摘要:
目的气候变暖背景下生态系统碳循环的温度敏感性研究是全球变化生态学的主要研究内容之一,森林生态系统生产力对温度的响应和适应机制是理解生态系统的温度敏感性的重要手段,长白山阔叶红松林作为典型的温带森林生态系统及重要的碳汇,研究其生产力对环境温度的响应,对提升中国森林植被碳循环模拟的准确性至关重要。
方法本研究以长白山阔叶红松林为对象,收集长白山通量站2003—2011年共9年的观测数据,通过进行整合分析,量化了生态系统碳循环的3个关键过程:生态系统总初级生产力、净生态系统生产力和生态系统呼吸的温度响应曲线,并进一步分析环境因子对其最适温的影响。
结果研究发现总初级生产力、净生态系统生产力的温度响应均表现为一条峰值曲线,并存在最适温,GPP的最适温(tGPP)与NEP的最适温(tNEP)存在显著线性正相关关系。在年际尺度上,一年中最高空气温度的改变是引起tGPP和tNEP变化的主要因素,而年均温和夏季温度对tGPP和tNEP的变化没有显著影响。当最高温度升高1 ℃时,tGPP和tNEP分别增加0.41和0.66 ℃。降水、光和有效辐射、饱和蒸汽压差等环境因子对tGPP和tNEP无显著影响,但夏季降水能够降低温度对tGPP的影响。
结论通过上述研究说明,生态系统的初级生产力及净生产力存在温度适应现象,当研究碳循环与气候变化相互作用的模型时需要充分考虑生态系统生产力的温度适应,从而更加准确地预测碳循环对气候变暖的响应和反馈。
Abstract:
ObjectiveStudying the temperature sensitivity of ecosystem carbon cycle in the climate change scenario is one of the major subjects of global change ecology, which demands the incorporation of temperature acclimation of ecosystem productivity. Exploring the response of productivity to ambient temperature in the broadleaved Korean pine forest, a typical temperate forest ecosystem and an important carbon sink, is helpful for better understanding the fundamental processes of ecosystems in a changing environment, which will promote the accuracy of carbon cycle simulation of forest vegetation in China.
MethodIn this study, we investigated the temperature response of gross primary productivity, net ecosystem productivity and ecosystem respiration using flux data of a Korean pine forest in northeastern China from 2003 to 2011, and further explored the influence of environmental factors on the above three carbon processes.
ResultThe results suggested that both the temperature responses of gross primary productivity and net ecosystem productivity were one-peaked curves with their optimum temperatures (tGPP and tNEP) positively correlated with the maximum temperature in a year. For 1 ℃ increase in the maximum temperature, tGPP and tNEP increased by 0.41 ℃ and 0.66 ℃ in the interannual scale, respectively. Environmental factors such as annual precipitation, photosynthetically active radiation, and vapor pressure deficit had no significant effect on tGPP and tNEP, while summer precipitation might have the ability to mediate the effects of tGPP caused by the rising temperature.
ConclusionTherefore, there was a thermal acclimation of photosynthesis at the ecosystem-level. Previous models might exaggerate the impact of climate change on carbon fluxes if ignoring the influence of photosynthesis thermal acclimation.
