摘要:
目的 研究不同磷、钾肥施用量和施用方法对稻茬小麦籽粒产量、蛋白质含量和氮、磷、钾素吸收与利用的影响,为稻茬小麦增产增效提供参考。
方法 2020—2021年在江苏仪征市进行小麦田间试验,种植制度为稻麦轮作,供试小麦品种为弱筋型‘宁麦33’,该地块稻麦秸秆长期全部还田。试验采用裂区设计,主区为磷肥,分别设置3个一次基施磷(P) 0、72 和144 kg/hm2 处理(分别为P0 、P1、P2)和1个基施与拔节期追施磷(P)各72 kg/hm2处理 (P3);钾为副区,设置3个一次基施钾(K) 0、72 和144 kg/hm2 处理(K0、K1、K2)和1个基施与拔节期施钾(K)各72 kg/hm2 处理 (K3)。小麦收获后,调查生物量与籽粒产量,分析植株和籽粒中氮磷钾含量和籽粒蛋白质含量。
结果 施磷、钾肥对植株氮、磷、钾养分积累量、养分利用效率、籽粒产量和蛋白质含量有显著效应和交互效应,适量的磷、钾肥 (72 kg/hm2)配施有助于量质效协同提升,而过量施用 (144 kg/hm2)增益效应不明显,甚至对养分利用效率和籽粒品质有负面影响。P2较P1未显著影响籽粒产量、蛋白质含量和氮、钾素农学效率,但降低了磷素农学效率和偏生产力;在P0条件下,K2较K1处理提升了籽粒产量及磷钾素积累量。P3较P2处理未明显影响籽粒产量、蛋白质含量、养分利用效率,K3较K2未明显影响籽粒产量和蛋白质含量,但显著增加了氮磷生理利用效率和农学效率。具体组合处理间相比,P3K2、P1K2、P1K3组合对籽粒产量和养分利用率的提升效应要优于含P0、P2与K1的组合。
结论 施氮基础上,磷、钾肥在提高植株生理生长方面存在一定的正协同效应,磷提高钾的效果好于钾提高磷的效果;磷肥分次施用与一次性基施的效果没有显著差异,而钾肥分次施用较一次基施的提升效应明显。综合而言,弱筋小麦品种宁麦33在沙壤土且有效磷不足条件下,为实现小麦量质效协同提升,推荐采用一次基施磷素72 kg/hm2和钾素一次性基施或基追施144 kg/hm2配施组合。
Abstract:
Objectives The experiment studied the effects of different phosphorus and potassium fertilizer application rates and methods on grain yield, protein content, NPK uptake, and utilization of wheat following rice, to provide a reference for optimizing yield and efficiency of rice-wheat rotation system.
Methods Field experiments with split plot design were carried out in Yizheng City, Jiangsu Province under rice and wheat rotation system from 2020 to 2021, and the teat wheat variety was low-gluten type, Ningmai 33, and all rice and wheat straw were returned to the field after harvest. The main factor was P fertilizer, including three primary base application 0, 72, and 144 kg/hm2 (P0, P1, P2) treatment, and a basal plus topdressing at jointing stage at the rate of respective 72 kg/hm2 (P3). K fertilizer was the secondary factor, with three primary base application treatments of 0, 72, and 144 kg/hm2 (K0, K1, K2), and one treatment of base plus topdressing at jointing stage at the rate of 72 kg/hm2 each time (K3). Wheat biomass and grain yield were investigated, NPK and protein contents in plants and grains were analyzed at harvest.
Results P and K fertilization had significant main effects and interaction on plant NPK accumulation, fertilizer use efficiency, grain yield and protein content. Appropriate P and K fertilization rate (72 kg/hm2) improved their synergy effect, while excessive rate (144 kg/hm2) offset or even led to negative impact, such as reducing fertilize efficiency and grain quality. Compared with P1, P2 did not significantly affect grain yield, protein content, N and K agronomic efficiency, but reduced P agronomic efficiency and the partial productivity of P fertilizer. Under the P0 condition, K2 had higher grain yield, PK accumulation than K1. Compared with P2, P3 did not affect grain yield, protein content and fertilizer use efficiency, and K3 did not affect grain yield and protein content compared with K2, but significantly increased the physiological use efficiency and agronomic efficiency of nitrogen and phosphorus. Among the combination treatments, P3K2, P1K2 and P1K3 performed better in terms of grain yield and fertilizer utilization than those containing P0, P2, and K1 rates.
