tf.train.Checkpoint : 用于创建checkpoint
tf.train.Checkpoint(
root=None, **kwargs
)
TensorFlow objects may contain trackable state, such as tf.Variables, tf.keras.optimizers.Optimizer implementations, tf.data.Dataset iterators, tf.keras.Layer implementations, or tf.keras.Model implementations. These are called trackable objects.
# 例子
model = tf.keras.Model(...)
checkpoint = tf.train.Checkpoint(model)
# Save a checkpoint to /tmp/training_checkpoints-{save_counter}. Every time
# checkpoint.save is called, the save counter is increased.
save_path = checkpoint.save('/tmp/training_checkpoints')
# Restore the checkpointed values to the `model` object.
checkpoint.restore(save_path)
相关知识
tensorflow保存和加载训练进度
TensorFlow入门
基于TensorFlow的CNN卷积网络模型花卉分类(1)
TensorFlow学习记录(八)
Tensorflow鸢尾花分类(数据加载与特征处理)
花卉识别(tensorflow)
基于tensorflow的花卉识别
Tensorflow训练鸢尾花数据集
TensorFlow 2建立神经网络分类模型——以iris数据为例
基于深度学习和迁移学习的识花实践
网址: tensorflow保存和加载训练进度 https://m.huajiangbk.com/newsview133228.html
上一篇: 郁金香种球怎么保存 |
下一篇: 植物花粉生活力测定技术 |