图 1 2003—2011年长白山涡度站年平均空气温度的变化趋势
Figure 1. Interannual pattern of annual mean air temperature during 2003 to 2011
图 2 2003—2011年长白山涡度站总初级生产力(GPP),生态系统呼吸(ER),净生态系统生产力(NEP)在对温度的响应曲线
年均温范围为3.46~5.04 ℃
Figure 2. General pattern of peak-curve temperature response of gross primary productivity (GPP), ecosystem respiration (ER) and net ecosystem productivity (NEP) at Changbai Mountain site over different temperature years
Mean annual temperature ranges from 3.46 ℃ to 5.04 ℃
图 3 GPP的最适温和NEP的最适温的关系
Figure 3. Relationship between tNEP and tGPP
图 4 GPP的最适温和NEP的最适温与年最高温(a),年最低温(b),年均温(c),夏季平均温度(d)和生长季平均温度(e)的关系
Figure 4. Relationship between tNEP and tGPP with the maximum temperature (a), the minimum temperature (b), daily mean air temperature (c), daily mean air temperature in summer (d) and daily mean air temperature in growing season(e)
图 5 GPP的最适温和夏季降水(7—9月)的关系
Figure 5. Relationship between tNEP and tGPP with precipitation during the period from July to September
表 1 2003—2011年长白山阔叶红松林观测站tNEP和tGPP的值
Table 1 Values of tNEP and tGPP at flux site of Korean pine forest during 2003 and 2011
因子Factor年份Year 20032004200520062007200820092010 tGPP21.8322.1822.5821.4222.1221.9921.7922.88 tNEP21.8321.1621.3920.7421.9921.3120.5422.88 注:tGPP,GPP的最适温;tNEP,NEP的最适温。Notes: tGPP, the optimum temperature of GPP;tNEP, the optimum temperature of NEP.表 2 tNEP和tGPP与气候变量之间回归分析的决定系数(R2)和P值
Table 2 Coefficient of determination (R2) and P value of the regression analysis between tNEP and tGPP with climatic variables
因子Factor年降水量MAP饱和蒸汽压差VPD光合有效辐射PAR年降水量,饱和蒸汽压差,光合有效辐射MAP, VPD, PAR R2P valueR2P valueR2P valueR2P value tGPP0.100.450.340.080.290.100.120.39 tNEP0.230.110.070.500.27 0.080.070.40 [1]Arkin P A, Smith T M, Sapiano M R P, et al. The observed sensitivity of the global hydrological cycle to changes in surface temperature[J]. Environmental Research Letters, 2010, 5(3): 533-534. doi: 10.1088/1748-9326/5/3/035201
[2]Cox P M, Betts R, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184-187. doi: 10.1038/35041539
[3]Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988. doi: 10.1126/science.1201609
[4] 刘国华, 傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013Liu G H, Fu B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013
[5]Maselli F, Papale D, Puletti N, et al. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems[J]. Remote Sensing of Environment, 2009, 113(3): 657-667. doi: 10.1016/j.rse.2008.11.008
[6]Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329: 834-838. doi: 10.1126/science.1184984
[7]Piao S L, Wang X H, Ciais P, et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 2011, 17(10): 3228-3239. doi: 10.1111/gcb.2011.17.issue-10
[8]Musavi T, Migliavacca M, Reichstein M, et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity[J]. Nature Ecology & Evolution, 2017, 1(2): 48. https://www.nature.com/articles/s41559-016-0048
[9] 常顺利, 杨洪晓, 葛剑平. 净生态系统生产力研究进展与问题[J]. 北京师范大学学报(自然科学版), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021Chang S L, Yang H X, Ge J P. Chang, S. Advance and questions in net ecosystem production[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021
[10]Ryan M G. Effects of climate change on plant respiration[J]. Ecological Applications, 1991, 1(2): 157-167. doi: 10.2307/1941808
[11]Weston D J, Bauerle W L. Inhibition and acclimation of C (3) photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer rubrum (red maple)[J]. Tree Physiology. 2007, 27(8): 1083-1092. doi: 10.1093/treephys/27.8.1083
[12]Feller U, Craftsbrandner S J, Salvucci M E. Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco[J]. Plant Physiology, 1998, 116(2): 539-546. doi: 10.1104/pp.116.2.539
[13]Salvucci M E, Craftsbrandner S J. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments[J]. Plant Physiology, 2004, 134(4): 1460-1470. doi: 10.1104/pp.103.038323
[14]Scafaro A P, Xiang S, Long B M, et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered rubisco content[J]. Global Change Biology, 2016, 23(7): 2783-2800. doi: 10.1111/gcb.13566
[15]Niu S L, Luo Y Q, Fei S F, et al. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes[J]. Global Change Biology, 2011, 17(10): 3102-3114. doi: 10.1111/gcb.2011.17.issue-10
[16]Hüve K, Bichele I, Rasulov B, et al. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation[J]. Plant Cell & Environment, 2011, 34(1): 113-126.
