土壤中微塑料对陆生植物的毒性及其降解机制研究进展
[1] Plastic Europe. Plastics-the facts 2021[EB/OL]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/, 2022-12-25. [2] 国家统计局. 2021中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics. 2021 China statistical yearbook[M]. Beijing: China Statistics Press, 2021. [3] Chia W Y, Tang D Y Y, Khoo K S, et al. Nature's fight against plastic pollution: algae for plastic biodegradation and bioplastics production[J]. Environmental Science and Ecotechnology, 2020, 4. DOI:10.1016/j.ese.2020.100065 [4] Plastic Europe. Plastics-the facts 2015[EB/OL]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2015/, 2022-12-25. [5] de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656-9665. [6] de Souza Machado A A, Kloas W, Zarfl C, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4): 1405-1416. DOI:10.1111/gcb.14020 [7] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. DOI:10.1126/science.1094559 [8] Zhou X X, Liu R, Hao L T, et al. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy[J]. Talanta, 2021, 221. DOI:10.1016/j.talanta.2020.121552 [9] Zhu K C, Jia H Z, Zhao S, et al. Formation of environmentally persistent free radicals on microplastics under light irradiation[J]. Environmental Science & Technology, 2019, 53(14): 8177-8186. [10] Lv W W, Zhou W Z, Lu S B, et al. Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652: 1209-1218. DOI:10.1016/j.scitotenv.2018.10.321 [11] Amrutha K, Warrier A K. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India[J]. Science of the Total Environment, 2020, 739. DOI:10.1016/j.scitotenv.2020.140377 [12] 张起源. 湛江红树林湿地沉积物微塑料和三种有机污染物污染状况研究[D]. 广州: 暨南大学, 2020.
Zhang Q Y. The research of pollution status and ecological risk about microplastics and three POPs in Zhanjiang Mangroves, China[D]. Guangzhou: Jinan University, 2020. [13] Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781. DOI:10.1016/j.chemosphere.2019.03.163 [14] Li Z X, Li Q F, Li R J, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research, 2021, 28(13): 16042-16053. DOI:10.1007/s11356-020-11702-2 [15] Wang F Y, Zhang X Q, Zhang S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254. DOI:10.1016/j.chemosphere.2020.126791 [16] La Nasa J, Lomonaco T, Manco E, et al. Plastic breeze: volatile organic compounds(VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry[J]. Chemosphere, 2021, 270. DOI:10.1016/j.chemosphere.2020.128612 [17] Yang C, Gao X H. Impact of microplastics from polyethylene and biodegradable mulch films on rice(Oryza sativa L.)[J]. Science of the Total Environment, 2022, 828. DOI:10.1016/j.scitotenv.2022.154579 [18] Zhang J W, Huang D Y, Deng H, et al. Responses of submerged plant Vallisneria natans growth and leaf biofilms to water contaminated with microplastics[J]. Science of the Total Environment, 2022, 818. DOI:10.1016/j.scitotenv.2021.151750 [19] Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496-11506. [20] Wu X, Hou H J, Liu Y, et al. Microplastics affect rice(Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study[J]. Journal of Hazardous Materials, 2022, 422. DOI:10.1016/j.jhazmat.2021.126834 [21] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928-934.
