摘要:
应用生态工程原理,构建互花米草(Spartina alterniflora)生长-收割运输-生物矿质液-降脂胶囊-生物炭-护岸材料产业链,对崇明东滩互花米草进行资源化利用。运用能值分析法对互花米草资源化利用系统的能值效益和经济效益进行综合评价。整个系统具有良好的经济效益,经济净收益为9.64E+09$,经济产投比为27.78,均高于相似的海岸生态经济系统和其他互花米草生态工程。降脂胶囊子系统在所有子系统中具有最大的经济投入和经济产出,经济净收益为9.28E+09$,占整个系统的96%。整个系统的净能值效益为3.98E+22 sej,能值投资率和能值产出率高。社会经济的高度投入增加了系统的环境负荷,系统环境负载率为154.634,可持续发展指数为0.182。总体而言,互花米草资源化利用生态工程系统经济竞争力强,具有长期发展的潜力。
Abstract:
According to the principles of ecoengineering sciences, Spartina alterniflora in Chongming Dongtan can be utilized as a resource by an industrial chain, i. e. plant growth-harvest and transportation-bio-mineral liquid-lipid-lowering capsule-biochar-revetment materials. The emergy synthesis was used to comprehensively evaluate emergy and economic yields of such resource utilization system regarding S. alterniflora. The system has good economic yields, with a net yield of 9.64E+09 $ and an output-input ratio of 27.78, being significantly greater than other similar coastal economic systems and other ecological engineering regarding S. alterniflora. The lipid-lowering capsule subsystem had the greatest economic input-output ratio among all subsystems, with net economic yield of 9.28E+09 $, accounting for 96% of the entire system. The net emergy yield of such entire system was 3.98E+22 sej, indicating a high emergy input-output ratio. The high social and economic inputs increased the environmental load of the system, with an environmental load ratio of 154.634 and an emergy sustainable development index of 0.182. In conclusion, the resource utilization system for S. alterniflora has a strong economic competitiveness and a long-term development potential.
图 1 互花米草资源化利用工程能值系统图
Figure 1. Emergy systems diagram of the ecological engineering system for the utilization of Spartina alterniflora
表 1 互花米草资源化利用工程能值分析结果
Table 1 Emergy analysis of the ecological engineering system for the utilization of Spartina alterniflora
项目 原始数据 能值转换率 太阳能值/sej 能值-货币价值/$ 1互花米草生长系统 输入 可更新环境资源(R1) 太阳能 6.75E+16 J 1.00E+00sej·J-1[28]62-75 6.75E+16 1.65E+04 风能 1.22E+14 J 7.91E+02sej·J-1[28]62-75 9.65E+16 2.36E+04 雨水化学能 7.41E+13 J 1.96E+04 sej·J-1[28]62-75 1.45E+18 3.55E+05 雨水势能 6.17E+11 J 1.13E+04sej·J-1[28]62-75 6.97E+15 1.70E+03 潮汐能 3.44E+14 J 2.13E+04sej·J-1[28]62-75 7.33E+18 1.79E+06 地球旋转能 1.50E+13 J 3.68E+04sej·J-1[28]62-75 5.52E+17 1.35E+05 小计 6.81E+16 J 9.50E+18 2.32E+06 不可更新环境资源(N1) 表土流失能 1.28E+13 J 7.94E+04sej·J-1[28]62-75 1.02E+18 2.48E+05 输入总和 1.05E+19 2.57E+06 输出 互花米草生物量 4.80E+04 t 5.28E+14sej·t-1[36] 2.53E+19 6.20E+06 护岸作用 3.35E+05 $ 4.09E+12sej·$-1[36] 1.37E+18 3.35E+05 鸟类多样性 5.36E+11 J 3.81E+07sej·J-1[35] 2.04E+19 4.99E+06 大型底栖动物多样性 5.11E+13 J 1.91E+06 sej·J-1[35] 9.76E+19 2.39E+07 土壤库 有机质 9.67E+13 J 4.45E+03sej·J-1[35] 4.30E+17 1.05E+05 总磷 2.22E+08 g 2.26E+10sej·g-1[35] 5.02E+18 1.23E+06 总氮 1.85E+08 g 5.84E+09sej·g-1[35] 1.08E+18 2.64E+05 总钾 2.53E+08 g 2.21E+09sej·g-1[35] 5.59E+17 