Conclusions Applying P fertilizer twice did not show superiority over single basal application, while two-time application of K fertilizer had a significantly higher effect than one basal application. In general, the combination of P 72 kg/hm2 and K 144 kg /hm2, regardless of frequency of application is recommended for low-gluten wheat variety, Ningmai 33 in less fertile sandy loam soil.
图 1 小麦生长季月温度和降水量
Figure 1. Monthly temperature and precipitation during wheat growth season
图 2 不同磷钾量组合下的小麦籽粒产量
注:P0、P1、P2分别为一次基施P量0、72、144 kg/hm2,P3为基施和拔节期各追施P 72 kg/hm2;K 0、K1、K2分别为一次基施K 0、72、144 kg/hm2,K3为基施和拔节期各追施K 72 kg/hm2。柱上不同小写字母表示处理间差异显著(P<0.05)
Figure 2. Grain yield of wheat under different phosphorus and potassium fertilizer combinations
Note: P0, P1, P2 represent single basal application of P 0, 72 and 144 kg/hm2, P3 represents base and topdressing P 72 kg/hm2 each time; K0, K1, K2 represent single basal application of K 0, 72 and 144 kg/hm2, K3 represent base and topdressing K 72 kg/hm2 each time. Different small letters above the bars indicate significant difference among treatments (P<0.05)
图 3 不同磷钾组合下的小麦籽粒蛋白质含量及氮磷钾积累量
注:P0、P1、P2分别为一次基施P 0、72、144 kg/hm2,P3为基施和拔节期各追施P 72 kg/hm2;K0、K1、K2分别为一次基施K 0、72、144 kg/hm2,K3为基施和拔节期各追施K 72 kg/hm2。柱上不同小写字母表示处理间差异显著(P<0.05)
Figure 3. Grain protein content and total NPK accumulation of wheat under different phosphorus and potassium combinations
Note: P0, P1, P2 represent single basal application of P 0, 72 and 144 kg/hm2, P3 represents base and topdressing P 72 kg/hm2 each time; K0, K1, K2 represent single basal application of K 0, 72 and 144 kg/hm2, K3 represent base and topdressing K 72 kg/hm2 each time. Different small letters above the bars indicate significant difference among treatments (P<0.05)
图 4 氮磷钾农学效率与其吸收效率和生理利用效率关系
Figure 4. Relationships of nitrogen, phosphorus, and potassium agronomic efficiencies with their uptake efficiencies and physiological use efficiencies
Note: NUpE—N uptake efficiency; PUpE—P uptake efficiency; KUpE—K uptake efficiency; NPE—Physiological N use efficiency; PPE—Physiological P use efficiency; KPE—Physiological K use efficiency; NAE— N agronomic efficiency; PAE—P agronomic efficiency; KAE— K agronomic efficiency.
表 1 不同磷钾组合下小麦籽粒产量、蛋白质含量和地上部氮磷钾养分积累量
Table 1 Grain yield, protein content and NPK accumulation in aboveground part of wheat under different phosphorus and potassium combinations
处理表 2 磷钾肥施用对氮利用效率的影响
Table 2 Effects of phosphorus and potassium fertilizer application on nitrogen use efficiency
处理表 3 不同磷钾量组合下氮、磷养分利用效率
Table 3 Nitrogen and phosphorus use efficiency under different phosphorus and potassium application rate combinations
处理表 4 磷钾肥施用对磷素利用效率的影响
Table 4 Effects of phosphorus and potassium fertilizer application on phosphorus use efficiency
处理表 5 磷钾肥施用对钾利用效率的影响
Table 5 Effects of phosphorus and potassium fertilizer application on potassium use efficiency
处理Li R C, Gao Y X, Chen Q, et al. Blended controlled-release nitrogen fertilizer with straw returning improved soilnitrogen availability, soil microbial community, and root morphology of wheat[J]. Soil & Tillage Research, 2021, 212: 105045.
