种子休眠与萌发调控的研究进展
[1] Bewley J D, Bradford K J, Hilhorst H W M, Konogaki H. Seed:Physiology of Development, Germination and Dormancy, 3rd edn. New York: Springer, 2013.[2] Sato H, Köhler C. Genomic imprinting regulates establishment and release of seed dormancy. Curr Opin Plant Biol, 2022, 69: 102264.
doi: 10.1016/j.pbi.2022.102264[3] Ashikawa I, Mori M, Nakamura S, Abe F A. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res, 2014, 23: 621-629.
doi: 10.1007/s11248-014-9800-5pmid: 24752830[4] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1pmid: 26343970[5] Nonogaki H. Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol, 2019, 61: 541-563.
doi: 10.1111/jipb.12762[6] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740pmid: 18257711[7] Iwasaki M, Penfield S, Lopez-Molina L. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu Rev Plant Biol, 2022, 73: 355-378.
doi: 10.1146/annurev-arplant-102820-090750pmid: 35138879[8] Sohn S I, Pandian S, Kumar T S, Zoclanclounon Y A B, Muthuramalingam P, Shilpha J, Satish L, Ramesh M. Seed dormancy and pre-harvest sprouting in rice—an updated overview. Int J Mol Sci, 2021, 22: 11804.
doi: 10.3390/ijms222111804[9] Nikolaeva M G, Rasumova M V, Gladkova V N. Reference Book on Dormant Seed Germination. Leningrad: Nauka, 1985.[10] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2004, 14: 1-16.
doi: 10.1079/SSR2003150[11] Baskin J M, Baskin C C. Seeds:Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edn. Amsterdam: Academic Press, 2014.[12] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523.
doi: 10.1111/j.1469-8137.2006.01787.xpmid: 16866955[13] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15: 281-307.
doi: 10.1079/SSR2005218[14] Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J J. Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012, 35: 1769-1786.
doi: 10.1111/pce.2012.35.issue-10[15] Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci, 2021, 22: 5069.
doi: 10.3390/ijms22105069[16] Matilla A J. Seed dormancy—molecular control of its induction and alleviation. Plants, 2020, 9: 1402.
doi: 10.3390/plants9101402[17] Carrillo-Barral N, Rodríguez-Gacio M C, Matilla A J. Delay of germination-1 (DOG1): a key to understanding seed dormancy. Plants, 2020, 9: 480.
doi: 10.3390/plants9040480[18] Nonogaki H. A repressor complex silencing ABA signaling in seeds? J Exp Bot, 2020, 71: 2847-2853.
doi: 10.1093/jxb/eraa062pmid: 32004374[19] Guan S X, Li Y S, Zeng W Q, Lin J W, Zhan H, Han X Y, Zhang X L, Lu X J. A gibberellin, abscisic acid, and DELAY OF GERMINATION 1 interaction network regulates critical developmental transitions in model plant Arabidopsis thaliana: a review. Appl Ecol Environ Res, 2021, 19: 4699-4720.
doi: 10.15666/aeer[20] Nelson S K, Kanno Y, Seo M, Steber C M. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. Front Plant Sci, 2023, 14: 1145414.[21] Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams S R, Kamiya Y, Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol, 2010, 51: 1988-2001.
doi: 10.1093/pcp/pcq158pmid: 20959378[22] Liu S J, Xu H H, Wang W Q, Li N, Wang W P, Møller I M, Song S Q. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol Plant, 2015, 154: 142-161.[23] Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q. Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul, 2012, 66: 191-202.
doi: 10.1007/s10725-011-9643-5[24] 邓志军, 宋松泉. ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用. 云南植物研究, 2008, 30: 440-446. Deng Z J, Song S Q. Inhibitory effect of ABA on seed germination of Dalbergia fusca and antagonism of other phytohormones to ABA. Acta Bot Yunnanica, 2008, 30: 440-446 (in English with Chinese abstract).[25] Xu F, Tang J U, Wang S X, Cheng X, Wang H R, Ou S J, Gao S P, Li B S, Qian Y W, Gao C X, Chu C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet, 2022, 54: 1972-1982.
doi: 10.1038/s41588-022-01240-7pmid: 36471073[26] Liu A, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One, 2013, 8: e56570.
