首页 > 分享 > 三种典型化学物质释放变态电离层的数值模拟研究

三种典型化学物质释放变态电离层的数值模拟研究

摘要: 电离层人工变态会影响短波通信及卫星通信,对空间物理研究具有重要意义.基于中性气体扩散方程、离子化学反应方程及等离子体扩散方程,模拟了三种典型化学物质(氢气H2、二氧化碳CO2和三氟溴甲烷CF3Br)经点源和多源释放后导致的电离层三维扰动变化,并利用自适应变步长的三维数字射线追踪技术讨论了化学释放变态电离层对不同频率短波传播的影响.结果表明:点源释放时产生的"空洞"在水平面上沿磁场线方向的轴长略大于其垂直方向;在释放量及释放高度相同的前提下,H2扩散最快,CF3Br扩散最慢,但就t=100 s时电子密度最大相对变化率而言,CF3Br最大,CO2次之,H2最小;CF3Br释放形成的"空洞"垂直范围最小,开始发生穿透现象所需的短波频率最高;H2扰动下"空洞"边界的电子密度梯度最小,射线聚焦点明显偏高,聚焦效应最弱;多源释放产生类抛物线管状的电离层"空洞"结构,射线的传播路径更加多样,此时仍有聚焦效应出现,且聚焦点随射线频率增加而升高,聚焦效应减弱.

Abstract: Artificial ionospheric modification can disturb the short-wave communications and satellite communications. In this paper, on the basis of neutral gas diffusion equation, chemical reaction equation and plasma diffusion equation, the ionospheric disturbances caused by three representative chemicals (H2, CO2, CF3Br) are simulated with a 3D dynamics model. The short wave propagation in disturbed ionosphere is also investigated with a 3D digital ray tracing method. The results show that single-point releases generate ellipse-like ionospheric holes, and a slightly larger scale is found along magnetic field than vertical direction in the hole's horizontal plane. With the same amount of substance and same release altitude, H2 diffuses fastest and CF3Br diffuses slowest, but as for the maximum relative change rate of electron density at t=100 s, CF3Br corresponds to the highest rate while H2 corresponds to the lowest. The release of CF3Br results in the smallest vertical range of ionospheric hole, so the ray firstly penetrating the hole is at a higher frequency than that of CO2 and CF3Br. The release of H2 results in the smallest electron density gradient at the hole's boundary among three chemicals, so the altitude of ray focus point is always higher than that of CO2 and CF3Br, indicating the weakest focus effect. Multipoint releases generate parabola-like tubular holes and lead to more diverse ray paths as well as ray focus effect. The altitude of focus point elevates with higher ray frequency, which is consistent with the single-point release condition.

图  1   化学物质释放扰动电离层数值模拟流程图

Fig.  1   The flowchart of the numerical simulation of chemical release in ionosphere

图  2   CO2点源释放点处电子密度垂直廓线演化图

(红色虚线为t=300 s时电子密度减少量)

Fig.  2   The variation of electron density profiles at the point of single-point CO2 release

(The red dotted line shows the electron density reduction at t=300 s)

图  3   CO2点源释放100 s后释放物浓度分布三维图

Fig.  3   The 3D distribution of CO2 after 100 s of single-point CO2 release

图  4   CO2点源释放100 s后电子密度分布图

Fig.  4   The 3D distribution of electron density after 100 s of single-point CO2 release

图  5   点源释放点处电子密度垂直剖面图

(红色虚线为t=100 s时电子密度减少量)

Fig.  5   The variation of electron density profiles at the point of single-point releases

(The red dotted line shows the electron density reduction at t=100 s)

图  6   点源释放后100 s时释放物浓度在y=0 km处切面图

Fig.  6   The distribution of released chemicals at y=0 km after 100 s of single-point releases

图  7   点源释放后100 s时电子密度在y=0 km处切面图

Fig.  7   The distribution of electron density at y=0 km after 100 s of single-point releases

图  8   点源释放100 s后不同频率短波三维射线追踪结果

注:a1、a2、a3、a4:CF3Br; b1、b2、b3、b4:CO2; c1、c2、c3、c4:H2; 背景图为y=-1 km处切面图, 单位为106 cm-3; 射线图为自南向北的侧视图

Fig.  8   The 3D ray tracing simulations of short-wave propagation at different frequencies after 100 s of single-point releases

(The background is the slice of electron density distribution at y=-1 km, unit:106 cm-3; the rays are shown in a side view from south to north)

图  9   多源释放后100 s时释放物浓度在y=0 km处切面图

Fig.  9   The distribution of released chemicals at y=0 km after 100 s of multipoint releases

图  10   多源释放后100 s时电子密度在y=0 km处切面图

Fig.  10   The distribution of electron density at y=0 km after 100 s of multipoint releases

