, 130: 2076-2084.

{{custom_citation.annotation}8}https://doi.org/{{custom_citation.annotation}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.annotation}6}本文引用 [{{custom_citation.annotation}7}]摘要{{custom_citation.annotation}5}[109]Kopriva S.

Regulation of sulfate assimilation in Arabidopsis and beyond.Annals of Botany, 2006, 97: 479-495.

{{custom_citation.annotation}3}https://doi.org/{{custom_citation.annotation}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}5}{{custom_citation.annotation}1}本文引用 [{{custom_fnGroup.fnList}2}]摘要{{custom_fn.content}0}[110]Kopriva S

,

Mugford S G

,

Matthewman C

,

Koprivova A.

Plant sulfate as similation genes: Redundancy versus specialization. Plant Cell Reports, 2009, 28: 1769-1780.

{{fundList_cn}8}https://doi.org/{{fundList_cn}4}https://www.ncbi.nlm.nih.gov/pubmed/{{fundList_cn}0}{{custom_fund}6}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[111]Bønsager B C

,

Shahpiri A

,

Finnie C

,

Svensson B.

Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo.Photochemistry, 2010, 71: 1650-1656.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[112]Bethke P C

,

Libourel I G

,

Jones R L.

Nitric oxide reduces seed dormancy in Arabidopsis.Journal of Experimental Botany, 2006, 57: 517-526.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[113]Grudkowska M

,

Zagdanska B.

Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 2004, 51(3): 609-624.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[114]Mntz K

,

Blattner F R

,

Shutov A D.

Legumains - a family of asparagine-specific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants.Journal of Plant Physiology, 2002, 159(12): 1281-1293.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[115]Jennifer T J

,

John E M.

A salt- and dehydration- inducible pea gene, Cyp15a, encodes a cell wall protein with sequence similarity to cysteine protease.Plant Molecular Biology, 1995, 28: 1055-1065.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[116]

Rocha P S C F,

Sheikh M

,

Melchiorre R

,

Fagard M

,

Boutet S

,

Loach R

,

Moffatt B

,

Wagner C

,

Vaucheret H

,

Furner I

. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation- dependent gene silencing.The Plant Cell, 2005, 17: 404-417.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[117]Li C H

,

Yu N

,

Jiang S M

,

Shangguan X X

,

Wang L J

,

Chen X Y.

Down-regulation of S-adenosyl-Lhomocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions.Planta, 2008, 28: 125-136.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[118]Azevedo R A

,

Arruda P

,

Turner W L

,

Lea P J.

The biosynthesis and metabolism of the aspartate derived amino acids in higher plants.Phytochemistry, 1997, 46: 395-419.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[119]Bryan A.

The aspartate family and branched-chain amino acids// Miflin B J et al. The Biochemistry of Plants, Amino Acids and Derivatives. New York: Academic Press Inc, 1980, 5: 7403-7452.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[120]Angelovici R

,

Fait A

,

Fernie A R

,

Galili G.

A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination.New Phytologist, 2011, 189: 148-159.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[121]Oracz K

, El-Maarouf Bouteau H, Farrant J M, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. The Plant Journal, 2007, 50(3): 452-465.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[122]Davies M J.

The oxidative environment and protein damage.Biochimica et Biophysica Acta, 2005, 1703(2): 93-109.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[123]Weissbach H

,

Resnick L

,

Brot N.

Methionine sulfoxide reductases: History and cellular role in protecting against oxidative damage. Biochimica et Biophysica Acta, 2005, 1703: 203-212.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[124]Sharov V S

,

Schöneich C.

Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase.Free Radical Biology and Medicine, 2000, 29: 986-994.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[125]Moskovitz J

,

Weissbach H

,

Brot N.

Cloning and expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins.Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 2095-2099.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[126]Dai C

,

Wang M H.

Characterization and functional analysis of methionine sulfoxide reductase A gene family in tomato.Molecular Biology Reports, 2012, 39(5): 6297-6308.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[127]Oh S K

,

Baek K H

,

Seong E S

,

Joung Y H

,

Choi G J

,

Park J M

,

Cho H S

,

Kim E A

,

Lee S

,

Choi D.

CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack.Plant Physiology, 2010, 154(1): 245-261.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[128]Moskovitz J

,

Bar-Noy S

,

Williams W M

,

Requena J

,

Berlett B S

,

Stadtman E R.

Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(23): 12920-12925.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[129]Ruan H

,

Tang X D

,

Chen M L

,

Joiner M L

,

Sun G

,

Brot N

,

Weissbach H

,

Heinemann S H

,

Iverson L

,

Wu C F

,

Hoshi T.

High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(5): 2748-2753.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[130]Koc A

,

Gasch A P

,

Rutherford J C

,

Kim H Y

,

Gladyshev V N.

Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and-independent components of aging.Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 7999-8004.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[131]Cabreiro F

,

Picot C R

,

Perichon M

,

Castel J

,

Friguet B

,

Petropoulos I.

Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage.Journal of Biological Chemistry, 2008, 283(24): 16673-16681.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[132]Stadtman E R.

Protein oxidation and aging.Free Radical Research, 2006, 40(12): 1250-1258.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[133]Mushegian A R

,

Koonin E V.

A minimal gene set for cellular life derived by comparison of complete bacterial genomes.Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(19): 10268-10273.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[134]樊廷录

,

王淑英

,

王建华

,

杨珍

. 河西制种基地玉米杂交种种子成熟期与种子活力的关系. 中国农业科学, 2014, 47(15): 2960-2970.

Fan T L

,

Wang S Y

,

Wang J H

,

Yang Z.

Relationship of days after pollination and vigor traits on maize seed maturity in Hexi seed production area in China.Scientia Agricultura Sinica, 2014, 47(15): 2960-2970. (in Chinese)

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}

脚注

The authors have declared that no competing interests exist.

{{custom_fn.content}}

基金

国家公益性行业(农业)科研专项(201303002)、贵州省地方标准制修订项目(201243)

{{custom_fund}}

相关知识

高等植物成花的生理生化与分子机制研究进展
木本植物低温胁迫生理及分子机制研究进展
植物抗逆分子机制研究进展
植物激素ABA调控种子发育与萌发的研究进展
植物激素对种子休眠和萌发调控机理的研究进展
人工老化处理对菠菜种子生理生化指标及萌发相关基因表达量的影响
木本植物花芽休眠中激素调节的分子机制研究进展
四种花卉种子解除休眠及萌发生理的研究
植物抗病的分子基础与研究进展
人工老化对红花种子萌发和幼苗生长的影响

网址: 种子活力与萌发的生理与分子机制研究进展 https://m.huajiangbk.com/newsview1201394.html

所属分类:花卉
上一篇: 常见100植物种子名称及种子
下一篇: 植物种子的萌发.ppt