doi: 10.1371/journal.pone.0056570[27] Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 2007, 19: 32-45.
doi: 10.1105/tpc.106.044602pmid: 17220201[28] Ariizumi T, Hauvermale A L, Nelson S K, Hanada A, Yamaguchi S, Steber C M. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol, 2013, 162: 2125-2139.
doi: 10.1104/pp.113.219451pmid: 23818171[29] Deng Z J, Cheng H Y, Song S Q. Effects of temperature, scarification, dry storage, stratification, phytohormone and light on dormancy-breaking and germination of Cotinus coggygria var. cinerea (Anacardiaceae) seeds. Seed Sci Technol, 2010, 38: 572-584.
doi: 10.15258/sst[30] Chen H H, Tong J H, Fu W, Liang Z W, Ruan J X, Yu Y G, Song X, Yuan L B, Xiao L T, Liu J, Cui Y H, Huang S Z, Li C L. The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiol, 2020, 184: 1969-1978.
doi: 10.1104/pp.20.01255pmid: 33037128[31] Hu Q, Lin C, Guan Y, Sheteiwy M S, Hu W, Hu J. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Sci Rep, 2017, 7: 5295.
doi: 10.1038/s41598-017-04104-x[32] Steinbach H S, Benech-Arnold R L, Sanchez R A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol, 1997, 113: 149-154.
pmid: 12223597[33] Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa N K, Lopez-Molina L. Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA signaling for the control of early postgermination growth in Arabidopsis thaliana. Plant Cell Physiol, 2010, 51: 239-251.[34] Penfield S, Gilday A D, Halliday K J, Graham I A. DELLA- mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol, 2006, 16: 2366-2370.
doi: 10.1016/j.cub.2006.10.057pmid: 17141619[35] Nonogaki H. ABA responses during seed development and germination. Adv Bot Res, 2019, 92: 171-217.
doi: 10.1016/bs.abr.2019.04.005[36] 宋松泉, 刘军, 徐恒恒, 刘旭, 黄荟. 脱落酸代谢与信号传递及其调控种子休眠与萌发的分子机制. 中国农业科学, 2020, 53: 857-873.
doi: 10.3864/j.issn.0578-1752.2020.05.001 Song S Q, Liu J, Xu H H, Liu X, Huang H. ABA metabolism and signaling and their molecular mechanism regulating seed dormancy and germination. Sci Agric Sin, 2020, 53: 857-873. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.05.001[37] Lim J, Lim C W, Lee S C. Core components of abscisic acid signaling and their post-translation modification. Front Plant Sci, 2022, 13: 895698.
doi: 10.3389/fpls.2022.895698[38] Liu X, Hou X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci, 2018, 9: 251.
doi: 10.3389/fpls.2018.00251pmid: 29535756[39] Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An updated overview on the regulation of seed germination. Plants, 2020, 9: 703.
doi: 10.3390/plants9060703[40] Nelson S K, Steber C M. Gibberellin hormone signal perception:Down-regulating DELLA repressors of plant growth and development. In: HeddenP, ThomasS G, Annual Plant Reviews, Volume 49: The Gibberellins. Ltd,eds. Oxford: John Wiley & Sons, 2016. pp 153-187.[41] 宋松泉, 刘军, 黄荟, 伍贤进, 徐恒恒, 张琪, 李秀梅, 梁娟. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制. 中国科学, 2020, 50: 599-615. Song S Q, Liu J, Huang H, Wu X J, Xu H H, Zhang Q, Li X M, Liang J. Gibberellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy. Sci Sin Vitae, 2020, 50: 599-615. (in Chinese with English abstract)
doi: 10.1360/SSV-2019-0289[42] McGinty E M, Murphy K M, Hauvermale A L. Seed dormancy and preharvest sprouting in quinoa (Chenopodium quinoa Willd). Plants, 2021, 10: 458.
doi: 10.3390/plants10030458[43] Hauvermale A L, Tuttle K M, Takebayashi Y, Seo M, Steber C M. Loss of Arabidopsis thaliana seed dormancy is associated with increased accumulation of the GID1 GA hormone receptors. Plant Cell Physiol, 2015, 56: 1773-1785.