Li L Z, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9): 928-934. [22] Xu G H, Liu Y, Yu Y. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean[J]. Science of the Total Environment, 2021, 783. DOI:10.1016/j.scitotenv.2021.147016 [23] Liu Y Y, Xu F J, Ding L P, et al. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling[J]. Journal of Hazardous Materials, 2023, 443. DOI:10.1016/j.jhazmat.2022.130384 [24] de Souza Machado A A, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. [25] Li L Z, Luo Y M, Li R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. DOI:10.1038/s41893-020-0567-9 [26] Li L Z, Luo Y M, Peijnenburg W J G M, et al. Confocal measurement of microplastics uptake by plants[J]. MethodsX, 2020, 7. DOI:10.1016/j.mex.2019.11.023 [27] Bandmann V, Müller J D, Kühler T, et al. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis[J]. FEBS Letters, 2012, 586(20): 3626-3632. DOI:10.1016/j.febslet.2012.08.008 [28] Li M Y, Zhang Y, Li C Y, et al. Polyvinyl chloride nanoparticles affect cell membrane integrity by disturbing the properties of the multicomponent lipid bilayer in Arabidopsis thaliana[J]. Molecules, 2022, 27(18). DOI:10.3390/molecules27185906 [29] Hollóczki O, Gehrke S. Nanoplastics can change the secondary structure of proteins[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-52495-w [30] Giorgetti L, Spanò C, Muccifora S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149: 170-177. DOI:10.1016/j.plaphy.2020.02.014 [31] Kokalj A J, Kuehnel D, Puntar B, et al. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters[J]. Environmental Pollution, 2019, 254. DOI:10.1016/j.envpol.2019.112980 [32] Sun X D, Yuan X Z, Jia Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9): 755-760. DOI:10.1038/s41565-020-0707-4 [33] Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831-838. DOI:10.1016/j.envpol.2019.04.055 [34] Lozano Y M, Lehnert T, Linck L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass[J]. Frontiers in Plant Science, 2021, 12. DOI:10.3389/fpls.2021.616645 [35] Zhang G S, Zhang F X, Li X T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment[J]. Science of the Total Environment, 2019, 670: 1-7. DOI:10.1016/j.scitotenv.2019.03.149 [36] 王志超, 张博文, 倪嘉轩, 等. 微塑料对土壤水分入渗和蒸发的影响[J]. 环境科学, 2022, 43(8): 4394-4401.
Wang Z C, Zhang B W, Ni J X, et al. Effect of microplastics on soil water infiltration and evaporation[J]. Environmental Science, 2022, 43(8): 4394-4401. DOI:10.13227/j.hjkx.202111292 [37] Sun M X, Liu X L, Shi K W, et al. Effects of root zone aeration on soil microbes species in a peach tree rhizosphere and root growth[J]. Microorganisms, 2022, 10(10). DOI:10.3390/microorganisms10101879 [38] Lozano Y M, Lehnert T, Linck L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass[J]. Frontiers in Plant Science, 2021, 12. DOI:10.3389/fpls.2021.714541 [39] Wan Y, Wu C X, Xue Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654: 576-582. DOI:10.1016/j.scitotenv.2018.11.123 [40] Qi Y L, Ossowicki A, Yang X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387. DOI:10.1016/j.jhazmat.2019.121711 [41] Meng F R, Yang X M, Riksen M, et al. Response of common bean(Phaseolus vulgaris L.) growth to soil contaminated with microplastics[J]. Science of the Total Environment, 2021, 755. DOI:10.1016/j.scitotenv.2020.142516 [42] Lehmann A, Leifheit E F, Feng L S, et al. Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi[J]. Soil Ecology Letters, 2022, 4(1): 32-44. DOI:10.1007/s42832-020-0060-4 [43] Ouyang Z Z, Zhang Z P, Jing Y, et al. The photo-aging of polyvinyl chloride microplastics under different UV irradiations[J]. Gondwana Research, 2022, 108: 72-80. DOI:10.1016/j.gr.2021.07.010 [44] Luo H W, Li Y, Zhao Y Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113475 [45] Paluselli A, Fauvelle V, Galgani F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166-175. [46] Rozman U, Turk T, Skalar T, et al. An extensive characterization of various environmentally relevant microplastics-Material properties, leaching and ecotoxicity testing[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145576 [47] Cheng Z P, Wang Y, Qiao B T, et al. Insights into mechanisms involved in the uptake, translocation, and metabolism of phthalate esters in Chinese cabbage(Brassica rapa var. chinensis)[J]. Science of the Total Environment, 2021, 768. DOI:10.1016/j.scitotenv.2021.144945 [48] Jiang L F, Zhu X P, Luo C L, et al. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere[J]. Environment International, 2022, 170. DOI:10.1016/j.envint.2022.107629 [49] 李海峰, 刘河疆, 任红松, 等. 邻苯二甲酸酯对葡萄植株生长及物质构成的影响[J]. 江西农业学报, 2021, 33(6): 25-28, 33.
