import sklearn.datasets as skdata
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import sklearn.model_selection as skmodel
import sklearn.neighbors as skneighbors
import sklearn.preprocessing as skprep
iris_data = skdata.load_iris()
iris_data
type(iris_data)
dir(iris_data)
iris_data.feature_names
iris_df = pd.DataFrame(iris_data['data'],columns = ['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'])
iris_df['Species'] = iris_data.target
iris_df
sns.relplot(x='sepal width (cm)', y='petal length (cm)', data=iris_df, hue='Species')
x_train,x_test,y_train,y_test = skmodel.train_test_split(iris_data.data,iris_data.target,test_size = 0.2)
x_train,x_test,y_train,y_test
knn_model = skneighbors.KNeighborsClassifier(n_neighbors = 7)
knn_model.fit(x_train,y_train)
y_predict = knn_model.predict(x_test)
y_predict == y_test
score = knn_model.score(x_test, y_test)
score