doi: 10.1093/pcp/pcv084pmid: 26136598[44] Tuttle K M, Martinez S A, Schramm E C, Takebayashi Y, Seo M, Steber C M. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum L. Seed Sci Res, 2015, 25: 179-193.
doi: 10.1017/S0960258515000057[45] Patwa N, Penning B W. Environmental impact on cereal crop grain damage from preharvest sprouting and late maturity α-amylase. In: PatwaN, PenningB W,eds. Sustainable Agriculture in the Era of Climate Change, Cham, Switzerland: Springer, 2020. pp 23-41.[46] Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell, 2008, 20: 2729-2745.
doi: 10.1105/tpc.108.061515pmid: 18941053[47] Lee K P, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA, 2010, 107: 19108-19113.
doi: 10.1073/pnas.1012896107[48] Kendall S L, Hellwege A, Marriot P, Whalley C, Graham I A, Penfifield S. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell, 2011, 23: 2568-2580.
doi: 10.1105/tpc.111.087643[49] Tognacca R S, Botto J F. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. Plant Commun, 2021, 2: 100169.
doi: 10.1016/j.xplc.2021.100169[50] Chiang G C K, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe W J J, Donohue K, De Meaux J. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol, 2011, 20: 3336-3349.[51] Née G, Xiang Y, Soppe W J J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9pmid: 27710774[52] Yatusevich R, Fedak H, Ciesielski A, Krzyczmonik K, Kulik A, Dobrowolska G, Swiezewski S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep, 2017, 18: 2186-2196.
doi: 10.15252/embr.201744862pmid: 29030481[53] Buijs G, Kodde J, Groot S P C, Bentsink L. Seed dormancy release accelerated by elevated partial pressure of oxygen is associated with DOG loci. J Exp Bot, 2018, 69: 3601-3608.
doi: 10.1093/jxb/ery156pmid: 29701795[54] Nakabayashi K, Bartsch M, Ding J, Soppe W J J. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLoS Genet, 2015, 11: e1005737.
doi: 10.1371/journal.pgen.1005737[55] Nonogaki H. Seed biology updates-highlights and new discoveries in seed dormancy and germination research. Front Plant Sci, 2017, 8: 524.[56] Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol, 2016, 170: 947-955.
doi: 10.1104/pp.15.01483[57] Graeber K, Voegele A, Büttner-Mainik A, Sperber K, Mummenhoff K, Leubner-Metzger G. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium DELAY OF GERMINATION 1genes. Plant Physiol, 2013, 161: 1903-1917.
doi: 10.1104/pp.112.213298pmid: 23426197[58] Szakonyi D, Duque P. Alternative splicing as a regulator of early plant development. Front Plant Sci, 2018, 19: 1174.[59] Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe W J J. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds. Plant Cell, 2012, 24: 2826-2838.
doi: 10.1105/tpc.112.100214[60] Ashikawa A, Abe F, Nakamura S.DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in Arabidopsis. Plant Sci, 2013, 208: 1-9.[61] Carrillo-Barral N, Matilla A J, García-Ramas C, Rodríguez-Gacio M C. ABA-stimulated SoDOG1expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds. Physiol Plant, 2015, 155: 457-471.
doi: 10.1111/ppl.12352pmid: 26046653[62] Rikiishi K, Maekawa M. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.). PLoS One, 2014, 9: e107618.
doi: 10.1371/journal.pone.0107618[63] 张洋洋. 水稻DOG1-like基因克隆、表达分析与功能预测. 中国科学院大学硕士学位论文, 北京, 2016. Zhang Y Y. Cloning, Expression Analysis and Functional Prediction of DOG1-like Genes in Rice. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2016.[64] Née G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe W J J. DELAY OF GERMINATION 1 requires PP2C phosphatases of the ABA signaling pathway to control seed dormancy. Nat Commun, 2017, 8: 72.
doi: 10.1038/s41467-017-00113-6[65] Nishimura N, Tsuchiya W, Moresco J J, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder J I, Yates J R, Hirayama T, Yamazaki T. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat Commun, 2018, 9: 2132.