[17]O'Sullivan O S, Weerasinghe K W, Evans J R, et al. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function[J]. Plant Cell & Environment, 2013, 36(7): 1268-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ef4b8021fc1e94322e463098c57ba79
[18]Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101-117. doi: 10.1007/s11120-013-9874-6
[19]Niu S L, Li Z X, Xia J Y, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental & Experimental Botany, 2008, 63(1): 91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dbae3afdb0ddda7fa99903b0e45bbe2
[20]Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species[J]. Plant Cell & Environment, 2010, 30(9): 1176-1190. https://www.ncbi.nlm.nih.gov/pubmed/17661754/
[21]Gunderson C A, O'Hara K H, Campion C M, et al. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate[J]. Global Change Biology, 2010, 16(8): 2272-2286.
[22]Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis[J]. Plant Cell & Environment, 2007, 30(9): 1086-1106. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1056702
[23]Falge E, Tenhunen J, Baldocchi D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements[J]. Agricultural & Forest Meteorology, 2002, 113(1): 75-95. https://www.sciencedirect.com/science/article/pii/S016819230200103X
[24]Yuan W P, Luo Y Q, Liang S, et al. Thermal adaptation of net ecosystem exchange[J]. Biogeosciences Discussions, 2011, 8(6): 1109-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000642153
[25]Niu S L, Luo Y Q, Fei S F, et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms[J]. New Phytologist, 2012, 194(3): 775-783. doi: 10.1111/j.1469-8137.2012.04095.x
[26] 王叶, 延晓冬.全球气候变化对中国森林生态系统的影响[J].大气科学, 2006, 30(5): 1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27Wang Y, Yan X D. The response of the forest ecosystem in China to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27
[27] 程肖侠, 延晓冬.气候变化对中国东北主要森林类型的影响[J].生态学报, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011Cheng X X, Yan X D. Effects of climate change on typical forest in the northeast of China[J]. Acta Ecologica Sinica, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011
[28]Guan D X, Wu J B, Zhao X S, et al. Annual CO2 flux over old temperate mixed forest in north-eastern China[J]. Agricultural & Forest Meteorology, 2006, 137(3): 138-149. https://www.sciencedirect.com/science/article/pii/S0168192306000578
[29]Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China[J]. Global Change Biology, 2010, 14(11): 2555-2571. doi: 10.1111/j.1365-2486.2008.01663.x
[30]Zhang J H, Yu G R, Han S J, et al. Seasonal and annual variation of CO2, flux above a broad-leaved Korean pine mixed forest[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):63-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e045e68ad78e0943f0bda4da37a346eb
[31]Baldocchi D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2015, 20(12): 3600-3609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5912c407e2bb3470bacdb644a99b67c
[32]Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583. doi: 10.5194/bg-3-571-2006
[33]Chu H S, Baldocchi D D, John R, et al. Fluxes all of the time: a primer on the temporal representativeness of FLUXNET[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(2): 289-307. doi: 10.1002/jgrg.v122.2
[34] 于贵瑞, 张雷明, 孙晓敏.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005
[35] 郝占庆, 于德永, 杨晓明, 等.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报, 2002, 13(7): 785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005Hao Z Q, Yu D Y, Yang X M, et al. α diversity of communities and their variety along altitude gradient on northern slope of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2002, 13(7):785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005