Li H F, Liu H J, Ren H S, et al. Effects of phthalates on growth and material composition of grape plants[J]. Acta Agriculturae Jiangxi, 2021, 33(6): 25-28, 33. DOI:10.19386/j.cnki.jxnyxb.2021.06.005 [50] Wang F, Zhang M, Sha W, et al. Sorption behavior and mechanisms of organic contaminants to nano and microplastics[J]. Molecules, 2020, 25(8). DOI:10.3390/molecules25081827 [51] Chen C C, Zhu X S, Xu H, et al. Copper adsorption to microplastics and natural particles in seawater: a comparison of kinetics, isotherms, and bioavailability[J]. Environmental Science & Technology, 2021, 55(20): 13923-13931. [52] 王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 2019, 14(4): 23-30.
Wang Y F, Li M, Yu H Y, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 23-30. [53] Okoffo E D, O'Brien S, O'Brien J W, et al. Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 1908-1931. [54] 孙聪惠. 渤海湾滨海潮间带微塑料和重金属污染及生态风险[D]. 天津: 天津师范大学, 2018.
Sun C H. Microplastics and heavy metal pollution in the intertidal zone of Bohai Bay and its ecological risks[D]. Tianjin: Tianjin Normal University, 2018. [55] Abbasi S, Moore F, Keshavarzi B, et al. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone[J]. Science of the Total Environment, 2020, 744. DOI:10.1016/j.scitotenv.2020.140984 [56] Zeb A, Liu W T, Meng L Z, et al. Effects of polyester microfibers(PMFs) and cadmium on lettuce(Lactuca sativa) and the rhizospheric microbial communities: a study involving physio-biochemical properties and metabolomic profiles[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127405 [57] Dong Y M, Gao M L, Song Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259. DOI:10.1016/j.envpol.2019.113892 [58] Zhang S W, Han B, Sun Y H, et al. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2019.121775 [59] 顾馨悦, 徐修媛, 咸泽禹, 等. 老化聚氯乙烯微塑料与镉对小麦的联合毒性[J]. 环境化学, 2021, 40(9): 2633-2639.
Gu X Y, Xu X Y, Xian Z Y, et al. Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant[J]. Environmental Chemistry, 2021, 40(9): 2633-2639. [60] Lian J P, Wu J N, Zeb A, et al. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat(Triticum aestivum L.)?[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114498 [61] Yu H, Hou J H, Dang Q L, et al. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels[J]. Journal of Hazardous Materials, 2020, 395. DOI:10.1016/j.jhazmat.2020.122690 [62] 徐擎擎, 张哿, 邹亚丹, 等. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 2018, 13(1): 40-49.
Xu Q Q, Zhang G, Zou Y D, et al. Interactions between microplastics and organic pollutants: current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 40-49. [63] Šunta U, Prosenc F, Trebše P, et al. Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil[J]. Chemosphere, 2020, 261. DOI:10.1016/j.chemosphere.2020.127762 [64] Hu X J, Yu Q, Waigi M G, et al. Microplastics-sorbed phenanthrene and its derivatives are highly bioaccessible and may induce human cancer risks[J]. Environment International, 2022, 168. DOI:10.1016/j.envint.2022.107459 [65] Wang L C, Lin J C T, Dong C D, et al. The sorption of persistent organic pollutants in microplastics from the coastal environment[J]. Journal of Hazardous Materials, 2021, 420. DOI:10.1016/j.jhazmat.2021.126658 [66] Zhang C L, Lei Y C, Qian J, et al. Sorption of organochlorine pesticides on polyethylene microplastics in soil suspension[J]. Ecotoxicology and Environmental Safety, 2021, 223. DOI:10.1016/j.ecoenv.2021.112591 [67] Wang T, Yu C C, Chu Q, et al. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films[J]. Chemosphere, 2020, 244. DOI:10.1016/j.chemosphere.2019.125491 [68] Wang Y, Wang X J, Li Y, et al. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline[J]. Chemical Engineering Journal, 2021, 404. DOI:10.1016/j.cej.2020.126412 [69] Zhang H B, Wang J Q, Zhou B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243: 1550-1557. DOI:10.1016/j.envpol.2018.09.122 [70] 刘海朱, 王隽媛, 路思远, 等. 微塑料对有机污染物的吸附及微塑料-有机物复合污染的毒性研究进展[J]. 环境生态学, 2020, 2(12): 89-94.