图  11   多源释放100 s后不同频率短波三维射线追踪结果

注:a1、a2、a3、a4:CF3Br; b1、b2、b3、b4:CO2; c1、c2、c3、c4:H2; 背景图为y=-1 km处切面图, 单位为106 cm-3; 射线图为自南向北的侧视图

Fig.  11   The 3D ray tracing simulations of short-wave propagation at different frequencies after 100 s of multipoint releases

(The background is the slice of electron density distribution at y=-1 km, unit:106 cm-3; The rays are shown in a side view from south to north)

表  1   中性气体的反应方程及反应速率[21]

Tab.  1   Chemical reaction equations of neural gases and the reaction rates

物质名称 反应方程 反应速率/(cm3·s-1) H2 H2+O+→OH++H
OH++e-→O*+H k1=1.7×10-9
k2=7.5×10-8(300/Te)0.5 CO2 CO2+O+→O2++CO
O2++e-→ O*+O** k3=9.4×10-10
k4=1.9×10-7(300/Te)0.5 CF3Br CF3Br+ e-→ Br-+CF3
Br-+O+→Br*+O* ${k_5} = frac{{2.8 times {{10}^{-7}}}}{{1 + 0.6exp left({998/{T_{rm{e}}}} right)}}$
k6=2×10-7 注:星号(*)表示原子或分子处于激发态; Te表示电子温度 [1]

MENDILLO M, HAWKINS G S, KLOBUCHAR J A. A sudden vanishing of the ionospheric F region due to the launch of Skylab[J].Journal of geophysical research, 1975, 80(16):2217-2228. doi: 10.1029/JA080i016p02217

[2] 汪四成, 方涵先, 杨升高, 等.化学物质SF6和H2O释放扰动电离层比较研究[J].地球物理学进展, 2012, 27(6):2464-2469. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201206021

WANG S C, FANG H X, YANG S G, et al. Disturbance effects of SF6 and H2O released in ionosphere[J]. Progress in geophysics, 2012, 27(6):2464-2469. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201206021

[3]

KLOBUCHAR J A, ABDU M A. Equatorial ionospheric irregularities produced by the Brazilian ionospheric modification experiment (BIME)[J].Journal of geophysical research:space physics, 1989, 94(A3):2721-2726. doi: 10.1029/JA094iA03p02721

[4]

BERNHARDT P A, BALLENTHIN J O, BAUMGARDNER J L, et al. Ground and space-based measurement of rocket engine burns in the ionosphere[J]. IEEE transactions on plasma science, 2012, 40(5):1267-1286. doi: 10.1109/TPS.2012.2185814

[5]

BERNHARDT P A, SIEFRING C L, BRICZINSKI S J, et al. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere[J]. Radio science, 2017, 52(5):RS006078. doi: 10.1002/2016RS006078

[6]

MENDILLO M, HAWKINS G S, KLOBUCHAR J A. A large-scale hole in the ionosphere caused by the launch of Skylab[J]. Science, 1975, 187(4174):343-346. doi: 10.1126/science.187.4174.343

[7]

BERNHARDT P A. Three-dimensional, time-dependent modeling of neutral gas diffusion in a nonuniform, chemically reactive atmosphere[J].Journal of geophysical research, 1979, 84(A3):793-802. doi: 10.1029/JA084iA03p00793

[8]

SCALES W A, BERNHARDT P A, Ganguli G. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments[J]. Journal of geophysical research, 1994, 99(A1):373-381. doi: 10.1029/93JA02752

[9]

LEBEDEV V P, KHAKHINOV V V, KUHNAREV D S.Studying effects of transport spacecraft "progress" engine burning on radar characteristics[C]//The XXXIth General Assembly and Scientific Symposium of the URSI. Beijing, 16-23 August, 2014.

[10]

RAPP M, LÜBKEN F J. Polar mesosphere summer echoes (PMSE) review of observations and current understanding[J]. Atmospheric chemistry & physics, 2004, 4(11/12):2601-2633. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c0372841fd4ea94946ac3ed919698111

[11]

JOSHI D R, GROVES K M. High frequency propagation modeling in a disturbed background ionosphere: Results from the metal oxide space cloud(MOSC) experiment[C]//AGU Fall Meeting Abstracts. San Francisco: American Geophysical Union, 2015.

[12]

PEDERSEN T R, CATON G R, MILLER D, et al. Empirical modeling of plasma clouds produced by the metal oxide space clouds experiment[J]. Radio science, 2017, 52(5):578-596. doi: 10.1002/rds.v52.5

[13] 许正文, 赵海生, 徐彬, 等.电离层化学物质释放实验最新研究进展[J].电波科学学报, 2017, 32(2):221-226. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201702013

XU Z W, ZHAO H S, XU B, et al. Latest development ofchemical releases in ionosphere[J]. Chinese journal of radio science, 2017, 32(2):221-226. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201702013

[14] 黄文耿, 古士芬.化学物质释放人工改变电离层[J].空间科学学报, 2005, 25(4):254-258. doi: 10.3969/j.issn.0254-6124.2005.04.003