1.37E+05 含水量 7.70E+11 J 5.21E+04sej·J-1[35] 4.01E+16 9.81E+03 小计 7.13E+18 1.74E+06 植被固定二氧化碳 3.03E+06 $ 4.09E+12sej·$-1[36] 1.24E+19 3.03E+06 植被释放氧气 3.24E+06 $ 4.09E+12sej·$-1[36] 1.33E+19 3.24E+06 栖息地价值 4.58E+05 $ 4.09E+12sej·$-1[36] 1.87E+18 4.58E+05 输出总和 1.79E+20 4.38E+07 2互花米草收割运输系统 输入 购买的不可更新资源(FN2) 柴油 2.12E+04 $ 4.09E+12sej·$-1[36] 8.66E+16 2.12E+04 人力(收割) 7.58E+03 $ 4.09E+12sej·$-1[36] 3.10E+16 7.58E+03 人力(运输) 1.21E+05 $ 4.09E+12sej·$-1[36] 4.96E+17 1.21E+05 输出 互花米草 1.95E+04 t 5.28E+14sej·t-1[36] 1.03E+19 2.52E+06 3生物矿质液提取系统 输入 互花米草 1.95E+04 t 5.28E+14sej·t-1[36] 1.03E+19 2.52E+06 购买的可更新资源(FR3) 纯净水 3.51E+12 J 4.02E+07sej·J-1[36] 1.41E+20 3.45E+07 生物质能源 7.79E+03 t 9.68E+12sej·t-1[36] 7.54E+16 1.84E+04 购买的不可再生资源(FN3) 人力 3.40E+11 J 2.20E+06sej·J-1[36] 7.49E+17 1.83E+05 加热器 2.13E+02 $ 4.09E+12sej·$-1[36] 8.73E+14 2.13E+02 沸浴锅 2.13E+02 $ 4.09E+12sej·$-1[36] 8.73E+14 2.13E+02 浓缩仪 2.13E+02 $ 4.09E+12sej·$-1[36] 8.73E+14 2.13E+02 电力 8.48E+13 J 2.21E+05sej·J-1[36] 1.88E+19 4.58E+06 输出 生物矿质液(BML) 2.32E+08 $ 4.09E+12sej·$-1[36] 9.51E+20 2.32E+08 残渣 1.10E+06 $ 4.09E+12 sej·$-1[36] 4.50E+18 1.10E+06 4降脂胶囊制备系统 输入 生物矿质液(BML) 2.32E+08 $ 4.09E+12sej·$-1[36] 9.51E+20 2.32E+08 购买的可更新资源(FR4) 米草粉 8.35E+05$ 4.09E+12sej·$-1[36] 3.42E+18 8.35E+05 购买的不可再生资源(FN4) 人力 1.41E+04 $ 4.09E+12sej·$-1[36] 5.77E+16 1.41E+04 胶囊壳 3.14E+08 $ 4.09E+12sej·$-1[36] 1.28E+21 3.14E+08 搅拌机 1.43E+02 $ 4.09E+12sej·$-1[36] 5.86E+14 1.43E+02 微波干燥器 3.80E+02 $ 4.09E+12sej·$-1[36] 1.55E+15 3.80E+02 胶囊填充器 1.03E+03 $ 4.09E+12sej·$-1[36] 4.20E+15 1.03E+03 电力 4.26E+13 J 2.21E+05sej·J-1[36] 9.41E+18 2.30E+06 输出 降脂胶囊 9.83E+09 $ 4.09E+12sej·$-1[36] 4.02E+22 9.83E+09 5残渣制备生物炭系统 输入 残渣 1.10E+06 $ 4.09E+12sej·$-1[36] 4.50E+18 1.10E+06 购买的不可再生资源(FN5) 设备投入 3.47E+05 $ 4.09E+12sej·$-1[36] 1.42E+18 3.47E+05 电力投入 1.18E+05 $ 4.09E+12sej·$-1[36] 4.82E+17 1.18E+05 人力投入 4.04E+05 $ 4.09E+12sej·$-1[36] 1.65E+18 4.04E+05 输出 生物炭 5.15E+06 $ 4.09E+12sej·$-1[36] 2.11E+19 5.15E+06 6护岸材料制备系统 输入 生物炭 5.15E+06 $ 4.09E+12sej·$-1[36] 2.11E+19 5.15E+06 购买的可更新资源(FR6) 淤泥 4.85E+05 $ 4.09E+12sej·$-1[36] 1.98E+18 4.85E+05 黏土质骨料 2.97E+05 $ 4.09E+12sej·$-1[36] 1.21E+18 2.97E+05 购买的不可再生资源(FN6) 钙质添加剂 8.70E+05 $ 4.09E+12sej·$-1[36] 3.56E+18 8.70E+05 固化剂 1.45E+05 $ 4.09E+12sej·$-1[36] 5.95E+17 1.45E+05 能耗 用水 3.39E+04 $ 4.09E+12sej·$-1[36] 1.39E+17 3.39E+04 用电 3.88E+04 $ 4.09E+12sej·$-1[36] 1.59E+17 3.88E+04 燃料能源 6.15E+05 $ 4.09E+12sej·$-1[36] 2.51E+18 6.15E+05 其他 人工费 6.19E+04 $ 4.09E+12sej·$-1[36] 2.53E+17 6.19E+04 耗材费 6.45E+03 $ 4.09E+12sej·$-1[36] 2.64E+16 6.45E+03 运维费 3.23E+03 $ 4.09E+12sej·$-1[36] 1.32E+16 3.23E+03 设备折旧 9.87E+04 $ 4.09E+12sej·$-1[36] 4.04E+17 9.87E+04 输出 护岸材料 2.23E+08 $ 4.09E+12sej·$-1[36] 9.12E+20 2.23E+08有关互花米草生长系统的原始数据来源及计算,前文均有所提及。收割运输系统、生物炭制备系统、护岸材料制备系统投入和产出的物质及其原始数据为实地调研所得,BML制备系统、降脂胶囊制备系统的工艺流程及相关的投入产出数据参考LU等[36]的研究。其中,收割运输系统主要考虑人力和能源消耗,其他投入如收割机等未作考虑。能值转换率主要参考蓝盛芳等[28]62-75、LIU等[35]、LU等[36]的研究成果。该文以最新的全球能值基线12.0E+24 sej·a-1作为能值研究的基础,其他能值基线的能值转化率通过基线换算转换成该研究使用的能值转换率[37]。能值-货币价值以美元为单位,采用1美元兑换6.7人民币的汇率,能值/货币比率取4.09E+12 sej·$-1[36]。表 2 米草资源化利用工程系统能值指标计算结果