doi: 10.1038/s41467-018-04437-9pmid: 29875377[66] Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after- ripening. Plant Cell, 2011, 23: 2196-2208.
doi: 10.1105/tpc.111.086694[67] Bewley J D, Nonogaki H. Seed maturation and germination. In: BewleyJ D, NonogakiH, Reference Module in Life Sciences. North York, ON,eds. Canada: Elsevier, 2017.[68] Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1genes. Plant Mol Biol, 2010, 73: 67-87.
doi: 10.1007/s11103-009-9583-xpmid: 20013031[69] Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. The AFL subfamily of B3 transcription factors: Evolution and function in angiosperm seeds. J Exp Bot, 2017, 68: 871-880.
doi: 10.1093/jxb/erw458pmid: 28007955[70] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Muñoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710-E6719.[71] Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family—an update. Curr Opin Plant Biol, 2018, 45: 36-49.
doi: S1369-5266(17)30215-7pmid: 29860175[72] Bryant F N, Hudges D, Hassani-Pak K, Eastmond P J. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 trans- activates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell, 2019, 31: 1276-1288.[73] Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Lgnatz M, Sperber K, Voegele A, de Jong H, Urbanová T, Strnad M, Leubner-Metzger G. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci USA, 2014, 111: E3571-E3580.[74] Bentsink L, Jowett J, Hanhart C J, Koornneef M.Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 17042-17047.[75] Zhao M, Yang S, Liu X, Wu K. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front Plant Sci, 2015, 6: 159.[76] Dekkers B J, He H, Hanson J, Willems L A, Jamar D C, Cueff G, Rajjou L, Hilhorst H W, Bentsink L. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J, 2016, 85: 451-465.
doi: 10.1111/tpj.2016.85.issue-4[77] Li X, Chen T, Li Y, Wang Z, Cao H, Chen F, Li Y, Soppe W J J, Li W, Liu Y. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION 1 expression. Plant Cell, 2019, 31: 832-847.
doi: 10.1105/tpc.18.00449[78] Yamamoto A, Kagaya Y, Usui H, Hobo T, Takeda S, Hattori T. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis. Plant Cell Physiol, 2010, 51: 2031-2046.
doi: 10.1093/pcp/pcq162pmid: 21045071[79] Probst A V, Mittelsten S O. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol, 2015, 27: 8-16.
doi: 10.1016/j.pbi.2015.05.011pmid: 26042538[80] Kim J-M, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci, 2015, 6: 114.[81] Whittle C A, Otto S P, Johnston M O, Krochko J E. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany, 2009, 87: 650-657.[82] Angel A, Song J, Dean C, Howard M. A polycomb-based switch underlying quantitative epigenetic memory. Nature, 2011, 476: 105-108.
doi: 10.1038/nature10241[83] Finch-Savage W E, Footitt S. Regulation of seed dormancy cycling in seasonal field environments. In: Finch-SavageW E, FootittS,eds. Advances in Plant Dormancy. Cham, Switzerland: Springer, 2015. pp 35-47.[84] Barski A, Cuddapah S, Cui K, Roh T-Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129: 823-837.
doi: 10.1016/j.cell.2007.05.009pmid: 17512414[85] Soria G, Polo S E, Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell, 2012, 46: 722-734.
doi: 10.1016/j.molcel.2012.06.002pmid: 22749398[86] Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S, Wang J, Ahmad R, Liu B, Xu Z Y. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. New Phytol, 2018, 217: 1582-1597.
doi: 10.1111/nph.14933pmid: 29250818[87] Wolny E, Braszewska-Zalewska A, Kroczek D, Hasterok R. Histone H3 and H4 acetylation patterns are more dynamic than those of DNA methylation in Brachypodium distachyon embryos during seed maturation and germination. Protoplasma, 2017, 254: 2045-2052.
doi: 10.1007/s00709-017-1088-x[88] Footitt S, Müller K, Kermode A R, Finch-Savage W E. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Plant J, 2015, 81: 413-425.
doi: 10.1111/tpj.2015.81.issue-3[89] Li H-C, Chuang K, Henderson J T, Rider S D, Bai Y, Zhang H, Fountain M, Gerber J, Ogas J. PICKLE acts during germination to repress expression of embryonic traits. Plant J, 2005, 44: 1010-1022.
