首页 > 分享 > 花铃期短期渍水和高温对棉花叶片光合特性、膜脂过氧化代谢及产量的影响

花铃期短期渍水和高温对棉花叶片光合特性、膜脂过氧化代谢及产量的影响

渍水和高温是长江中下游地区棉花生育中后期的主要气象灾害。2011和2012年在桶栽栽培条件下,研究了棉花花铃期功能叶光合特性、膜脂过氧化代谢对渍水(土表积水2~3 cm,7 d)、高温(7 d,每天持续6 h)及其复合胁迫的响应差异及其与产量的关系。结果表明,渍水、高温单独处理均增加了棉花主茎倒4叶超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化物酶(Peroxidase,POD)活性和丙二醛(Malonaldehyde,MDA)含量。渍水和高温共同处理导致SOD活性降低,POD活性迅速增强和MDA含量急剧增加。渍水、高温及渍水+高温均降低了叶片SPAD值、光系统II最大光化学量子产量(Maximal photochemical quantum yield of photosystem II,Fv/Fm)和潜在光化学活性(Potential photochemical activity of photosystem II,Fv/F0);同时降低了叶片净光合速率(Net photosynthesis rate,Pn)、气孔导度(Stomatal conductance,Cs)和蒸腾速率(Transpiration rate,Tr),增加了胞间二氧化碳浓度(Intercellular CO2 concentration,Ci);减少了单株成铃数,降低了铃重,进而降低了籽棉产量,而对衣分影响不明显。从产量受害程度来看,渍水+高温(23.0%)>渍水(17.1%)>高温(9.8%)。除Ci外,SPAD值(叶绿素含量)、Pn、Tr、Cs、Fv/Fm及Fv/F0与产量均呈显著正相关关系,其中SPAD值与产量的相关性最好。可将功能叶SPAD值作为作物响应逆境胁迫的敏感指标,应用到棉花抗逆能力评价和气象灾害减产评估之中。

Abstract

Waterlogging (WL) and high temperature (HT) are main meteorological factors affecting the middle or late cotton (Gossypium hirsutum L.) growth period in the Yangtze river region of China. However, the effects of these together on physiological metabolism and yield in cotton plants have not been reported in depth. Pot experiments were conducted at the Experimental Station for Teaching and Scientific Research, Yangtze University, China during cotton flowering and boll-forming in 2011 and 2012. The responses of photosynthetic traits, membrane peroxidation metabolism of leaves (fourth from the top), and yield-related components to short-term WL (2-3 cm layer of surface water for 7 d) or HT (6 h per day for 7 d) alone and together (WL+HT) were analyzed. The activities of superoxide dismutase (SOD), peroxidase (POD), and malondialdehyde (MDA) in the leaf increased under either WL or HT conditions. SOD activity was significantly reduced under WL+HT conditions, while POD and MDA activity rapidly increased. The chlorophyll content (SPAD value), maximum photochemical quantum yield of photosystem II (Fv/Fm), and potential photochemical activity of photosystem II (Fv/F0) all decreased significantly under all three conditions. The photosynthesis rate (Pn), stomatal conductance (Cs), and transpiration rate(Tr) also decreased under these conditions, while the intercellular carbon dioxide concentration (Ci) increased. Seed yield losses were largely attributed to fewer boll sets and lower boll quality with combined WL and HT treatment. The highest reduction in cotton yield was observed in WL+HT treated plants (23.0%), followed by WL (17.1%), and HT (9.8%). Except for Ci, the SPAD value, Pn, Tr, Cs, Fv/Fm, and Fv/F0 showed significant positive correlations with yield, with the SPAD value having the strongest positive correlation. Therefore, the SPAD value of functional leaves could be used as a sensitive indicator to assess cotton crop adaptations to stress, and evaluate crop production losses induced by unpredictable agrometeorological disasters in the middle and lower reaches of the Yangtze in China.