Table 2 Emergy indices of the ecological engineering system for the utilization of Spartina alterniflora
指标名称 单位 表达式 米草生长 收割运输 BML 降脂胶囊 生物炭 护岸材料 总计可更新环境资源能值投入 sej R 9.50E+18 0 0 0 0 0 9.50E+18 不可更新环境资源能值投入 sej N 1.02E+18 0 0 0 0 0 1.02E+18 购买的可更新资源能值投入 sej FR 0 0 1.51E+20 9.54E+20 8.05E+18 2.43E+19 1.48E+20 购买的不可再生资源能值投入 sej FN 0 6.13E+17 1.95E+19 1.29E+21 3.55E+18 7.66E+18 1.32E+21 能值产出 sej Y 1.79E+20 1.03E+19 9.70E+20 4.02E+22 2.11E+19 9.12E+20 4.13E+22 净能值效益(NEY,YNE) sej YNE=Y-(R+FR+FN) 1.70E+20 9.69E+18 8.00E+20 3.80E+22 9.50E+18 8.80E+20 3.98E+22 净效益(NEB,BNE) sej BNE=Y-(FR+FN) 1.79E+20 9.69E+18 8.00E+20 3.80E+22 9.50E+18 8.80E+20 3.98E+22 能值产出率(EYR,REY) REY=Y/(FR+FN) 16.803 5.689 17.914 1.819 28.536 28.134 环境负载率(ELR,REL) REL=(FR+FN+N)/R 0.107 154.634 REL*=(N+FN)/(R+FR) 0.107 0.129 1.352 0.441 0.315 8.387 可持续发展指数(ESI,IES) IES=REY/REL 0.182IES*=REY/REL* 44.054 13.248 4.125 90.524 3.354BML为生物矿质液。除米草生长外的子系统没有可更新环境资源的能值投入,REL和IES可用于总系统的计算,但不适用于子系统,故子系统采用REL*和IES*进行计算[38]。表 3 互花米草资源化利用工程系统经济指标值
Table 3 Economic indices of the ecological engineering system for the utilization of Spartina alterniflora
项目 经济投入/$ 经济产出/$ 经济净收益/$ 经济产投比1互花米草生长系统 0 0 0 2互花米草收割运输系统 1.50E+05 2.52E+06 2.37E+06 16.80 3生物矿质液提取系统 4.18E+07 2.34E+08 1.92E+08 5.60 4降脂胶囊制备系统 5.49E+08 9.83E+09 9.28E+09 17.91 5残渣制备生物炭系统 1.97E+06 5.15E+06 3.18E+06 2.61 6护岸材料制备系统 7.81E+06 2.23E+08 2.15E+08 28.55 总计 3.60E+08 1.00E+10 9.64E+09 27.78表 4 米草资源化利用工程系统与其他相关生态经济系统能值比较
Table 4 Ecological economic comparison between Spartina alterniflora ecological engineering system and other related ecological economic systems
项目 NEY/sej NEB/sej EYR ELR ESI 经济净收益/$ 经济产投比 来源文献米草资源化利用工程系统 3.98E+22 3.98E+22 28.134 154.634 0.182 9.64E+09 27.78 该研究 海岸(河口)生态经济系统 水产养殖 鳝鱼 2.14E+17 2.23E+17 1.04 23.42 0.05 9.97E+04 $·hm-2 2.59 [45] 黑鱼 2.37E+17 2.48E+17 1.05 20.17 0.05 6.82E+04 $·hm-2 2.69 [45] 鲈鱼 3.04E+17 3.15E+17 1.04 26.14 0.04 7.31E+04 $·hm-2 2.99 [45] 沙蚕 1.02E+18 1.23E+18 3.33 4.61 0.72 3.01E+05 2.49 [35] 蛤 2.06E+18 2.66E+18 2.24 4.18 0.54 6.50E+05 2.10 [35] 果园 香蕉 7.00E+13 1.47E+15 1.04 10.01 0.10 8.99E+03 $·hm-2 2.52 [46] 木瓜 6.49E+15 7.90E+15 1.16 4.06 0.29 9.05E+03 $·hm-2 1.82 [46] 石榴 1.32E+16 1.46E+16 1.31 3.24 0.40 9.62E+03 $·hm-2 1.98 [46] 黄皮 8.92E+15 1.03E+16 1.30 6.60 0.20 2.35E+04 $·hm-2 4.87 [46] 海洋牧场 2011年 1.13E+21 1.19E+21 11.61 6.36 1.83 1.43E+08 12.11 [47] 2013年 1.29E+21 1.35E+21 4.51 3.92 1.15 1.75E+08 7.17 [47] 其他互花米草生态工程 绿色食品开发 2.57E+12 2.91E+12 6.34 1.57 4.04 1.65E+06 5.71 [48] 护堤+BML 8.12E+18 2.58E+19 5.68 9.05 0.63 1.65E+06 5.71 [49] 护堤+BML+降脂胶囊 8.14E+18 2.60E+19 12.50 12.24 1.02 3.52E+06 8.32 [49] 七步加工产业链 4.32E+15 1.008 132.928 0.008 3.66E+06 $·hm-2 29.58 [36]NEY为净能值效益,NEB为净效益,EYR为能值产出率,ELR为环境负载率,ESI为可持续发展指数。 [1]CHUNG C H. Forty Years of Ecological Engineering with Spartina Plantations in China[J]. Ecological Engineering, 2006, 27(1): 49-57. DOI: 10.1016/j.ecoleng.2005.09.012
