摘要: 苔藓植物作为初生演替阶段的先锋种,其独特的生理结构和脱水复苏能力在水源涵养、土壤保持、生物多样性维持等方面发挥着重要作用。以不同生境下(草地、灌木、乔木林以及空地)东亚砂藓(Racomitrium japonicum)、大灰藓(Hypnum plumaeforme)及阔边匐灯藓(Plagiomnium ellipticum)3种苔藓植物为研究对象,通过野外实地考察与室内分析,评估3种典型苔藓结皮的溶蚀能力、固土以及保水特性对九寨沟国家自然保护区震后恢复的生态效应。结果表明:东亚砂藓具有最高的碳酸酐酶活性(50.5 U·g−1 DW),进而具备最大的溶蚀速率(4.8×10−4 t·km−2· a−1 CO2)与碳汇量(2.12 mg·m−2·a−1)。不同生境条件下的不同苔藓固土能力不同,其中大灰藓结皮层的固土量最高(3.1×103 kg·hm−2),最高固土率可达到自身干重的2倍以上。此外,阔边匍灯藓的保水能力均高于大灰藓与东亚砂藓,其保水量维持在1100-1400 kg·hm−2之间,保水率可达自身干重的8倍以上。综上,在利用苔藓结皮进行生态恢复过程中,建议从成土、固土、保水等生态修复的角度出发,针对不同阶段、不同生境条件选择特定藓种,以加快九寨沟地区震后的生态恢复与重建。
Abstract: As a pioneer species in the primary succession stage, bryophytes play an important role in water conservation, soil conservation and biodiversity maintenance due to their unique physiological structure and dehydration recovery ability. In this study, three bryophytes including Racomitrium japonicum, Hypnum plumaeforme and Plagiomnium ellipticum in different habitats (grassland, shrub, forest and bare rock) were selected as the research objects. Based on field investigation and laboratory analysis, the ecological effects of dissolution activity, soil and water holding capacities of three typical bryophytes crusts on the post-earthquake restoration in the Jiuzhaigou National Nature Reserve were evaluated. The results showed that R. japonicum had the highest the carbonic anhydrase (CA) activity (50.5 U·g−1 DW), the maximum dissolution rate (4.8×10−4 t·km−2·a−1 CO2) and carbon sink content (2.12 mg ·m−2·a−1). Different mosses in different habitats had different soil consolidation capacity, among which the soil consolidation capacity of H. plumaeforme was the highest (3.1×103 kg·hm−2), and its maximum soil consolidation rate was more than 2 times of its own dry weight. In addition, the water retention capacity of P. ellipticum was higher than that of R. japonicum and H. plumaeforme. The water holding capacity of P. ellipticum was between 1100-1400 kg·hm−2, and the water retention rate was more than 8 times of its own dry weight. In conclusion, in the process of ecological restoration by using moss crusts, it is suggested to select specific bryophytes according to different stages and different habitat conditions from the perspective of ecological restoration such as soil formation, soil consolidation and water conservation, so as to accelerate the ecological restoration and reconstruction after the earthquake in Jiuzhaigou National Nature Reserve.
图 1 东亚砂藓(a)、大灰藓(b)与阔边匍灯藓(c)野外生境图
Figure 1. Different habitat conditions of Racomitrium japonicum (a), Hypnum plumaeforme (b), and Plagiomnium ellipticum (c)
图 2 不同生境条件下三种苔藓的固土量(a)与固土率(b)比较
注:不同大写字母表示同种生境类型下不同苔藓植物之间的差异显著(P<0.05);不同小写字母表示同种苔藓植物不同生境类型下之间的差异显著(P<0.05),下同。
Figure 2. Comparison of soil consolidation capacity (a) and rate (b) of three bryophytes under different habitat types
图 3 不同生境条件下三种苔藓的保水量(a)与保水率(b)比较
Figure 3. Comparison of water holding capacity (a) and rate (b) of three bryophytes under different habitat types
表 1 三种苔藓CA活性、溶蚀速率与碳汇量估算
Table 1 CA activity, estimation of dissolution rate and carbon sink of three bryophytes
苔藓种类CA活性Nevins C J, Inglett P W, Strauss S L. Biological soil crusts structure the subsurface microbiome in a sandy agroecosystem[J]. Plant and Soil, 2021, 462(1): 311−329.
