摘要: 局部根区水分胁迫可以调节作物的产量、品质及水分利用效率。现有研究多通过调控水平方向作物根区土壤水分分布来构建适宜局部根区水分胁迫环境,而水平方向根区土壤水分分布的调控存在局限性。该文以石羊河流域春玉米为研究对象,通过覆膜和控制不同生育期计划湿润层深度来实现根区土壤水分的垂向调控,分析了调控措施对不同深度土层水分、作物生长指标及水分利用效率的影响。结果表明:根区土壤水分垂向调控措施可以有效调控作物根系分布及根区土壤水分的时空变化;调控中选用大的计划湿润层深度可以有效增加深层土壤内的根长密度及其分布比例,减小不同深度土层水分差异;在调控中,水分胁迫多出现于下部土层(50~100 cm),且含水量随时间在胁迫阈值上下波动,存在空间上的局部水分胁迫和时间上的干湿交替,所构建的水分胁迫环境较为理想;该调控措施亦可对灌水量及作物耗水量进行调控,能够调节作物对降雨及深层土壤水的利用,在各生育期使用较大或较小计划湿润均可以增加对非灌溉水的利用,其中,大的计划湿润层深度有利于对深层土壤水的利用;根区土壤水分的垂向调控也会影响干物质在各组织器官间的分配,实现增产增收。以灌溉水利用效率及水分利用效率来评价各调控方案节水效果,最优根区土壤水分垂向调控方案为:地膜覆盖,灌水下限设为65%田间持水量,苗期计划湿润层深度为30 cm,拔节期计划湿润层深度为40 cm,抽雄期至成熟期计划湿润层深度为50 cm。
关键词: 灌溉 / 土壤 / 水分 / 春玉米 / 覆膜 / 水分胁迫 / 水分利用效率 / 根长密度Abstract: Abstract: Appropriate partial root zone water stress not only improves the yield and quality of crops, but also increases crop water utilization efficiency, so as to reduce waste of water resources. It is a much-used method to build the suitable environment of root zone water stress by regulating the crop root zone soil water distribution in horizontal direction in the previous studies. The regulation of root zone soil water distribution in horizontal direction had limitations. In order to disabuse the limitations, in this paper, we took spring corn in Shiyang River Basin as the research object. As such, the crop root zone soil water distribution in vertical direction was regulated by the way of controlling planned wetted soil depth in different growth stage under mulching. In the experiment, there were three levels of planned wetted soil depth, 30, 40 and 50 cm in seeding stage; three levels of planned wetted soil depth, 40, 50 and 60 cm in jointing stage; three levels of planned wetted soil depth, 50, 60 and 70 cm in tasseling to mature stage. This study analyzed the effect of the regulation in vertical direction on soil water content in different depths, the distribution of root, plant height, leaf area, biomass, yield and water use efficiency. The results showed that soil water profile could be better regulated by controlling planned wetted soil depth in different growth stage. The higher planned wetted soil depth could increase root length and increase the root length in deep soil significantly. The higher planned wetted soil depth also could increase the distribution of root in the deep soil layer. Soil water stress tended to occur in the deep soil layer (50~100 cm). And the water content changing with time in stress threshold value fluctuated up and down. Soil water stress didn't occur in the upper soil layer (0~40 cm). The distribution of crop root system could also affect the changes of soil water in time and space. The regulation in vertical direction could regulate the crop consumption of water, and affect the use of rainfall and water in deeper soil depth, adjusted the allocation of drymatter in crops' organizations, implementing water-saving for crop production. The higher or lower planned wetted soil depth both could increase the use of irrigation water and rainfall or water in deep soil. The lower planned wetted soil depth made more root distribute in the upper soil layer, so as to increase the use of rainfall. The higher planned wetted soil depth made more root distribute in the deep soil layer, so as to increase the use of soil water in the deep soil layer. Appropriate water stress could increase the harvest index, make more dry matter allocate to corn grain. In the study, both the irrigation water use efficiency and water use efficiency were used to evaluate the treatments' effect on water-saving, which showed that the optimal regulation in vertical direction was 30, 40 and 50 cm of planned wetted soil depth at seeding, jointing, and tasseling to mature stages under mulching, respectively.