[2]NALLA S, HARDAWAY C J, SNEDDON J. Phytoextraction of Selected Metals by the First and Second Growth Seasons of Spartina alterniflora[J]. Instrumentation Science & Technology, 2012, 40(1): 17-28. http://www.onacademic.com/detail/journal_1000037993301910_5ddd.html
[3]WU B L, JI Y F, WANG J L, et al. The Annual Habitat Selection of Released Père David′s Deer in Dafeng Milu National Nature Reserve[J]. Acta Ecologica Sinica, 2011, 31(4): 225-232. DOI: 10.1016/j.chnaes.2011.04.007
[4]YIN S L, AN S Q, DENG Q, et al. Spartina alterniflora Invasions Impact CH4 and N2O Fluxes from a Salt Marsh in Eastern China[J]. Ecological Engineering, 2015, 81: 192-199. DOI: 10.1016/j.ecoleng.2015.04.044
[5] 宫璐, 李俊生, 柳晓燕, 等. 中国沿海互花米草遗传多样性及其遗传结构[J]. 草业科学, 2014, 31(7): 1290-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201407014.htmGONG Lu, LI Junsheng, LIU Xiaoyan, et al. Genetic Diversity of Spartina alterniflora in Coastal Areas of China[J]. Pratacultural Science, 2014, 31(7): 1290-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201407014.htm
[6]LI B, LIAO C Z, ZHANG X D, et al. Spartina alterniflora Invasions in the Yangtze River Estuary, China: An Overview of Current Status and Ecosystem Effects[J]. Ecological Engineering, 2009, 35(4): 511-520. DOI: 10.1016/j.ecoleng.2008.05.013
[7] 顾燕飞. 崇明东滩互花米草生态控制的施工技术及效果[J]. 上海交通大学学报(农业科学版), 2019, 37(5): 83-88. DOI: 10.3969/J.ISSN.1671-9964.2019.05.014GU Yanfei. Technologies and Their Effects on Ecological Control of Spartina alterniflora in Chongming Dongtan[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2019, 37(5): 83-88. DOI: 10.3969/J.ISSN.1671-9964.2019.05.014
[8] 王思凯, 苗中博, 盛强, 等. 长江口崇明东滩盐沼湿地围堤工程对底栖动物群落的影响[J]. 生态学报, 2020, 40(3): 1021-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202003027.htmWANG Sikai, MIAO Zhongbo, SHENG Qiang, et al. Effects of Saltmarsh Dike Project on Benthic Community in Chongming Dongtan of the Yangtze Estuary[J]. Acta Ecologica Sinica, 2020, 40(3): 1021-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202003027.htm
[9]QIN F F, TANG B P, ZHANG H S, et al. Potential Use of Spartina alterniflora as Forage for Dairy Cattle[J]. Ecological Engineering, 2016, 92: 173-180. DOI: 10.1016/j.ecoleng.2016.03.035
[10] 侯利萍, 夏会娟, 孔维静, 等. 河口湿地优势植物资源化利用研究进展[J]. 湿地科学, 2019, 17(5): 593-599. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201905013.htmHOU Liping, XIA Huijuan, KONG Weijing, et al. Advance in Researches on Resource Utilization of Dominant Plants in Estuarine Wetlands[J]. Wetland Science, 2019, 17(5): 593-599. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201905013.htm