[3]Oguri E, Deguchi H. Radiocesium contamination of the moss <italic>Hypnum plumaeforme</italic> caused by the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Journal of environmental radioactivity, 2018, 192: 648−653. DOI: 10.1016/j.jenvrad.2018.02.013
[4] 许欢欢,张宝琦,汪建芳,等. 黄土高原典型生物结皮对坡面产流产沙过程的影响[J]. 水土保持通报,2020,40(6):8−13. [5]Kinnell P I A, Chartres C J, Watson C L. The effects of fire on the soil in a degraded semiarid woodland. II. Susceptibility of the soil to erosion by shallow rain impacted flow[J]. Soil Research, 1990, 28(5): 779−794. DOI: 10.1071/SR9900779
[6]Belnap J, Welter J R, Grimm N B, et al. Linkages between microbial and hydrologic processes in arid and semiarid watersheds[J]. Ecology, 2005, 86(2): 298−307. DOI: 10.1890/03-0567
[7]Wang B, Wu F Z, Xiao S, et al. Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River[J]. Hydrological Processes, 2016, 30(5): 692−703. DOI: 10.1002/hyp.10613
[8] 从春蕾,刘天雷,孔祥远,等. 贵州普定喀斯特受损生态系统石生藓类植物区系及物种多样性研究[J]. 中国岩溶,2017,36(2):179−186. [9]Wang J ,Jin W ,Cui Y , et al.Earthquake-triggered landslides affecting a UNESCO Natural Site: the 2017 Jiuzhaigou Earthquake in the World National Park, China[J].Journal of Mountain Science,2018,15(7):1412−1428.
[10] 李孝永,杜国明,匡文慧. 九寨沟地震次生灾害风险及对自然保护区和自然遗产地的影响[J]. 水土保持通报,2019,39(2):301−308. [11]Ling S ,Sun C ,Li X , et al.Characterizing the distribution pattern and geologic and geomorphic controls on earthquake-triggered landslide occurrence during the 2017 Ms 7.0 Jiuzhaigou earthquake, Sichuan, China[J].Landslides,2021,18:1275−1291.
[12] 陈云,董发勤,韩颖,等.九寨沟景区“8·8”地震前后及钙华生境保育修复后植被和水系的动态变化[J].中国岩溶,2021,40(01):68−76. [13] 孙俊峰,陈其兵,王怡,等. 苔藓植物联合乡土草种应用于植被恢复工程的初步研究[J]. 四川草原,2005(3):16−18. [14] 左元彬,辜彬,艾应伟. 苔藓植物在道路边坡植被生态恢复中的应用与分析[J]. 中国水土保持科学,2006,4(s1):122−125. [15]Song L, Zhang Y J, Chen X, et al. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest[J]. Journal of Plant Research, 2015, 128(4): 573−584. DOI: 10.1007/s10265-015-0721-z
[16] 刘鑫,包维楷,胡斌,等.高寒山区道路边坡植被恢复物种选择及适宜性评估[J].应用与环境生物学报,2016,22(06):1015−1022. [17]Bu C, Li R, Wang C, et al. Successful field cultivation of moss biocrusts on disturbed soil surfaces in the short term[J].Plant and Soil, 2018, 429(1-2): 227−240.