doi: 10.1111/tpj.2005.44.issue-6[90] Zhang H, Rider S D, Henderson J T, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg H J, Romero-Severson J, Muir W M, Ogas J. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem, 2008, 283: 22637-22648.
doi: 10.1074/jbc.M802129200pmid: 18539592[91] Tai H H, Tai G C C, Beardmore T. Dynamic histone acetylation of late embryonic genes during seed germination. Plant Mol Biol, 2005, 59: 909-925.
doi: 10.1007/s11103-005-2081-xpmid: 16307366[92] Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149-161.[93] Klupczyńska E A, Pawłowski T A. Regulation of seed dormancy and germination mechanisms in a changing environment. Int J Mol Sci, 2021, 22: 1357.
doi: 10.3390/ijms22031357[94] Batista R A, Köhler C. Genomic imprinting in plants—revisiting existing models. Gene Dev, 2020, 34: 24-36.
doi: 10.1101/gad.332924.119pmid: 31896690[95] Rodrigues J A, Zilberman D. Evolution and function of genomic imprinting in plants. Genes Dev, 2015, 29: 2517-2531.
doi: 10.1101/gad.269902.115[96] Barlow D P. Gametic imprinting in mammals. Science, 1995, 270: 1610-1613.
doi: 10.1126/science.270.5242.1610pmid: 7502071[97] Zhang H, Lang Z, Zhu J K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 2018, 19: 489-506.
doi: 10.1038/s41580-018-0016-z[98] Penterman J, Zilberman D, Huh J H, Ballinger T, Henikoff S, Fischer R L. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA, 2007, 104: 6752-6757.
doi: 10.1073/pnas.0701861104pmid: 17409185[99] Park J S, Frost J M, Park K, Ohr H, Park G T, Kim S, Eom H, Lee I, Brooks J S, Fischer R L, Chol Y. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2017, 114: 2078-2083.[100] Moreno-Romero J, Jiang H, Santos-González J, Köhler C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J, 2016, 35: 1298-1311.
doi: 10.15252/embj.201593534pmid: 27113256[101] Pignatta D, Erdmann R M, Scheer E, Picard C L, Bell G W, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife, 2014, 3: e03198.
doi: 10.7554/eLife.03198[102] Jullien P E, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18: 1360-1372.
doi: 10.1105/tpc.106.041178[103] Yan W, Chen D, Smaczniak C, Engelhorn J, Liu H, Yang W, Graf A, Carles C C, Zhou D X, Kaufmann K. Dynamic and spatial restriction of polycomb activity by plant histone demethylases. Nat Plants, 2018, 4: 681-689.
doi: 10.1038/s41477-018-0219-5pmid: 30104650[104] Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife, 2021, 10: e64593.
doi: 10.7554/eLife.64593[105] Chen W, Wang W, Lyu Y, Wu Y, Huang P, Hu S, Wei X, Jiao G, Sheng Z, Tang S, Shao G, Luo J. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J, 2020, 9: 68-78.
doi: 10.1016/j.cj.2020.06.005[106] Piskurewicz U, Iwasaki M, Susaki D, Megies C, Kinoshita T, Lopez-Molina L. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana. eLife, 2016, 5: e19573.
doi: 10.7554/eLife.19573[107] Hsieh T F, Shin J, Uzawa R, Silva P, Cohen S, Bauer M J, Hashimoto M, Kirkbride R C, Harada J J, Zilberman D, Fischer R L. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA, 2011, 108: 1755-1762.
doi: 10.1073/pnas.1019273108[108] Vu T M, Nakamura M, Calarco J P, Susaki D, Lim P Q, Kinoshita T, Higashiyama T, Martienssen R A, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development, 2013, 140: 2953-2960.[109] Martínez G, Panda K, Köhler C, Slotkin R K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants, 2016, 2: 16030.
doi: 10.1038/nplants.2016.30pmid: 27249563[110] Calarco J P, Borges F, Donoghue M T, Van Ex F, Jullien P E, Lopes T, Gardner R, Berger F, Feijó J A, Becker J D, Martienssen R A. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 2012, 151: 194-205.