[11] 清华, 姚懿函, 李红丽, 等. 互花米草生物质能利用潜力[J]. 生态学杂志, 2008, 27(7): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200807025.htmQING Hua, YAO Yihan, LI Hongli, et al. Utilization Potential of Spartina alterniflora Loisel as a Bio-energy Source[J]. Chinese Journal of Ecology, 2008, 27(7): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200807025.htm
[12] 谢宝华, 路峰, 韩广轩. 入侵植物互花米草的资源化利用研究进展[J]. 中国生态农业学报(中英文), 2019, 27(12): 1870-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201912009.htmXIE Baohua, LU Feng, HAN Guangxuan. Resource Utilization of Invasive Spartina alterniflora: A Review[J]. Chinese Journal of Eco-agriculture, 2019, 27(12): 1870-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201912009.htm
[13]ODUM H T. Self-organization, Transformity, and Information[J]. Science, 1988, 242(4882): 1132-1139. DOI: 10.1126/science.242.4882.1132
[14]CHEN W, LIU W J, GENG Y, et al. Recent Progress on Emergy Research: A Bibliometric Analysis[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1051-1060. DOI: 10.1016/j.rser.2017.02.041
[15] 姜俊彦, 黄星, 李秀珍, 等. 潮滩湿地土壤有机碳储量及其与土壤理化因子的关系: 以崇明东滩为例[J]. 生态与农村环境学报, 2015, 31(4): 540-547. DOI: 10.11934/j.issn.1673-4831.2015.04.015JIANG Junyan, HUANG Xing, LI Xiuzhen, et al. Soil Organic Carbon Storage in Tidal Wetland and Its Relationships with Soil Physico-chemical Factors: A Case Study of Dongtan of Chongming, Shanghai[J]. Journal of Ecology and Rural Environment, 2015, 31(4): 540-547. DOI: 10.11934/j.issn.1673-4831.2015.04.015
[16] 丁文慧, 李秀珍, 姜俊彦, 等. 崇明东滩南部河口盐沼植物群落种间关系的数量分析[J]. 应用生态学报, 2016, 27(5): 1417-1426. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201605010.htmDING Wenhui, LI Xiuzhen, JIANG Junyan, et al. Numerical Analysis of Inter-specific Relationships in the Estuary Salt Marsh Plant Community of Southern Chongming Dongtan, Shanghai[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1417-1426. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201605010.htm
[17] 王琰, 童春富, 汤琳, 等. 崇明东滩盐沼湿地大型底栖动物功能群分布特征及其影响因子[J]. 生态学杂志, 2020, 39(3): 880-892. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ202003020.htmWANG Yan, TONG Chunfu, TANG Lin, et al. Distribution Characteristics and Influencing Factors of the Benthic Macroinvertebrate Functional Groups in the Salt Marshes of Chongming Dongtan[J]. Chinese Journal of Ecology, 2020, 39(3): 880-892. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ202003020.htm
[18] 汤臣栋. 上海崇明东滩互花米草生态控制与鸟类栖息地优化工程[J]. 湿地科学与管理, 2016, 12(3): 4-8. DOI: 10.3969/j.issn.1673-3290.2016.03.01TANG Chendong. Ecological Control of Spartina alterniflora and Improvement of Birds Habitats in Chongming Dongtan Wetland, Shanghai[J]. Wetland Science & Management, 2016, 12(3): 4-8. DOI: 10.3969/j.issn.1673-3290.2016.03.01
[19] 高云芳. 长江口盐沼湿地植物多样性及分布格局: 以九段沙和崇明东滩为例[D]. 上海: 上海师范大学, 2009.GAO Yunfang. The Analysis of Diversity and Distribution Pattern of Plant Species in Salt Marsh Wetland on Yangtze River Estuary: Wetlands of Chongming Dongtan and Jiuduansha as the Case[D]. Shanghai: Shanghai Normal University, 2009.