Liu H Z, Wang J Y, Lu S Y, et al. Research progress on adsorption of organic pollutants by microplastics and toxicity of microplastic-organic compound pollution[J]. Environmental Ecology, 2020, 2(12): 89-94. [71] 王胜利, 宋正国, 王成伟, 等. 聚苯乙烯与邻苯二甲酸二丁酯共存对紫叶生菜的毒性效应[J]. 应用生态学报, 2021, 32(9): 3335-3340.
Wang S L, Song Z G, Wang C W, et al. Toxic effects of polystyrene and dibutyl phthalate on purple lettuce[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3335-3340. [72] 单宁, 祖木热提·艾比布, 米丽班·霍加艾合买提, 等. 微塑料对黑麦草吸收和累积水体中环丙沙星的影响[J]. 环境科学研究, 2020, 33(12): 2906-2912.
Shan N, Habibul Z, Hojahmat M, et al. Effects of microplastics on ryegrass(Lolium perenne L.) uptake and accumulation of ciprofloxacin[J]. Research of Environmental Sciences, 2020, 33(12): 2906-2912. [73] Song Y K, Hong S H, Jang M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. [74] Chen Q D, Wang Q, Zhang C, et al. Aging simulation of thin-film plastics in different environments to examine the formation of microplastic[J]. Water Research, 2021, 202. DOI:10.1016/j.watres.2021.117462 [75] Niu L H, Li Y Y, Li Y, et al. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments[J]. Water Research, 2021, 188. DOI:10.1016/j.watres.2020.116449 [76] Oberbeckmann S, Labrenz M. Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation[J]. Annual Review of Marine Science, 2020, 12(1): 209-232. [77] Enfrin M, Dumée L F, Lee J. Nano/microplastics in water and wastewater treatment processes-origin, impact and potential solutions[J]. Water Research, 2019, 161: 621-638. [78] Zhang K, Hamidian A H, Tubić A, et al. Understanding plastic degradation and microplastic formation in the environment: a review[J]. Environmental Pollution, 2021, 274. DOI:10.1016/j.envpol.2021.116554 [79] Huerta Lwanga E, Thapa B, Yang X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: a potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753-757. [80] Sangale M K, Shahnawaz M, Ade A B. Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-41448-y [81] Luo H W, Zhao Y Y, Li Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714. DOI:10.1016/j.scitotenv.2020.136862 [82] Liu Z Y, Zhu Y J, Lv S S, et al. Quantifying the dynamics of polystyrene microplastics UV-aging process[J]. Environmental Science & Technology Letters, 2022, 9(1): 50-56. [83] Mundhenke T F, Li S C, Maurer-Jones M A. Photodegradation of polyolefin thin films in simulated freshwater conditions[J]. Environmental Science: Processes & Impacts, 2022, 24(12): 2284-2293. [84] Mao R F, Lang M F, Yu X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393. DOI:10.1016/j.jhazmat.2020.122515 [85] Ainali N M, Bikiaris D N, Lambropoulou D A. Aging effects on low- and high-density polyethylene, polypropylene and polystyrene under UV irradiation: an insight into decomposition mechanism by Py-GC/MS for microplastic analysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158. DOI:10.1016/j.jaap.2021.105207 [86] Ding L, Ouyang Z Z, Liu P, et al. Photodegradation of microplastics mediated by different types of soil: the effect of soil components[J]. Science of the Total Environment, 2022, 802. DOI:10.1016/j.scitotenv.2021.149840 [87] Pischedda A, Tosin M, Degli-Innocenti F. Biodegradation of plastics in soil: the effect of temperature[J]. Polymer Degradation