doi: 10.1016/j.cell.2012.09.001pmid: 23000270[111] Kim M Y, Ono A, Scholten S, Kinoshita T, Zilberman D, Okamoto T, Fischer R L. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proc Natl Acad Sci USA, 2019, 116: 9652-9657.
doi: 10.1073/pnas.1821435116pmid: 31000601[112] Brinkman A B, Gu H, Bartels S J J, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg H G. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res, 2012, 22: 1128-1138.
doi: 10.1101/gr.133728.111pmid: 22466170[113] Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet, 2010, 6: e1001152.
doi: 10.1371/journal.pgen.1001152[114] Moreno-Romero J, Del Toro-De León G, Yadav V K, Santos-González J, Köhler C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol, 2019, 20: 41.
doi: 10.1186/s13059-019-1652-0pmid: 30791924[115] Zhang M, Xie S J, Dong X M, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G, Chen Z, Sun S, Hauck A, Jin W, Lai J. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res, 2014, 24: 167-176.
doi: 10.1101/gr.155879.113pmid: 24131563[116] Ingouff M, Rademacher S, Holec S, Soljic L, Xin N, Readshaw A, Foo S H, Lahouze B, Sprunck S, Berger F. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol, 2010, 20: 2137-2143.[117] Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol, 2020, 22: 621-629.
doi: 10.1038/s41556-020-0515-ypmid: 32393884[118] Batista R A, Moreno-Romero J, Qiu Y, van Boven J, SantosGonzález J, Figueiredo D D, Köhler C. The MADS-box transcription factor PHERES 1 controls imprinting in the endosperm by binding to domesticated transposons. eLife, 2019, 8: e50541.
doi: 10.7554/eLife.50541[119] Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman C S, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009, 21: 3803-3822.[120] Iwasaki M, Hyvärinen L, Piskurewicz U, Lopez-Molina L. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy. eLife, 2019, 8: e37434.
doi: 10.7554/eLife.37434[121] Cuerda-Gil D, Slotkin R K. Non-canonical RNA-directed DNA methylation. Nat Plants, 2016, 2: 16163.
doi: 10.1038/nplants.2016.163pmid: 27808230[122] Qiu Q, Mei H, Deng X, He K, Wu B, Yao Q, Zhang J, Lu F, Ma J, Cao X. DNA methylation repels targeting of Arabidopsis REF6. Nat Commun, 2019, 10: 2063.
doi: 10.1038/s41467-019-10026-1pmid: 31048693[123] Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J, 2008, 54: 608-620.
doi: 10.1111/tpj.2008.54.issue-4[124] Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe W J J, Li Y, Liu Y. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol, 2012, 193: 605-616.
doi: 10.1111/j.1469-8137.2011.03969.xpmid: 22122546[125] Rehmani M S, Aziz U, Xian B, Shu K. Seed dormancy and longevity: A mutual dependence or a trade-off? Plant Cell Physiol, 2022, 63: 1029-1037.
doi: 10.1093/pcp/pcac069[126] Holdsworth M J, Bentsink L, Soppe W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol, 2008, 179: 33-54.
doi: 10.1111/j.1469-8137.2008.02437.xpmid: 18422904[127] Zhao P, Zhou X, Shen K, Liu Z, Cheng T, Liu D, Cheng Y, Peng X, Sun M X. Two-step maternal-to-zygotic transition with two phase parental genome contributions. Dev Cell, 2019, 49: 882-893.
doi: S1534-5807(19)30286-2pmid: 31080059
相关知识
植物激素对种子休眠和萌发调控机理的研究进展
药用植物地桃花种子休眠与萌发特性的研究
植物所揭示光调控种子休眠和萌发新机制
植物所揭示光调控种子休眠和萌发的分子机理
植物激素ABA调控种子发育与萌发的研究进展
杜鹃花种子休眠打破技术的研究
不同植物生长调节剂打破多花黄精种子休眠试验
珙桐种子休眠及催芽问题的研究进展
濒危植物大花黄牡丹种子休眠萌发特性研究
种子休眠与萌发特性
网址: 种子休眠与萌发调控的研究进展 https://m.huajiangbk.com/newsview1298930.html