[20] 严娟. 长江口潮间带大型底栖动物生态学研究[D]. 上海: 上海海洋大学, 2012.YAN Juan. Ecology of Macrobenthos in the Intertidal Area of the Yangtze Estuary[D]. Shanghai: Shanghai Ocean University, 2012.
[21] 曹牧, 汤臣栋, 马强, 等. 崇明东滩鸟类国家级自然保护区环志鸟类种群特征年际变化[J]. 南京林业大学学报(自然科学版), 2017, 41(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201701003.htmCAO Mu, TANG Chendong, MA Qiang, et al. Inter-annual Population Variation of Migratory Birds in Chongming Dongtan National Nature Reserve[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201701003.htm
[22] 徐玲, 李波, 袁晓, 等. 崇明东滩春季鸟类群落特征[J]. 动物学杂志, 2006, 41(6): 120-126. DOI: 10.3969/j.issn.0250-3263.2006.06.020XU Ling, LI Bo, YUAN Xiao, et al. The Characteristics of the Avian Community in Chongming Dongtan Spring 2003[J]. Chinese Journal of Zoology, 2006, 41(6): 120-126. DOI: 10.3969/j.issn.0250-3263.2006.06.020
[23] 曹牧, 薛建辉. 崇明东滩湿地生态系统服务功能与价值评估研究述评[J]. 南京林业大学学报(自然科学版), 2016, 40(5): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201605026.htmCAO Mu, XUE Jianhui. Review of Service Function and Value Research on Chongming Dongtan Wetland Ecosystem[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201605026.htm
[24] 韩增林, 胡伟, 钟敬秋, 等. 基于能值分析的中国海洋生态经济可持续发展评价[J]. 生态学报, 2017, 37(8): 2563-2574. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201708008.htmHAN Zenglin, HU Wei, ZHONG Jingqiu, et al. Sustainable Development of Marine Eco-economics Based on an Emergy Analysis in China[J]. Acta Ecologica Sinica, 2017, 37(8): 2563-2574. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201708008.htm
[25] 黄黄, 时宇, 冉珊珊, 等. 基于能值理论的农田-畜禽生产系统可持续动态[J]. 自然资源学报, 2020, 35(4): 869-883. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202004010.htmHUANG Huang, SHI Yu, RAN Shanshan, et al. Dynamic Research on Sustainable Development of Farmland-livestock Production System Based on Emergy Theory[J]. Journal of Natural Resources, 2020, 35(4): 869-883. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202004010.htm
[26] 钦佩, 张焕仕, 覃凤飞. 互花米草生态工程[M]. 北京: 化学工业出版社, 2019: 304-311. [27] 王正芳, 郑正, 罗兴章, 等. 互花米草厌氧发酵渣活性炭处理含镉废水的研究[J]. 农业环境科学学报, 2010, 29(12): 2383-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201012024.htmWANG Zhengfang, ZHENG Zheng, LUO Xingzhang, et al. The Treatment of Cadmium-contained Wastewater Using Activated Carbon Prepared from Anaerobic Digested Residue of S. alterniflora[J]. Journal of Agro-environment Science, 2010, 29(12): 2383-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201012024.htm
[28] 蓝盛芳, 钦佩, 陆宏芳. 生态经济系统能值分析[M]. 北京: 化学工业出版社, 2002: 404-408. [29] 顾骏钦. 湿地景观服务空间特征及其价值评价研究: 以崇明东滩为例[D]. 上海: 上海师范大学, 2015.GU Junqin. Spatial Characteristics and Value Assessment of Wetland Landscape Services: A Case Study on Dongtan Chongming[D]. Shanghai: Shanghai Normal University, 2015.