关键词

棉花 /渍水与高温 /抗氧化酶 /光合特性 /产量{{custom_keyword}} /

Keywords

  /cotton /waterlogging and high temperature / antioxidant enzymes / photosynthetic characteristic / yield{{custom_keyword}} /

参考文献

[1] Kuai Jie, Zhou Zhiguo, Wang Youhua, et al. The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position
[J]. European Journal of Agronomy, 2015, 67: 61-74.
[2] Najeeb U, Atwell B J, Bange M P, et al. Aminoethoxyvinylglycine (AVG) ameliorates waterlogging-induced damage in cotton by inhibiting ethylene synthesis and sustaining photosynthetic capacity
[J]. Plant Growth Regulation, 2015, 76(1): 83-98.
[3] Salamati N, Galeshi S, Soltani A, et al. Investigation of correlation between germination and growth components in cotton under waterlogging and temperature treatments
[J]. International Journal of Biosciences, 2015, 6(3): 195-202.
[4] 吴启侠, 苏荣瑞, 刘凯文, 等. 江汉平原四湖流域近50年高温热害及热涝相随特征
[J]. 中国农业气象, 2012, 33(4): 609-614. Wu Qixia, Su Rongrui, Liu Kaiwen, et al. Hot damage and concomitance of hot and waterlogging in four-lake basin in Jianghan plain during the last 50 years
[J]. Chinese Journal of Agrometeorology, 2012, 33(4): 609-614.
[5] Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging
[J]. Field Crops Research, 2004, 88(2): 129-142.
[6] Kuai Jie, Liu Zhaowei, Wang Youhua, et al. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight
[J]. Plant Science, 2014, 223: 79-98.
[7] Singh R P, Prasad P V V, Sunita K, et al. Influence of high temperature and breeding for heat tolerance in cotton: A review
[J]. Advances in Agronomy, 2007, 93(3): 313-385.
[8] Wise R R, Olson A J, Schrader S M, et al. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature
[J]. Plant Cell & Environment, 2004, 27(6): 717-724(8).
[9] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermo tolerance provided by isoprene
[J]. Plant, Cell & Environment, 2005, 28(3): 269-277.
[10] Zhang Yanjun, Song Xuezhen, Yang Guozheng, et al. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield
[J]. Field Crops Research, 2015, 179: 164-172.
[11] Li Mingfeng, Zhu Jianqiang, Jiang Zhenhui. Plant growth regulators and nutrition applied to cotton after waterlogging
[C]. 2013 Third International Conference on Intelligent System Design and Engineering Applications, 16-18 January, Hong Kong. Washington:  The IEEE Computer Society Digital Library, 2013: 1045-1048.
[12] 邓茳明, 熊格生, 袁小玲, 等. 棉花不同耐高温品系的 SOD, POD, CAT 活性和 MDA含量差异及其对盛花期高温胁迫的响应
[J]. 棉花学报, 2010, 22(3): 242-247. Deng Jiangming, Xiong Gesheng, Yuan Xiaoling, et al. Differences in SOD, POD, CAT activities and MDA content and their responses to high temperature stress at peaking flowering stage in cotton lines different tolerance to high temperature
[J]. Cotton Science, 2010, 22(3): 242-247.
[13] 汪贵斌, 曹福亮, 张晓燕, 等. 涝渍胁迫对不同树种生长和能量代谢酶活性的影响
[J]. 应用生态学报, 2010, 21(3): 590- 596. Wang Guibin, Cao Fuliang, Zhang Xiaoyan, et al. Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species
[J].Chinese Journal of applied Ecology, 2010, 21(3): 590-596.
[14] 李磊, 蒯婕, 刘昭伟, 等. 花铃期短期土壤渍水对土壤肥力和棉花生长的影响
[J]. 水土保持学报, 2013, 27(6): 162-166. Li Lei, Kuai Jie, Liu Zhaowei, et al. Effects of short-term waterlogging on soil fertility and cotton growth during the flowering and boll forming stage
