首页 > 分享 > 加工型番茄果实硬度特异材料的果实特性及果肉组织特征

加工型番茄果实硬度特异材料的果实特性及果肉组织特征

摘要: 为能分析不同硬度加工番茄品系的果实特性和果肉组织特征差异,该文以田间发现的特异高硬度果实材料WT-75和WT-76为研究对象,分析了果实的可溶性固形物、总酸、番茄红素、单果耐压力、果肉组织含水量和可溶性果胶等主要品质指标差异,并利用石蜡切片和扫描电镜技术,研究不同材料间的果肉组织特征差异。结果表明,相较于对照ZH-10较软的手捏感官硬度评价,WT-75和WT-76的评价为特硬。利用平板挤压法测试硬度,WT-75和WT-76的耐压力分别为79.70和77.71 N,极显著高于(P<0.01)对照ZH-10的耐压力。在测试的果实主要品质指标中,WT-75和WT-76的可溶性果胶含量显著高于(P<0.05)对照ZH-10,其他的品质指标在各研究材料间不存在差异的显著性(P>0.05)。WT-75和WT-76的果肉组织石蜡切片结果表明,在200 μm视野下WT-75和WT-76的平均果肉细胞面积分别为0.037 6和0.053 2 mm2明显(P<0.01)小于ZH-10(果肉细胞面积为0.089 9 mm2),且排列紧密。常温放置35 d后,WT-75的果实腐烂率达93%,而对照ZH-10腐烂率为64%,WT-76的腐烂率为33%,ZH-10和WT-76的腐烂程度小于(P<0.05)WT-75。结合与果肉组织的扫描电镜结果,相较对照ZH-10和WT-76,WT-75的果皮中分布了大量的小皮孔,这种果皮结构的特异性可能是导致果实的耐贮藏性显著降低的主要原因。通过对特异果实硬度加工型番茄果实主要品质、果肉组织特征和常温耐贮藏性研究,为后期适宜加工型番茄杂交品种亲本的选配筛选提供理论依据。

关键词: 加工  /  果实  /  硬度  /  番茄  /  果实品质  /  果肉组织  

Abstract: Abstract: The object of this paper is to analyze fruit and flesh tissue of special firmness type processing tomato breeding lines. The breeding lines of WT-75 and WT-76 generated via open field were employed in this paper to evaluate the variance of fruit’s main quality traits, such as the content of fruit soluble solid, the content of total acid, the content of lycopene, compression resistance of per fruit, water content for flesh tissue, and the content of soluble pecti. Meanwhile, the characteristic of fruit flesh tissue between different materials using paraffin section and electron microscope technology was also analyzed. The results showed that the firmness of WT-75 and WT-76 gained by hand squeezing was ultra-hard compared to the soft fruit of control ZH-10. The compression resistance of per fruit of WT-75 and WT -76 tested by flat plate compression were 79.70 N and 77.71 N which were significantly (P<0.01) stronger than control ZH-10 level. Moreover, among all the fruit quality traits, the concentration of soluble pectin of WT-75 and WT -76 was significantly (P<0.05) higher than control ZH-10, and the content of soluble pecti of this three lines was 0.66 g/kg, 0.64 g/kg and 0.55 g/kg, respectively. The significant variance did not exist (P>0.05) among other fruit quality traits among different research lines. The results of paraffin section showed that the average fruit flesh cell area of WT-75 and WT-76 was 0.0376 mm2 and 0.0532 mm2 at 200 μm vision which was obviously smaller (P<0.01) and arranged so tightly than control ZH-10 whose average fruit flesh cell area was 0.089 9 mm2. The flesh cell size result from electron microscope observation was similar to the result from paraffin section. Moreover, when the fruits of three research lines stored under room temperature after 35 days, the rotted fruit percent of the control ZH-10, WT-75 and WT-76 was 64%, 93% and 33%, respectively. The degree of rotted fruit of WT-75 was higher than ZH-10 and WT-76. Furthermore, compared to control ZH-10 and WT-76, more lenticels were found on WT-75’s fruit flesh skin from electron microscope observation, which may be the main reason caused the fruits of WT-75 easily rotted under room temperature storage. The research results of main quality of fruit, characteristic of flesh and room temperature storage differences of special firmness type in processing tomato will provide theoretically support for screening the suitable parental lines for hybridization of processing tomato cultivar in the future.

