import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets
iris = datasets.load_iris()
x, y = iris.data, iris.target
pd_iris = pd.DataFrame(np.hstack((x, y.reshape(150, 1))),
columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])
print(pd_iris)
plt.figure(dpi=150)
plt.style.use('seaborn')
iris_type = pd_iris['class'].unique()
print(iris_type)
iris_name = iris.target_names
colors = ['#c72e29', '#098154', '#fb832d']
markers = ['$clubsuit$', 'o', '^']
for i in range(len(iris_type)):
plt.scatter(pd_iris.loc[pd_iris['class'] == iris_type[i], 'sepal_length'],
pd_iris.loc[pd_iris['class'] == iris_type[i], 'sepal_width'],
s=50,
c=colors[i],
marker=markers[i],
alpha=0.8,
facecolors='r',
edgecolors='none',
linewidths=1,
label=iris_name[i])
plt.legend(loc='upper right')
plt.show()
说明其中代码难点
#取出setosa组的子dataFrame 而且全是setosa类别
setosa=pd_iris[pd_iris['class'] == iris_type[0]]
# print(setosa)
#pd.loc[行,列],在行的选择中引入了条件选取
B=pd_iris.loc[pd_iris['class'] == iris_type[0], 'sepal_length']
# print(B)
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets
iris = datasets.load_iris()
x, y = iris.data, iris.target
pd_iris = pd.DataFrame(np.hstack((x, y.reshape(150, 1))),
columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])
print(pd_iris)
plt.figure(dpi=150)
plt.style.use('seaborn-white')
color_list=["#D1B6E1",'#30A9DE','#58C9B9','#9DC8C8']
lables=['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
f=plt.boxplot(pd_iris[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']],
labels=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'],
patch_artist=True,
sym='o',
showbox=True,
showmeans = True,
widths=0.2
)
for box, c in zip(f['boxes'], color_list):
box.set(color=c, linewidth=2)
box.set(facecolor=c)
for whisker in f['whiskers']:
whisker.set(color='r', linewidth=0.5)
for cap in f['caps']:
cap.set(color='g', linewidth=1)
for median in f['medians']:
median.set(color='DarkBlue', linewidth=1)
for flier in f['fliers']:
flier.set(marker='o', color='y', alpha=0.5)
for means in f['means']:
means.set(color='black')
plt.title('my boxplot')
plt.show()
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn import datasets
iris = datasets.load_iris()
x, y = iris.data, iris.target
pd_iris = pd.DataFrame(np.hstack((x, y.reshape(150, 1))),
columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])
print(pd_iris)
plt.figure(dpi=150)
plt.style.use('seaborn-white')
label = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
font_1 = {"size": 14}
sns.violinplot(data =pd_iris[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']])
plt.xlabel("category", font_1)
plt.ylabel("Length or width", font_1)
plt.xticks(ticks = [0, 1, 2 ,3], labels = label, fontsize = 11)
plt.yticks(fontsize = 12)
plt.show()
from pyecharts import options as opts
from pyecharts.charts import Parallel
import pandas as pd
result=pd.read_csv('iris.csv')
print(result)
A=result[result['species']=='setosa']
B=result[result['species']=='versicolor']
C=result[result['species']=='virginica']
print(result['sepal_length'].max())
data1=[]
for a in range(0,len(A)):
data1.append(A.values.tolist()[a][0:])
data2=[]
for b in range(0,len(B)):
data2.append(B.values.tolist()[b][0:])
data3=[]
for c in range(0,len(C)):
data3.append(C.values.tolist()[c][0:])
print(data1,'n',data2,'n',data3)
c = ( Parallel()
.add_schema(
[
opts.ParallelAxisOpts(dim=0, name="sepal length",is_scale=True ,min_=4,max_=8),
opts.ParallelAxisOpts(dim=1, name="sepal width",is_scale=True,min_=2,max_=4.5),
opts.ParallelAxisOpts(dim=2, name="petal length",is_scale=True,min_=1,max_=7),
opts.ParallelAxisOpts(dim=3, name="petal width",is_scale=True,min_=0,max_=2.5),
opts.ParallelAxisOpts(dim=4, name="分类", type_="category",
data=["setosa", "versicolor", "virginica"]),
])
.add("setosa", data1)
.add("versicolor", data2)
.add("virginica", data3)
.set_global_opts(title_opts=opts.TitleOpts(
title="Parallel cordlnate plot, Fisher's iris data",pos_top="top",pos_right="center"),
legend_opts=opts.LegendOpts( pos_top="bottom",pos_right="center"),yaxis_opts=opts.AxisOpts(
min_='dataMin',max_="dataMax"
))
.render("parallel.html")
)
相关知识
鸢尾花数据集如何可视化
Python实现平行坐标图的绘制(plotly)
3.4 数据可视化
鸢尾花分类与直方图、散点图的绘制及可视化决策树
对鸢尾花数据集中的萼片长度、萼片宽度、花瓣长度和花瓣宽度绘制平行坐标图
数据可视化——鸢尾花数据集的分析与散点图的绘制
python花瓣长度和花瓣宽度散点图鸢尾花
Iris鸢尾花数据集可视化、线性回归、决策树分析、KMeans聚类分析
python 怎么加载鸢尾花数据
R语言鸢尾花iris数据集的层次聚类分析 – 拓端
网址: 鸢尾花的可视化(散点图、小提琴图、以及pyearchs平行坐标图) https://m.huajiangbk.com/newsview1544660.html
上一篇: 鸢尾花数据分类 |
下一篇: Python编程之美:探索海棠花 |