[18] 张炜,代金莉,贺维,等. 九寨沟地震灾后植被恢复过程中树种筛选[J]. 四川林业科技,2020,41(6):117−123. [19] 夏红霞,朱大林,张跃,等. 九寨沟国家级自然保护区藓类植物多样性及地理区系[J]. 应用与环境生物学报,2022,2 8(6):1615-1621. [20]Lei Y B, Xia H X, Chen K, et al. Photosynthetic regulation in response to fluctuating light conditions under temperature stress in three mosses with different light requirements[J]. Plant Science, 2021, 311: 111020. DOI: 10.1016/j.plantsci.2021.111020
[21] 孙庚,类延宝,陈珂,等. 九寨沟国家级自然保护区苔藓植物图鉴[M],成都:四川科学技术出版社,2021. [22]Brownell P F, Bielig L M, Grof C P L. Increased carbonic anhydrase activity in leaves of sodium-deficient C<sub>4</sub> plants[J]. Functional Plant Biology, 1991, 18(6): 589−592. DOI: 10.1071/PP9910589
[23] 郭敏亮,高煜珠,王忠. 用酸度计测定植物碳酸酐酶活性[J]. 植物生理学通讯,1988(6):59−61. [24] 曾成,赵敏,杨睿,等. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较—以陈旗岩溶泉域为例[J]. 水文地质工程地质,2014,41(1):106−111. [25] 徐杰,白学良,杨持,等. 固定沙丘结皮层藓类植物多样性及固沙作用研究[J]. 植物生态学报,2003(4):545−551. [26] 李军峰,王智慧,张朝晖. 喀斯特石漠化山区苔藓多样性及水土保持研究[J]. 环境科学研究,2013,26(7):759−764. [27] 刘再华. 碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO<sub>2</sub>沉降中的意义[J]. 地球学报,2001(5):477−480. [28] 张楷燕,李同建,张显强,等. 3种石生苔藓植物碳酸酐酶对石灰岩的溶蚀作用[J]. 中国岩溶,2017,36(4):441−446. DOI: 10.11932/karst20170403 [29] 刘天雷,从春蕾,胡丹,等. 贵州普定6种喀斯特石生植物及其土壤的碳酸酐酶活性[J]. 中国岩溶,2017,36(2):187−192. DOI: 10.11932/karst20170205 [30]Zhong C J, Dao X Y. CO<sub>2</sub> source-sink in karst processes in karst areas of China[J]. Episodes Journal of International Geoscience, 1999, 22(1): 33−35.
[31]Sancho L G, Belnap J, Colesie C, et al. Carbon budgets of biological soil crusts at micro-, meso-, and global scales[M]//Biological soil crusts: an organizing principle in drylands. Berlin: Springer, 2016: 287−304.
[32] 刘润,申家琛,张朝晖. 4种苔藓植物在喀斯特石漠化地区的生态修复意义[J]. 水土保持学报,2018,32(6):141−148. [33] 赵海燕,郭荣慧,段宇涛,等. 苔藓植物护坡及固土作用试验研究[J]. 兰州大学学报(自然科学版),2018,54(3):364−368. [34] 张冠华,易亮,丁文峰,等. 三峡库区苔藓生物结皮对土壤水分入渗的影响[J]. 应用生态学报,2022,33(7):1835−1842. DOI: 10.13287/j.1001-9332.202207.001 [35] 涂娜,严友进,戴全厚,等. 喀斯特石漠化区典型生境下石生苔藓的固土持水作用[J]. 生态学报,2021,41(15):6203−6214.相关知识
科创未来丨不起眼的苔藓,如何让九寨沟裸岩“起死回生”?
隐花植物结皮在矿业废弃地生态恢复中的意义
湘潭锰矿废弃地生态修复及其生态效应研究
苔藓的生长习性(探究苔藓的喜光程度及其生态适应性)
【中国网】九寨沟全域...
沙埋对隐花植物多样性及其结皮生态功能的影响
闸控河流水文生态效应分析与调控
结球甘蓝平衡施用氮磷钾肥效应研究
黄土丘陵沟壑区退耕地植被恢复过程的生态效应研究
【案例分析】水土保持生态果园典型建设模式与效应
网址: 九寨沟典型苔藓结皮的生态效应研究 https://m.huajiangbk.com/newsview1242883.html
上一篇: 不起眼的苔藓 如何让碎石地“起 |
下一篇: 火山熔岩地貌苔藓植物多样性恢复的 |