[1] 余庆辉,赵得提,韩启新,等. 加工番茄生产技术创新战略研究[J]. 新疆农业科学,2006,43(增刊1):1-4.Yu Qinghui, Zhao Deti, Han Qixing, et al. Strategic study on innovative producing technology of processing tomato[J]. Xinjiang Agricultural Sciences, 2006, 43(Supp.1): 1-4. (in Chinese with English abstract) [2] 杨涛,杨生保,李宁,等. 番茄ILs果实耐压力测定及与其它果实性状相关性分析[J]. 新疆农业科学,2015,52(8):1373-1381.Yang Tao, Yang Shengbao, Li Ning, et al. Fruit's compression resistance testing of ILs in tomato and correlation analysis with other fruit traits[J]. Xinjiang Agricultural Sciences, 2015, 52(8): 1373-1381. (in Chinese with English abstract) [3] 傅力,刘彤,徐立生,等. 番茄酱中几种微生物指标检测方法的探讨[J]. 新疆农业大学学报,2002,25(4):51-53.Fu Li, Liu Tong, Xu Lisheng, et al.Studies on examination methods of several microbiological index of tomato paste[J]. Journal of Xinjiang Agricultural University, 2002, 25(4): 51-53.(in Chinese with English abstract) [4] Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-Box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus[J]. Science, 2002, 296(5566): 343-346. [5] Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato MADS-Box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening dependent manner[J]. Plant Physiology, 2011, 157(3): 1568-1579. [6] Li L, Zhu B Z, Yang P Y, et al. The regulation mode of RIN transcription factor involved in ethylene biosynthesis in tomato fruit[J]. Journal of Science of Food and Agriculture, 2011, 91(10): 1822-1828. [7] Li L, Zhu B Z, Fu D Q, et al. RIN transcription factor plays an important role in ethylene biosynthesis of tomato fruit ripening[J]. Journal of Science of Food and Agriculture, 2011, 91(13): 2308-2314. [8] Klee H J, Giovannoni J J. Genetics and control of tomato fruit ripening and quality attributes[J]. The Annual Review of Genetics, 2011, 45(1): 41-59. [9] Thompson A J, Tor M, Barry C S, et al. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant[J]. Plant Physiology, 1999, 120(2): 383-389. [10] Manning K, T?r M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nature Genetics, 2006, 38(8): 948-952. [11] 王柏柯,帕提古丽,杨生保,等. 高粘加工番茄新品种新番39号的选育[J]. 中国蔬菜,2010,16(8):93-95.Wang Baike, Patiguli, Yang Shengbao, et al. A high viscosity and processing tomato F1 hybrid -'Xinfan No.39'[J].China Vegetables, 2010, 16(8): 93-95. (in Chinese with English abstract) [12] 杨生保,王柏柯,帕提古丽,等. 机械采收加工番茄新品种新番40号的选育[J]. 中国蔬菜,2010,20(8):85-87.Yang Shengbao, Wang Baike, Patiguli, et al. A machine harvest processing tomato F1 hybrid-'Xinfan No.40'[J].China Vegetables, 2010, 20(8): 85-87. (in Chinese with English abstract) [13] Rick C, Butler L, Giovannoni J J, et al. Cytogenetics of the tomato[J]. Advances in Genetics, 1956, 8: 267-382. [14] Chapman N H, Bonnet J, Grivet L, et al. High-Resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus[J]. Plant Physiology, 2012, 159(4): 1644-1657. [15] Marín-rodríguez M C, Orchard J, Seymouor G B. Pectate lyases, cell wall degradation and fruit softening[J]. Journal of Experimental Botany, 2002, 53(377): 2115-2119. [16] Risk S S. Firmness and Related Chemical Constituents of Tomatoes[D]. Columbus: The Ohio State University, 1964. [17] Hee P W. Application of advanced backcross quantitative trait locus (QTL) analysis in crop improvement[J]. Journal of Plant Breeding and Crop Science, 2010, 2(8): 221-232. [18] 刘磊,宋燕,郑峥,等. 