[30] 李加林, 张忍顺. 互花米草海滩生态系统服务功能及其生态经济价值的评估: 以江苏为例[J]. 海洋科学, 2003, 27(10): 68-72. DOI: 10.3969/j.issn.1000-3096.2003.10.017LI Jialin, ZHANG Ren-shun. Function of Spartina alterniflora Salt Marsh Ecosystem Services and Evaluation of Their Ecological and Econical Value: A Case of Jiangsu Province [J]. Marine Sciences, 2003, 27(10): 68-72. DOI: 10.3969/j.issn.1000-3096.2003.10.017
[31] 何彦龙. 中低潮滩盐沼植被分异的形成机制研究: 以崇明东滩盐沼为例[D]. 上海: 华东师范大学, 2014.HE Yanlong. The Mechanism of Vegetation Differentiation in the Lower Salt Marsh of Yangtze River Estuary[D]. Shanghai: East China Normal University, 2014.
[32] 韩华. 崇明滩涂湿地不同水盐梯度下植物群落碳氮磷生态化学计量学特征[D]. 上海: 华东师范大学, 2014.HAN Hua. Carbon, Nitrogen and Phosphorus Ecological Stoichiometry of Vegetation Community under the Gradients of Soil Water-salt in Chongming Wetlands[D]. Shanghai: East China Normal University, 2014.
[33] 刘清玉. 近40年来长江口崇明东滩沉积记录与环境过程研究[D]. 上海: 华东师范大学, 2004. [34] 杨璐, 朱再玲, 卞翔, 等. 崇明东滩植物根际生物活性及与理化因素的相关性研究[J]. 上海师范大学学报(自然科学版), 2011, 40(4): 416-420. DOI: 10.3969/j.issn.1000-5137.2011.04.016YANG Lu, ZHU Zailing, BIAN Xiang, et al. Rhizosphere Soil Bioactivity and Correlations with Physico-chemical Property in Dongtan Marsh of Chongming[J]. Journal of Shanghai Normal University (Natural Sciences), 2011, 40(4): 416-420. DOI: 10.3969/j.issn.1000-5137.2011.04.016
[35]LIU J E, ZHOU H X, QIN P, et al. Comparisons of Ecosystem Services among Three Conversion Systems in Yancheng National Nature Reserve[J]. Ecological Engineering, 2009, 35(5): 609-629. DOI: 10.1016/j.ecoleng.2008.09.007
[36]LU H F, ZHANG H S, QIN P, et al. Integrated Emergy and Economic Evaluation of an Ecological Engineering System for the Utilization of Spartina alterniflora[J]. Journal of Cleaner Production, 2020, 247: 119592. DOI: 10.1016/j.jclepro.2019.119592
[37] 刘耕源, 杨志峰. 能值分析理论与实践: 生态经济核算与城市绿色管理[M]. 北京: 科学出版社, 2018: 14-16. [38]LU H F, YUAN Y G, CAMPBELL D E, et al. Integrated Water Quality, Emergy and Economic Evaluation of Three Bioremediation Treatment Systems for Eutrophic Water[J]. Ecological Engineering, 2014, 69: 244-254. DOI: 10.1016/j.ecoleng.2014.04.024
[39] 上海市统计局, 国家统计局上海调查总队. 上海统计年鉴: 2019[M]. 北京: 中国统计出版社, 2019.Shanghai Bureau of Statistics, Shanghai Investigation Team of National Bureau of Statistics. Shanghai Statistical Yearbook[M]. Beijing: China Statistics Press, 2019.