[1] Hu Tiantian, Kang Shaozhong, Li Fusheng, et al. Effects of partial root-zone irrigation on hydraulic conductivity in the soil-root system of maize plants[J]. Journal of Experimental Botany, 2011, 62(12): 4163-4172. [2] Kang Shaozhong, Zhang Jianhua. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency[J]. Journal of Experimental Botany, 2004, 55(407): 2437-2446. [3] 杜太生,康绍忠,胡笑涛,等. 根系分区交替滴灌对棉花产量和水分利用效率的影响[J]. 中国农业科学,2005,38(10):2061-2068.Du Taisheng, Kang Shaozhong, Hu Xiaotao, et al. Effect of alternate partial root-zone drip irrigation on yield and water use efficiency of cotton[J]. Scientia Agricultura Sinica, 2005, 38(10): 2061-2068.(in Chinese with English abstract) [4] Dorji K, Behboudian M H, Zegbe-Domínguez J A.Water relations,growth,yield,and fruit quality of hot pepper under deficit irrigation and partial root-zone drying[J]. Scientia Horticulturae, 2005, 104: 137-149. [5] 王振昌,杜太生,杨秀英,等. 隔沟交替灌溉对棉花耗水、产量和品质的调控效应[J]. 中国生态农业学报,2009,17(1):13-17.Wang Zhenchang, Du Taisheng, Yang Xiuying, et al. Effects of alternate furrow-irrigation on crop water consumption, yield and quality of cotton[J]. Chinese Journal of Eco- Agriculture, 2009, 17(1): 13-17. (in Chinese with English abstract) [6] Shahnazari A, Andersen M N,Jacobwen S E,et al. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions[J]. Field Crops Research, 2007, 100(1): 117-124. [7] 康绍忠,张建华,梁宗锁,等. 控制性交替灌溉-一种新的农田节水调控思路[J]. 干旱地区农业研究,1997,15(1):1-6.Kang Shaozhong, Zhang Jianhua, Liang Zongsuo, et al. Controlled alternative irrigation: A new approach for water saving regulation in farmland[J]. Agricultural Research in the Arid Areas, 1997, 15(1): 1-6. (in Chinese with English abstract) [8] 潘英华,康绍忠. 交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J]. 农业工程学报,2000,16(1):39-43.Pan Yinghua, Kang Shaozhong. Irrigation water infiltration in furrows and crop water use of alternative furrow irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(1): 39-43. (in Chinese with English abstract) [9] 史文娟,康绍忠,王全九. 控制性分根交替灌溉-常规节水灌溉技术的新突破[J]. 灌溉排水,2000,19(1):32-35.Shi Wenjuan, Kang Shaozhong, Wang Quanjiu. Controlled root-split alternate irrigation: A new breakthrough of conventional water-saving irrigation techniques[J]. Journal of Irrigation and Drainage, 2000, 19(1): 32-35 (in Chinese with English abstract) [10] 柴 强. 分根交替灌溉技术的研究进展与展望[J]. 中国农业科技导报,2010,12(1):46-51.Chai Qiang. Research progress and prospect on alternative irrigation technology of divided root[J]. Journal of Agricultural Science and Technology, 2010, 12(1): 46-51. (in Chinese with English abstract) [11] 胡笑涛,康绍忠,张建华,等. 番茄垂向分根区交替控制滴灌室内试验及节水机理[J]. 农业工程学报,2005,21(7):1-5.Hu Xiaotao, Kang Shaozhong, Zhang Jianhua, et al. Water- saving mechanism and efficiency of vertical partial-root zone alternative controlled drip irrigation of tomato (Lycopersicon Esculentum)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 1-5. (in Chinese with English abstract ) [12] 史文娟,康绍忠,王全九. 