HUANG W G, GU S F. Ionospheric disturbances produced by artificially chemical release[J]. Chinese journal of spacescience, 2005, 25(4):254-258. (in Chinese) doi: 10.3969/j.issn.0254-6124.2005.04.003

[15] 胡耀垓, 赵正予, 张援农.几种典型化学物质的电离层释放效应研究[J].物理学报, 2010, 59(11):8293-8303. doi: 10.7498/aps.59.8293

HU Y G, ZHAO Z Y, ZHANG Y N. Disturbance effects of some representative chemical releases in ionosphere[J]. Acta physica sinca, 2010, 59(11):8293-8303. (in Chinese) doi: 10.7498/aps.59.8293

[16]

HU Y G, ZHAO Z Y, ZHANG Y N. Ionospheric disturbances produced by chemical releases and the resultant effects on short-wave ionospheric propagation[J]. Journal of geophysical research, 2011, 116(A7):395-402.

[17] 黄勇, 时家明, 袁忠才.释放不同化学物质对电离层扰动的比较[J].空间科学学报, 2012, 32(1):33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200031332

HUANG Y, SHI J M, YUAN Z C. Comparision of ionospheric modification by different chemicals releases[J]. Chinese journal of space science, 2012, 32(1):33-39. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200031332

[18] 赵海生, 许正文, 吴振森, 等.电离层中放六氟化硫效应的三维精细模拟研究[J].物理学报, 2016, 65(20):209401. doi: 10.7498/aps.65.209401

ZHAO H S, XU Z W, WU Z S, et al. A three-dimensional refined modeling for the effects of SF6 release in ionosphere[J]. Acta physica sinca, 2016, 65(20):209401. (in Chinese) doi: 10.7498/aps.65.209401

[19]

BERNHARDT P A, SCALES W A. Ionospheric chemical releases[C]//Conference Proceeding of Ionospheric Modification and Its Potential to Enhance or Degrade the Performance of Military Systems. Norway: Bergen, 1990: 348-357.

[20]

MENDILLO M, SEMETER J, NOTO J. Finite element simulation (FES):a computer modeling technique for studies of chemical modification of the ionosphere[J]. Advances in space research, 1993, 13(10):55-64. doi: 10.1016/0273-1177(93)90050-L

[21]

BERNHARDT P A. A critical comparison of ionospheric depletion chemicals[J]. Journal of geophysical research, 1987, 92(A5):4617-4628. doi: 10.1029/JA092iA05p04617

[22]

FERGUSON E E. Rate constants of thermal energy binary ion-molecule reactions of aeronomic interest[J]. Atomic data and nuclear data tables, 1973, 12(2):159-178. doi: 10.1016/0092-640X(73)90017-X

[23] 王艳.火箭尾焰电离层效应研究[D].武汉: 武汉大学, 2008.

WANG Y. A Study on ionospheric effects of the rocket plume[D]. Wuhan: Wuhan University, 2008. (in Chinese)

[24]

ANDERSON D A, BERNHARDT P A. Modeling the effects of an H2 gas release on equatorial ionosphere[J]. Journal of geophysical research, 1978, 83(A10):4777-4790. doi: 10.1029/JA083iA10p04777

[25]

HASELGROVE J. Ray theory and a new method for ray tracing[R]. Cambridge: the Cavendish Laboratory, 1954.

[26] 索玉成.电离层短波射线追踪[J].空间科学学报, 1993, 13(4):306-312. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb200801007

SUO Y C. Ionospheric short-wave ray tracing[J]. Chinese journal of space science, 1993, 13(4):306-312. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbkxxb200801007

[27] 孙方, 康士峰, 赵振雄, 等.快速算法实现电离层短波射线追踪[J].通信技术, 2010, 43(7):14-16. http://d.old.wanfangdata.com.cn/Periodical/txjs201007005

SUN F, KANG S F, ZHAO Z X, et al. High-speed algorithm for realization of short-wave ray tracing in ionosphere[J]. Communications technology, 2010, 43(7):14-16. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/txjs201007005

相关知识

基于局地气候分区的宏观尺度城市形态建模及城市微气候数值模拟方法研究
森林病虫害模型的数值模拟
基于数值模拟的上海城市肌理微气候研究
坡地对城市热岛影响的数值研究
CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究
基于GRAPES数值模拟的城市绿地空间布局对局地微气候影响研究*
建筑室外环境和室内通风的试验和数值模拟研究
CFD数值模拟技术在温室环境因子调控中的应用
城市微气候优化策略数值模拟技术研究
寒冷地区平原典型城市中心区街区形态与微气候的耦合机理与优化调控

网址: 三种典型化学物质释放变态电离层的数值模拟研究 https://m.huajiangbk.com/newsview1489453.html

所属分类:花卉
上一篇: 科学研究发现,加拿大一枝黄花在代
下一篇: 用于评价由材料释放出的化学物质可