[40] 朱晓佳, 钦佩. 外来种互花米草及米草生态工程[J]. 海洋科学, 2003, 27(12): 14-19. DOI: 10.3969/j.issn.1000-3096.2003.12.005ZHU Xiaojia, QIN Pei. The Allen Species Spartina alterniflora and Spartina Ecoengineering [J]. Marine Sciences, 2003, 27(12): 14-19. DOI: 10.3969/j.issn.1000-3096.2003.12.005
[41] 李加林, 杨晓平, 童亿勤, 等. 互花米草入侵对潮滩生态系统服务功能的影响及其管理[J]. 海洋通报, 2005, 24(5): 33-38. DOI: 10.3969/j.issn.1001-6392.2005.05.006LI Jialin, YANG Xiaoping, TONG Yiqin, et al. Influences of Spartina alterniflora Invasion on Ecosystem Services of Coastal Wetland and Its Countermeasures[J]. Marine Science Bulletin, 2005, 24(5): 33-38. DOI: 10.3969/j.issn.1001-6392.2005.05.006
[42] 张晟途, 钦佩, 万树文. 互花米草生态工程能值分析[J]. 南京大学学报(自然科学版), 2000, 36(5): 592-597. DOI: 10.3321/j.issn:0469-5097.2000.05.010ZHANG Shengtu, QIN Pei, WAN Shuweng. Emergy Analysis of Spartina alterniflora Ecological Engineering[J]. Journal of Nanjing University (Natural Sciences), 2000, 36(5): 592-597. DOI: 10.3321/j.issn:0469-5097.2000.05.010
[43] 杨青, 刘耕源. 湿地生态系统服务价值能值评估: 以珠江三角洲城市群为例[J]. 环境科学学报, 2018, 38(11): 4527-4538. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201811036.htmYANG Qing, LIU Gengyuan. Wetland Ecosystem Services Assessment Based on Emergy: A Case of Pearl River Delta Urban Agglomeration[J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4527-4538. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201811036.htm
[44] 吉丽娜, 温艳萍. 崇明东滩湿地生态系统服务功能价值评估[J]. 中国农学通报, 2013, 29(5): 160-166. DOI: 10.3969/j.issn.1000-6850.2013.05.030JI Li-na, WEN Yan-ping. Wetland Ecosystem Services Valuation of Chongming Dongtan[J]. Chinese Agricultural Science Bulletin, 2013, 29(5): 160-166. DOI: 10.3969/j.issn.1000-6850.2013.05.030
[45]LI L J, LU H F, REN H, et al. Emergy Evaluations of Three Aquaculture Systems on Wetlands Surrounding the Pearl River Estuary, China[J]. Ecological Indicators, 2011, 11(2): 526-534. DOI: 10.1016/j.ecolind.2010.07.008
[46]LU H F, KANG W L, CAMPBELL D E, et al. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China[J]. Ecological Engineering, 2009, 35(12): 1743-1757. DOI: 10.1016/j.ecoleng.2009.08.001
[47] 马欢. 柘林湾海洋牧场生态系统综合效益评估[D]. 上海: 上海海洋大学, 2018.MA Huan. Comprehensive Benefit Evaluation of Marine Ranching Ecosystem in Zhelin Bay[D]. Shanghai: Shanghai Ocean University, 2018.
[48] 张晟途, 钦佩, 万树文. 从能值效益角度研究互花米草生态工程资源配置[J]. 生态学报, 2000, 20(6): 1045-1049. DOI: 10.3321/j.issn:1000-0933.2000.06.023ZHANG Shengtu, QIN Pei, WAN Shuwen. Analysis on the Resource Allocation Structure of Spartina alternifora Ecological Engineering from the Emergy Benefits Aspect[J]. Acta Ecologica Sinica, 2000, 20(6): 1045-1049. DOI: 10.3321/j.issn:1000-0933.2000.06.023
[49] 刘金娥, 钦佩, 周虹霞, 等. 米草生态工程加环效益能值分析[J]. 应用生态学报, 2004, 15(4): 673-677. DOI: 10.3321/j.issn:1001-9332.2004.04.027LIU Jine, QIN Pei, ZHOU Hongxia, et al. Emergy Analysis on an Added Loop in Spartina alterniflora Ecological Engineering[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 673-677. DOI: 10.3321/j.issn:1001-9332.2004.04.027
[50]LIU G Y, YANG Z F, CHEN B, et al. Modelling a Thermodynamic-based Comparative Framework for Urban Sustainability: Incorporating Economic and Ecological Losses into Emergy Analysis[J]. Ecological Modelling, 2013, 252: 280-287. DOI: 10.1016/j.ecolmodel.2013.02.002
[51]WANG G, QIN P, WAN S W, et al. Ecological Control and Integral Utilization of Spartina alterniflora[J]. Ecological Engineering, 2008, 32(3): 249-255. DOI: 10.1016/j.ecoleng.2007.11.014
相关知识
上海崇明东滩鸟类国家级自然保护区互花米草生态
上海崇明东滩互花米草生态控制与鸟类栖息地优化工程.pdf
上海市崇明东滩鸟类国家级自然保护区互花米草生态控制与鸟类栖息地优化工程
上海崇明东滩鸟类国家级自然保护区互花米草生态控制与
关于上海崇明东滩鸟类国家级自然保护区互花米草生态控制与鸟类栖息地优化工程竣工验收的批复
上海崇明东滩外来物种互花米草二次入侵过程
互花米草入侵国际重要湿地崇明东滩的生态后果
互花米草的生态治理
【生态地理】崇明与互花米草的十年苦战(附考点设计)
崇明东滩:智斗互花米草,守护鸟类栖息“圣地”
网址: 崇明东滩互花米草资源化利用生态工程系统生态经济评价 https://m.huajiangbk.com/newsview1545275.html
上一篇: 资源再生利用 推动绿色发展 |
下一篇: 北京农学院林场野生杜鹃分布特征及 |