[36] 张雷明, 曹沛雨, 朱亚平, 等.长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子[J].植物生态学报, 2015, 39(12):1156-1165. doi: 10.17521/cjpe.2015.0112Zhang L M, Cao P Y, Zhu Y P, et al. Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest, Changbai Mountain[J]. Chinese Journal of Plant Ecology, 2015, 39(12): 1156-1165. doi: 10.17521/cjpe.2015.0112
[37] 朱先进, 于贵瑞, 王秋凤, 等.仪器的加热效应校正对生态系统碳水通量估算的影响[J].生态学杂志, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037Zhu X J, Yu G R, Wang Q F, et al. Instrument heating correction effect on estimation of ecosystem carbon and water fluxes[J]. Chinese Journal of Ecology, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037
[38]Kirschbaum M U F. Modelling forest growth and carbon storage in response to increasing CO2 and temperature[J]. Tellus, 2010, 51(5): 871-888. doi: 10.1034/j.1600-0889.1999.t01-4-00002.x
[39]Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 2003, 8(7): 343-351. doi: 10.1016/S1360-1385(03)00136-5
[40]Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219-231. doi: 10.1093/treephys/tpr141
[41]Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404: 861. doi: 10.1038/35009084
[42]Jarvi M P, Burton A J. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil[J]. Plant Cell & Environment, 2018, 41(3): 504-516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a66874337ad8952d7432177a9651b6e4
[43]Wang X C, Wang C K, Yu G R. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements[J]. Science in China Series D: Earch Sciences, 2008, 51(8):1129-1143. doi: 10.1007/s11430-008-0087-3
[44]Smith N G, Dukes J S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types[J]. Global Change Biology, 2017, 23(11): 4840-4853. doi: 10.1111/gcb.2017.23.issue-11
[45]Booth B B B, Jones C D, Collins M, et al. High sensitivity of future global warming to land carbon cycle processes[J]. Environmental Research Letters, 2012, 7(2): 24002. doi: 10.1088/1748-9326/7/2/024002
[46]Churkina G, Schimel D, Braswell B H, et al. Spatial analysis of growing season length control over net ecosystem exchange[J]. Global Change Biology, 2010, 11(10): 1777-1787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2deb78baeb285c3a6f31bc36ebcf52c
[47]Baldocchi D, Falge E, Gu L, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(82): 2415-2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
[48]Smith N G, Malyshev S L, Shevliakova E, et al. Foliar temperature acclimation reduces simulated carbon sensitivity to climate[J]. Nature Climate Change, 2016, 6(2): 219-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6822eb95fd49bc01c7da8b14bc77943
[49]Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: decadal changes in solar radiation at earth's surface[J]. Science, 2005, 308: 847-850. doi: 10.1126/science.1103215
[50]Rambal S, Ourcival J M, Joffre R, et al. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy[J]. Global Change Biology, 2010, 9(12): 1813-1824. doi: 10.1111/j.1365-2486.2003.00687.x
[51]Ma S, Osuna J L, Verfaillie J, et al. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna[J]. Photosynthesis Research, 2017, 132(11): 1-15. doi: 10.1007%2Fs11120-017-0388-5
[52]Zhang L M, Yu G R, Sun X M, et al. Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):47-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81396a44ad07b6a0582a64e3eba0082f
[53] 吴玉莲, 王襄平, 李巧燕, 等.长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析[J].北京大学学报(自然科学版), 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on BIOME-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021
相关知识
长白山阔叶红松林主要树种径向生长对气候变化响应及温度重建
受干扰长白山阔叶红松林林分结构组成特征及健康距离评估
长白山阔叶红松林主要树种种群结构及其林木径向生长对气候响应
基于空间结构优化的阔叶红松林恢复研究
长白山 北半球幸存的温带森林
吉林省落叶松林净初级生产力时空特征及其对气候变化的响应
天然红松林结实量预测模型的初步构建
长白山北坡3个森林群落主要树种种间联结性
小兴安岭凉水典型阔叶红松林林冠干扰特征分析
物种多样性和功能群多样性与生态系统生产力的关系
网址: 长白山阔叶红松林生态系统生产力与温度的关系 https://m.huajiangbk.com/newsview1325208.html
上一篇: 生态环境平衡的隐秘分解者——菌物 |
下一篇: 69种可食用花卉大全,让你的菜肴 |