[4] 李涛, 何春娥, 葛晓颖, 等. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响[J]. 中国生态农业学报, 2016, 24(12): 1633–1642. Li T, He C E, Ge X Y, et al. Responses of soil mineral nitrogen contents, enzyme activities and crop yield to different C/N ratio mediated by straw retention and N fertilization[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1633–1642. [5] 李新悦, 李冰, 莫太相, 等. 长期秸秆还田对水稻土团聚体及氮磷钾分配的影响[J]. 应用生态学报, 2021, 32(9): 3257–3266. Li X Y, Li B, Mo T X, et al. Effects of long-term straw returning on distribution of aggregates and nitrogen, phosphorus, and potassium in paddy[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3257–3266. [6] 刘晓永, 李书田. 中国秸秆养分资源及还田的时空分布特征[J]. 农业工程学报, 2017, 33(21): 1–19. Liu X Y, Li S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 1–19. [7]Yu L C, Zhang P P, Li F W, et al. Interaction of nitrogen and phosphorus on wheat yield, N use efficiency and soil nitrate nitrogen distribution in the north China plain[J]. International Journal of Plant Production, 2020, 14(3): 415–426. DOI: 10.1007/s42106-020-00093-6
[8] 马悦, 田怡, 于杰, 等. 北方麦区土壤有效磷阈值及小麦产量、籽粒氮磷钾含量对监控施肥的响应[J]. 植物营养与肥料学报, 2021, 27(10): 1675–1691. Ma Y, Tian Y, Yu J, et al. Threshhold of soil available P and the response of wheat yield and grain N, P, and K concentrations to test-integrated fertilizer application in the northern wheat production region of China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1675–1691. DOI: 10.11674/zwyf.2021109 [9] 师新新, 张佳祺, 张雨萌, 等. 小麦钾离子通道蛋白基因TaPC1介导植株抵御低钾逆境功能研究[J]. 植物营养与肥料学报, 2020, 26(5): 840–849. Shi X X, Zhang J Q, Zhang Y M, et al. Functional characterization on the wheat potassium channel gene TaPC1 in mediating plant adaptation to potassium deprivation[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 840–849. DOI: 10.11674/zwyf.19381 [10]Zhang Y L, Gunasekhar N, Sean M, et al. Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse[J]. Scientific Reports, 2017, 7(1): 11391. DOI: 10.1038/s41598-017-11681-4
[11] 龙素霞, 李芳芳, 石书亚, 等. 氮磷钾配施对小麦植株养分吸收利用和产量的影响[J]. 作物杂志, 2018, (6): 96–102. Long S X, Li F F, Shi S Y, et al. Effects of coordinately application of N, P, and K on nutrient contents in plants and soils and wheat yield[J]. Crops, 2018, (6): 96–102. [12] 李青军, 张炎, 胡伟, 等. 滴灌磷钾肥基追比对滴灌玉米干物质积累、产量及养分吸收的影响[J]. 中国土壤与肥料, 2016, (6): 74–80. Li Q J, Zhang Y, Hu W, et al. Effects of base to dressing ratios of drip phosphorus and potassium on dry matter accumulation, yield and nutrient uptake of maize under drip irrigation[J]. Soil and Fertilizer Sciences in China, 2016, (6): 74–80. [13] 张曼玉, 李小伟, 杨海昌, 等. 不同施磷方式对滴灌棉田土壤磷动态及无机磷组分的影响[J]. 灌溉排水学报, 2021, 40(10): 87–94. Zhang M Y, Li X W, Yang H C, et al. The ways of fertilizing phosphorus affects its dynamics and inorganic forms in drip-irrigated cotton field[J]. Journal of Irrigation and Drainage, 2021, 40(10): 87–94. [14] 高鸣慧, 李娜, 彭靖, 等. 秸秆和生物炭还田对棕壤团聚体分布及有机碳含量的影响[J]. 植物营养与肥料学报, 2021, 26(11): 1978–1986. Gao M H, Li N, Peng J, et al. Effects of straw and biochar returning on soil aggregates distribution and organic carbon content in brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 26(11): 1978–1986. [15] 丁锦峰. 稻茬小麦超高产群体形成机理与调控[D]. 扬州: 扬州大学博士学位论文, 2013.Ding J F. Formation mechanism and regulation of super-high-yielding population in wheat following rice[D]. Yangzhou: PhD dissertation of Yangzhou University, 2013.