and Stability, 2019, 170. DOI:10.1016/j.polymdegradstab.2019.109017 [88] Rillig M C, Ingraffia R, De Souza Machado A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8. DOI:10.3389/fpls.2017.01805 [89] Tiwari N, Santhiya D, Sharma J G. Microbial remediation of micro-nano plastics: current knowledge and future trends[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.115044 [90] Jadaun J S, Bansal S, Sonthalia A, et al. Biodegradation of plastics for sustainable environment[J]. Bioresource Technology, 2022, 347. DOI:10.1016/j.biortech.2022.126697 [91] Lomonaco T, Manco E, Corti A, et al. Release of harmful volatile organic compounds(VOCs) from photo-degraded plastic debris: a neglected source of environmental pollution[J]. Journal of Hazardous Materials, 2020, 394. DOI:10.1016/j.jhazmat.2020.122596 [92] Ceccarini A, Corti A, Erba F, et al. The hidden microplastics: new insights and figures from the thorough separation and characterization of microplastics and of their degradation byproducts in coastal sediments[J]. Environmental Science & Technology, 2018, 52(10): 5634-5643. [93] Ali S S, Elsamahy T, Al-Tohamy R, et al. Plastic wastes biodegradation: mechanisms, challenges and future prospects[J]. Science of the Total Environment, 2021, 780. DOI:10.1016/j.scitotenv.2021.146590 [94] 刘治君, 杨凌肖, 王琼, 等. 微塑料在陆地水环境中的迁移转化与环境效应[J]. 环境科学与技术, 2018, 41(4): 59-65, 90.
Liu Z J, Yang L X, Wang Q, et al. Migration and transformation of microplastics in terrestrial waters and effects on eco-environment[J]. Environmental Science & Technology, 2018, 41(4): 59-65, 90. [95] Zhang Z, Peng H R, Yang D C, et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-32903-y [96] Han X, Liu W, Huang J W, et al. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8. DOI:10.1038/s41467-017-02255-z [97] Ahmed T, Shahid M, Azeem F, et al. Biodegradation of plastics: current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research, 2018, 25(8): 7287-7298. [98] Zhang J Q, Gao D L, Li Q H, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704. DOI:10.1016/j.scitotenv.2019.135931 [99] Yuan J H, Ma J, Sun Y R, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715. DOI:10.1016/j.scitotenv.2020.136968 [100] Ng E L, Lwanga E H, Eldridge S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388. [101] Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4253-4268. [102] Danso D, Schmeisser C, Chow J, et al. New insights into the function and global distribution of polyethylene terephthalate(PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8). DOI:10.1128/AEM.02773-17 [103] Gan Z Q, Zhang H J. PMBD: a comprehensive plastics microbial biodegradation database[J]. Database, 2019, 2019. DOI:10.1093/database/baz119 [104] Kim N K, Lee S H, Park H D. Current biotechnologies on depolymerization of polyethylene terephthalate(PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: a critical review[J]. Bioresource Technology, 2022, 363. DOI:10.1016/j.biortech.2022.127931 [105] Dey A S, Bose H, Mohapatra B, et al. Biodegradation of unpretreated low-density polyethylene(LDPE) by Stenotrophomonas sp. and Achromobacter sp., isolated from waste dumpsite and drilling fluid[J]. Frontiers in Microbiology, 2020, 11. DOI:10.3389/fmicb.2020.603210 [106] Sangeetha Devi R, Ramya R, Kannan K, et al. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India[J]. Marine Pollution Bulletin, 2019, 138: 549-560. [107] Montazer Z, Habibi Najafi M B, Levin D B. Challenges with verifying microbial degradation of polyethylene[J]. Polymers, 2020, 12(1). DOI:10.3390/polym12010123 [108] Ghatge S, Yang Y R, Ahn J H, et al. Biodegradation of polyethylene: a brief review[J]. Applied Biological Chemistry, 2020, 63(1). DOI:10.1186/s13765-020-00511-3 [109] Kang B R, Kim S B, Song H A, et al. Accelerating the biodegradation of high-density polyethylene(HDPE) using Bjerkandera adusta TBB-03 and lignocellulose substrates[J]. Microorganisms, 2019, 7(9). DOI:10.3390/microorganisms7090304 [110] Bardají D K R, Furlan J P R, Stehling E G. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil[J]. Archives of Microbiology, 2019, 201(5): 699-704. [111] Auta H S, Emenike C U, Jayanthi B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. [112] Giacomucci L, Raddadi N, Soccio M, et al. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus[J]. New Biotechnology, 2019, 52: 35-41. [113] Urbanek A K, Rybak J, Wróbel M, et al. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste[J]. Environmental Pollution, 2020, 262. DOI:10.1016/j.envpol.2020.114281 [114] Vivi V K, Martins-Franchetti S M, Attili-Angelis D. Biodegradation of PCL and PVC: Chaetomium globosum(ATCC 16021) activity[J]. Folia Microbiologica, 2019, 64(1): 1-7. [115] Skariyachan S, Setlur A S, Naik S Y, et al. Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions[J]. Environmental Science and Pollution Research, 2017, 24(9): 8443-8457. [116] Sánchez C. Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation[J]. Biotechnology Advances, 2020, 40. DOI:10.1016/j.biotechadv.2019.107501 [117] Lou Y, Ekaterina P, Yang S S, et al. Biodegradation of polyethylene and polystyrene by greater wax moth larvae(Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome[J]. Environmental Science & Technology, 2020, 54(5): 2821-2831. [118] 高超, 郝孔利, 赵宇婷, 等. 一株能够降解聚乙烯的霍氏肠杆菌的鉴定及分析[J]. 生物技术通报, 2020, 36(10): 99-104.
Gao C, Hao K L, Zhao Y T, et al. Identification and analysis of a strain of enterobacter hormaechei capable of degrading polyethylene[J]. Biotechnology Bulletin, 2020, 36(10): 99-104. [119] Wang Z, Xin X, Shi X F, et al. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum[J]. Science of the Total Environment, 2020, 726. DOI:10.1016/j.scitotenv.2020.138564 [120] Auta H S, Abioye O P, Aransiola S A, et al. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment[J]. Journal of Environmental Management, 2022, 304. DOI:10.1016/j.jenvman.2021.114273 [121] Auta H S, Emenike C U, Fauziah S H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution, 2017, 231: 1552-1559. [122] Chaudhary A K, Vijayakumar R P. Studies on biological degradation of polystyrene by pure fungal cultures[J]. Environment, Development and Sustainability, 2020, 22(5): 4495-4508.
相关知识
土壤中微塑料对陆生植物的毒性及其降解机制研究进展
微生物技术在土壤重金属污染修复中的应用研究进展
新疆生地所在干旱区农田土壤微塑料污染研究中获进展
环境修复中植物的应用
土壤修复与改良利用的生物技术研究进展
重金属污染土壤的花卉植物修复研究进展
植物病原菌果胶酶的研究进展
十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展
沉水植物对富营养化水体的净化作用及修复技术研究进展
低温石油烃降解菌的筛选及其对石油污染土壤的生物修复研究
网址: 土壤中微塑料对陆生植物的毒性及其降解机制研究进展 https://m.huajiangbk.com/newsview124242.html