[J]. Journal of Soil and Water Conservation, 2013, 27(6): 162-166.
[15] 罗振, 董合忠, 李维江, 等. 盐渍和涝渍对棉苗生长和叶片某些生理性状的复合效应
[J]. 棉花学报, 2008, 20(3): 203-206. Luo zhen, Dong Hezhong, Li Weijiang, et al. Combined Effects of waterlogging and salinity on plant growth and some physiological parameters in cotton seedling leaves
[J]. Cotton Science, 2008, 20(3): 203-206.
[16] 吴启侠, 朱建强, 杨威, 等. 花铃期高温受涝对棉花的交互效应及排水指标确定
[J]. 农业工程学报, 2015, 31(13): 98-104. Wu Qixia, Zhu Jianqiang, Yang Wei, et al. Response of cotton to interaction of waterlogging and high temperature during flowering and boll-forming stage and determination of drainage index
[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CSAE), 2015, 31(13): 98-104.
[17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. Li Hesheng. Principle and technology of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000.
[18] 陈兵, 王克如, 李少昆, 等. 病害胁迫对棉叶光谱反射率和叶绿素荧光特性的影响
[J]. 农业工程学报, 2011, 27(9): 86-93. Chen Bing, Wang Keru, Li Shaokun, et al. The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves
[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2011, 29(9): 86-93.
[19] 胡江龙, 郭林涛, 王友华, 等. 棉花渍害恢复的生理指示指标探讨
[J]. 中国农业科学, 2013, 46(21): 4446-4453. Hu Jianglong, Guo Lintao, Wang Youhua, et al. Physiological indicator of cotton plant in recovery from waterlogging damage
[J]. Scientia Agricultura Sinica, 2013, 46(21): 4446-4453.
[20] 杨威, 朱建强, 吴启侠, 等. 涝害和高温下棉花苗期的生长生理代谢特征
[J]. 农业工程学报, 2015, 31(22):98-104. Yang Wei, Zhu Jianqiang, Wu Qixia, et al. Growth and physiological metabolism characteristic of cotton seedlings under combination of waterlogging and heat stress
[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 98-104.
[21] Niinemets U, Valladares F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs
[J]. Ecological Monographs, 2006, 76(4): 521-547.
[22] 吴进东, 李金才, 魏凤珍, 等. 花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响
[J]. 作物学报, 2012, 38(6): 1071-1079. Wu Jindong, Li Jincai, Wei Fengzhen, et al. Effect of interaction of waterlogging and high Temperature after anthesis on photosynthetic characteristics of flag leaf and yield in winter wheat
[J]. Acta Agronomica Sinica, 2012, 38(6): 1071-1079.
[23] 郭文琦, 刘瑞显, 周治国, 等. 施氮量对花铃期短期渍水棉花叶片气体交换参数和叶绿素荧光参数的影响
[J]. 植物营养与肥料学报, 2010, 16(2): 362-369. Guo Wenqi, Liu Ruixian, Zhou Zhiguo, et al. Effects of nitrogen fertilization on gas exchange and chlorophyll fluorescence parameters of leaf during the flowering and boll-forming stage of cotton under short-term waterlogging
[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 362-369.     

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

国家自然科学基金(51079007);公益性行业(农业)科研专项(201203032);湖北省重点(优势)学科作物学(长江大学)(2013XKJS)

{{custom_fund}}

相关知识

棉花要高产 把好花铃关
氮素对花铃期干旱再复水后棉花根系生长的影响
花针期膜下滴灌追肥量对花生光合特性和产量的影响
外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响
膜下滴灌对不同土壤水分棉花花铃期光合生产、分配及籽棉产量的调节
水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响
氮素水平对棉花幼苗生长和光合特性的影响
谈棉花灌溉
水分胁迫对覆膜滴灌棉花根系活力和叶片生理的影响
施氮对滴灌冬小麦花后光合生理、灌浆特性及产量品质的影响

网址: 花铃期短期渍水和高温对棉花叶片光合特性、膜脂过氧化代谢及产量的影响 https://m.huajiangbk.com/newsview1314064.html

所属分类:花卉
上一篇: 自然干旱胁迫下紫花苜蓿叶片和根部
下一篇: 叶片衰老时所发生的代谢变化是()