[16] 单旭东, 石琳, 田帅, 等. 玉米秸秆还田后磷肥减量对冬小麦磷素积累量和产量的影响[J]. 江苏农业学报, 2021, 37(4): 884–892. Shan X D, Shi L, Tian S, et al. Effects of phosphate fertilizer reduction on phosphorus accumulation and yield of winter wheat after maize straw returning[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(4): 884–892. DOI: 10.3969/j.issn.1000-4440.2021.04.010 [17] 孙慧敏, 于振文, 颜红, 等. 施磷量对小麦品质和产量及氮素利用的影响[J]. 麦类作物学报, 2006, 26(2): 135–138. Sun H M, Yu Z W, Yan H, et al. Effect of phosphorus rate applied on quality, yield and nitrogen utilization in winter wheat[J]. Journal of Triticeae Crops, 2006, 26(2): 135–138. DOI: 10.7606/j.issn.1009-1041.2006.02.078 [18] 黄绍敏, 宝德俊, 皇甫湘荣, 等. 长期定位施肥小麦的肥料利用率研究[J]. 麦类作物学报, 2006, 26(2): 121–126. Huang S M, Bao D J, Huangfu X R, et al. Study on fertilizer utilization efficiency of wheat with long-term positioning fertilization[J]. Journal of Triticeae Crops, 2006, 26(2): 121–126. DOI: 10.3969/j.issn.1009-1041.2006.02.026 [19] 姜宗庆, 封超年, 黄联联, 等. 施磷量对小麦物质生产及吸磷特性的影响[J]. 植物营养与肥料学报, 2006, 12(5): 628–634. Jiang Z Q, Feng C N, Huang L L, et al. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(5): 628–634. DOI: 10.11674/zwyf.2006.0505 [20] 阳显斌, 张锡洲, 李廷轩, 等. 施磷量对不同磷效率小麦氮、磷、钾积累与分配的影响[J]. 核农学报, 2012, 26(1): 141–149. Yang X B, Zhang X Z, Li T X, et al. Effects of applied P amount on nitrongen,phosphorus and potassium accmlation and distribution in wheats of different phosphorus use efficiency[J]. Acta Agriculturae Nucleatae Sinica, 2012, 26(1): 141–149. [21] 郭振清, 付陈陈, 李婧实, 等. 施氮对花后遮光条件下小麦产量与蛋白质含量的影响[J]. 麦类作物学报, 2021, 41(7): 883–890. Guo Z Q, Fu C C, Li J S, et al. Effect of different nitrogen rate on wheat yield and protein control under shading conditions after anthesis[J]. Journal of Triticeae Crops, 2021, 41(7): 883–890. DOI: 10.7606/j.issn.1009-1041.2021.07.12 [22] 赵俊晔, 于振文, 李延奇, 等. 施氮量对小麦氮磷钾养分吸收利用和产量的影响[J]. 西北植物学报, 2006, 26(1): 98–103. Zhao J Y, Yu Z W, Li Y Q, et al. Effects of different nitrogen rates of fertilization on nitrogen, phosphorous and potassium uptakes and utilizations as well as kernel yield of wheat under high-yield circumstances[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(1): 98–103. DOI: 10.3321/j.issn:1000-4025.2006.01.018 [23] 张会民, 刘红霞, 王林生, 等. 钾对旱地冬小麦后期生长及籽粒品质的影响[J]. 麦类作物学报, 2004, 24(3): 73–75. Zhang H M, Liu H X, Wang L S, et al. Effect of potassium on the growth at the late stages and grain quality of winter wheat in dryland[J]. Journal of Triticeae Crops, 2004, 24(3): 73–75. [24] 邓永兴, 王文亮, 周苏玫, 等. 小麦根际解钾微生物与土壤钾含量、钾素利用率及根系活力的关系[J]. 植物营养与肥料学报, 2021, 27(6): 1027–1043. Deng Y X, Wang W L, Zhou S M, et al. Relationships of potassium-releasing rhizosphere microorganisms with soil potassium content, potassium use efficiency and root vigor in wheat[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 1027–1043. DOI: 10.11674/zwyf.20545 [25] 何刚, 王朝辉, 李富翠, 等. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响[J]. 中国农业科学, 2016, 49(9): 1657–1671. He G, Wang Z H, Li F C, et al. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland[J]. Scientia Agricultura Sinica, 2016, 49(9): 1657–1671. DOI: 10.3864/j.issn.0578-1752.2016.09.003 [26]Duan E G, Sullican C O, Roper M M, et al. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review[J]. Field Crops Research, 2018, 226: 56–65. DOI: 10.1016/j.fcr.2018.07.010