分根区垂向交替供水的节水机理及效应[J]. 农业工程学报,2000,16(5):15-19.Shi Wenjun, Kang Shaozhong, Wang Quanjiu. Mechanism and water-saving efficiency of alternate watering in vertical profile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 15-19. (in Chinese with English abstract) [13] 杜太生,康绍忠,胡笑涛,等. 果树根系分区交替灌溉研究进展[J]. 农业工程学报,2005,21(2):172-178.Du Taisheng, Kang Shaozhong, Hu Xiaotao, et al. Research progress of alternate partial rootzone irrigation on fruit tree[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2): 172-178. (in Chinese with English abstract) [14] 冯广龙,刘昌明. 人工控制土壤水分剖面调控根系分布的研究[J]. 地理学报,1997,52(5):461-469.Feng Guanglong, Liu Changming. Studies on the control of soil water profile and root distribution[J]. Acta Geographica Sinica, 1997, 52(5): 461-469. (in Chinese with English abstract) [15] 马瑞昆. 供水深度与冬小麦根系发育的关系[J]. 干旱地区农业研究,1991,9(3):1-10.Ma Ruikun. The relationship between water supplying depth and root system development of winter wheat[J]. Agricultural Research in the Arid Areas, 1991, 9(3): 1-10. (in Chinese with English abstract) [16] 冯广龙,刘昌明,王立,等. 土壤水分对作物根系生长及分布的调控作用[J]. 生态农业研究,1996,4(3):5-9.Feng Guanglong, Liu Changming, Wang Li, et al. Roles of soil water in regulating root growth and distribution[J]. Eco-Agricultural Research, 1996, 4(3): 5-9. (in Chinese with English abstract) [17] 肖俊夫,刘战东,段爱旺,等. 不同土壤水分条件下冬小麦根系分布规律及其耗水特性研究[J]. 中国农村水利水电,2007(8):18-21.Xiao Junfu, Liu Zhandong, Duan Aiwang, et al. Root distribution and water consumption characteristics of winter wheat under different soil moisture[J]. China Rural Water and Hydropower, 2007(8): 18-21. (in Chinese with English abstract) [18] 李运生,王菱,刘士平,等. 土壤-根系界面水分调控措施对冬小麦根系产量的影响. 生态学报,2002,22(10):1680-1687.Li Yunsheng, Wang Ling, Liu Shiping, et al. The influence of different amounts of water supplied at different depths in soil-root interface on root distribution and yield of winter wheat[J]. Acta Ecologica Sinica, 2002, 22(10): 1680-1687. (in Chinese with English abstract) [19] Proffit A P B, Berliner P R, Oosterhuis D M. A comparative study of root distribution and water extraction efficiency by wheat grown under high- and low-frequency irrigation[J]. Agronomy Journal, 1985, 77(5): 655-662. [20] 张淑芳,柴守玺,蔺艳春,等. 冬小麦地膜覆盖的水分效应[J]. 甘肃农业大学学报,2011,46(2):45-52.Zhang Shufang, Chai Shouxi, Lin Yanchun, et al. Effects of plastic film mulching on soil moisture in winter wheat field[J]. Journal of Gansu Agricultural University, 2011, 46(2): 45-52. (in Chinese with English abstract) [21] 张永涛,汤天明,李增印,等. 地膜覆盖的水分生理生态效应[J]. 水土保持研究,2001,8(3):45-47.Zhang Yongtao, Tang Tianming, Li Zengyin, et al. Soil physiological and ecological effects of mulching film[J]. Research of Soil and Water Conservation, 2001, 8(3): 45-47. (in Chinese with English abstract) [22] 胡芬,陈尚谟. 旱地玉米农田地膜覆盖的水分调控效应研究[J]. 