利用Solanum pennellii LA0716渐渗系群体初步定位番茄果实硬度QTL[J]. 植物遗传资源学报,2015,16(2):323-329.Liu Lei, Song Yan, Zhen Zheng, et al. QTL mapping of fruit firmness with an introgression line population derived from the wild tomato species Solanum pennellii LA0716[J]. Journal of Plant Genetic Resources, 2015, 16(2): 323-329. (in Chinese with English abstract) [19] Yang S B, Yu Q H, Wang B K, et al. Identification of QTLs for red fruit firmness by using the wild tomato species Solanum pennellii LA716 Introgression Lines[J]. Plant Breeding, 2016, 135(6): 728-734. [20] Cao Y, Tang X F, Giovannoni J, et al. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening[J]. BMC Plant Biology, 2012, 12(1): 211. [21] Powell A L, Kalamaki M S, Kurien P A, et al. Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7450-7455. [22] Cantu D, Vicente A R, Greve L C, et al. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea[J]. Proceedings of the National Academy of Sciences, 2008, 105(3): 859-864. [23] Kalamaki M S, Powell A L T, Struijs K, et al. Transgenic overexpression of expansin influences particle size distribution and improves viscosity of tomato juice and paste[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7465-7471. [24] 邢英英,张富仓,张燕,等. 膜下滴灌水肥耦合促进番茄养分吸收及生长[J]. 农业工程学报,2014,30(21):70-80.Xing Yingying, Zhang Fucang, Zhang Yan, et al. Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato's nutrient uptake and growth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 70-80. (in Chinese with English abstract) [25] GB/T 14215-2008,番茄红素含量测定[S]. [26] NY/T 2016-2011,果胶含量测定[S]. [27] GB/T 12456-2008,果实总酸含量测定[S]. [28] 刘家尧,刘新. 植物生理学实验教程[M]. 北京:高等教育出版社,2011. [29] Uluisik S, Chapman N H, Smith R, et al. Genetic improvement of tomato by targeted control of fruit softening[J]. Nature Biotechnology, 2016, 34(9): 950-952. [30] 雷静,张娜,闫瑞香,等. LED红蓝弱光照射保持樱桃番茄冷库贮藏品质[J]. 农业工程学报,2016,32(9):248-254.Lei Jing, Zhang Na, Yan Ruixiang, et al. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 248-254.(in Chinese with English abstract)Fruit characteristic and flesh tissue feature of special firmness type processing tomato cultivar

相关知识

番茄的植物学特征及生物学特性
菠萝蜜的形态特征,果实比较大且果肉甜美
枇杷果实采后质地的变化与调控
红肉猕猴桃新品种红实2号果实生长规律研究
果实
果实开裂的原因有哪些?果实开裂原因分析
Horticulture Research丨浙江大学果实品质生物学团队揭示桃果实温度依赖性和组织特异性花青苷积累的调控机制
小蓬的开花生物学及果实形态发育特性
设施番茄果实生长与环境因子的关系
百香果——常绿植物的美味果实(探寻百香果的常绿特性及营养价值)

网址: 加工型番茄果实硬度特异材料的果实特性及果肉组织特征 https://m.huajiangbk.com/newsview1286506.html

所属分类:花卉
上一篇: 我所张明方教授团队成功定位控制西
下一篇: ‘豫大籽’与‘突尼斯’石榴的种子