[27] 于振文, 梁晓芳, 李延奇, 等. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响[J]. 应用生态学报, 2007, 18(1): 69–74. Yu Z W, Liang X F, Li Y Q, et al. Effects of potassium application amount and potassium application period on the absorption and utilization of nitrogen and potassium in wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 69–74. DOI: 10.3321/j.issn:1001-9332.2007.01.012 [28] 郭丹丹, 刘哲文, 常旭虹, 等. 不同氮磷钾肥处理对小麦产量和品质的影响[J]. 农业科技通讯, 2022, (3): 47–52. Guo D D, Liu Z W, Chang X H, et al. Effects of different nitrogen, phosphorus and potassium fertilizer treatments on wheat yield and quality[J]. Bulletin of Agricultural Science and Technology, 2022, (3): 47–52. DOI: 10.3969/j.issn.1000-6400.2022.03.016 [29] 郑志松, 王建敏. 水肥耦合对冬小麦产量及其构成因素的影响[J]. 河南农业科学, 2012, 41(8): 26–33. Zheng Z S, Wang J M. Combining influence of irrigation and fertilizer on grain yield and its components of winter wheat[J]. Journal of Henan Agricultural Sciences, 2012, 41(8): 26–33. [30] 郑志松, 王晨阳, 张美微, 等. 水、氮磷肥及其互作对小麦淀粉糊化特性的影响[J]. 中国生态农业学报, 2012, 20(3): 310–314. Zheng Z S, Wang C Y, Zhang M W, et al. Effects of water, nitrogen and phosphorus coupling on starch paste properties of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 310–314. DOI: 10.3724/SP.J.1011.2012.00310 [31] 董合林, 李鹏程, 刘敬然, 等. 钾肥用量对麦棉两熟制作物产量和钾肥利用率的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1159–1168. Dong H L, Li P C, Liu J R, et al. Effect of potassium application on crop yields and potassium use efficiencies in a wheat-cotton double cropping system[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1159–1168. DOI: 10.11674/zwyf.2015.0508 [32]Parsons K J, Zheljazkov V D, Macleod J, Caldwell C D. Soil and tissue phosphorus, potassium, calcium, and sulfur as affected by dairy manure application in a no-till corn, wheat, and soybean rotation[J]. Agronomy Journal, 2007, 99(5): 243.
[33] 曾维军, 康超, 任明见, 等. 氮、磷、钾肥对紫色小麦面粉主要品质的影响[J]. 山西农业科学, 2021, 49(9): 1105–1109. Zeng W J, Kang C, Ren M J, et al. Effects of nitrogen, phosphorus and potassium fertilizers on main qualities of purple wheat flour[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(9): 1105–1109. DOI: 10.3969/j.issn.1002-2481.2021.09.16相关知识
滴灌和施肥频率对强筋小麦产量及水分和氮素利用效率的影响
氮磷钾配施对小麦植株养分吸收利用和产量的影响
强筋与弱筋小麦籽粒蛋白质组分与加工品质对灌浆期弱光的响应
有机无机复混肥料对水稻产量及养分吸收利用的影响
粮棉轮作模式下施氮磷钾肥量对小麦产量及籽粒氮磷钾含量的影响
氮、磷、钾肥施用量对白花前胡产量和品质的影响
叶面施锌与氮磷钾肥配施的小麦籽粒富锌潜力及机制
不同土壤条件下化学调控对小麦产量和品质的影响
轮作模式与周期对黄土高原旱地小麦产量、养分吸收和土壤肥力的影响
氮磷钾肥施用量和配比对桑树养分吸收与分配的影响
网址: 磷钾肥施用量和方法对弱筋小麦籽粒产量和蛋白质含量及养分吸收利用的影响 https://m.huajiangbk.com/newsview1255016.html
上一篇: 肥料咋施更科学 |
下一篇: 石河子大学农学院马富裕教授团队在 |