中国农业气象,2000,21(4):14-17.Hu Fen, Chen Shangmo. Effect of film-mulching on water regulation in dryland[J]. Chinese Journal of Agrometeorology, 2000, 21(4): 14-17. (in Chinese with English abstract) [23] 郁进元,何岩,赵忠福,等. 长宽法测定作物叶面积的校正系数研究[J]. 江苏农业科学,2007(2):37-39.Yu Jinyun, He Yan, Zhao Zhongfu, et al. The study on correction coefficient of leaf area determined by length widthmethod[J]. Jiangsu Agricultural Sciences, 2007(2): 37-39. (in Chinese with English abstract) [24] 廖荣伟,刘晶淼,安顺清,等. 基于微根管技术的玉米根系生长监测[J]. 农业工程学报,2010,26(10):156-161.Liao Rongwei, Liu Jingmiao, An Shunqing, et al. Monitor of corn root growth in soil based on minirhizotron technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 156-161. (in Chinese with English Abstract) [25] 侯琼,李建军,王海梅,等. 春玉米适宜土壤水分下限动态指标的确定[J]. 灌溉排水学报,2015,34(6):1-5.Hou Qiong, Li Jiangjun, Wang Haimei, et al. Dynamic indexes of water-saving irrigation based on maize growth characteristics[J]. Journal of Irrigation and Drainage, 2015, 34(6): 1-5. (in Chinese with English abstract) [26] 李百凤,冯浩,吴普特. 作物非充分灌溉适宜土壤水分下限指标研究进展[J]. 干旱地区农业研究, 2007,25(3):227- 231.Li Baifeng, Feng Hao, Wu Pute. Studies on optimum low limits of soil moisture index for deficit irrigation of crops[J]. Agricultural Research in the Arid Areas, 2007, 25(3): 227-231. (in Chinese with English abstract) [27] 马忠明. 河西灌区节水灌溉的适宜土壤水分指标研究[J]. 甘肃农业科技,1998(12):30-31. [28] 李夏. 浅析灌溉对作物根系及产量的影响[J]. 生物灾害科学,2014,37(2):188-190.Li Xia. Research progress of effect of irrigation on root and yield of crops[J]. Biological Disaster Science, 2014, 37(2): 188-190. (in Chinese with English abstract) [29] 肖俊夫,刘战东,南纪琴,等. 不同水分处理对春玉米生态指标、耗水量及产量的影响[J]. 玉米科学,2010,18(6):94-97,101.Xiao Junfu, Liu Zhandong, Nan Jiqin, et al. Effects of different moisture treatments on ecological index, water consumption and yield of spring maize[J]. Journal of Maize Sciences, 2010, 18(6): 94-97,101. (in Chinese with English abstract) [30] 葛体达,隋方功,李金政,等. 干旱对夏玉米根冠生长的影响[J]. 中国农学通报,2005,21(1):103-109.Ge Tida, Sui Fanggong, Li Jinzheng, et al. Effect of drought on growth of root and shoot of summer maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(1): 103-109.(in Chinese with English abstract) [31] 丁从慧,申双和,陶苏林,等. 玉米根-冠及叶片水分利用效率对土壤水分的响应[J]. 江苏农业科学,2015,43(10):108-111. [32] 黄彩霞,柴守玺,赵德明,等. 灌溉对干旱区冬小麦干物质积累、分配和产量的影响[J]. 植物生态学报,2014,38(12):1333-1344.Huang Caixia, Chai Shouxi, Zhao Deming, et al. Effects of irrigation on accumulation and distribution of dry matter and grain yield in winter wheat in arid regions of China[J]. Chinese Journal of Plant Ecology, 2014, 38(12): 1333-1344. (in Chinese with English abstract)相关知识
玉米节水灌溉技术
旱地冬小麦缩行覆盖对土壤温湿度的调控影响
海南冬季棉花生育期分析
棉花节水灌溉研究进展
南疆膜下滴灌棉花灌溉和施肥调控效应及生长模拟研究
夏粮逆境夺丰收背后的水肥故事
泰安市农业农村局 农业要闻 藏粮于技 藏技于水——夏粮逆境夺丰收背后的水肥故事
泰安市农业农村局 农业要闻 夏粮逆境夺丰收背后的水肥故事
滴灌是节水灌溉省时增产的有效方式
不同追肥时期对花生光合特性及产量的影响
网址: 春玉米不同生育期土壤湿润层深度调控的稳产节水效应 https://m.huajiangbk.com/newsview134587.html
上一篇: 基于51单片机智能浇花控制系统 |
下一篇: 日光温室内空气湿度的调控 |