Enlightenment from microbiome research towards biocontrol of plant disease
[1]Waghunde RR, Shelake RM, Sabalpara AN. Trichoderma:a significant fungus for agriculture and environment.African Journal of Agricultural Research, 2016, 11(22): 1952–1965DOI:10.5897/AJAR. [2]Wagner MR, Lundberg DS, del Rio TG, Tringe SG. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant.Nature Communications, 2016, 7: 12151DOI:10.1038/ncomms12151. [3]Iwamoto Y, Nishiguchi S, Ogawa M. The suppressive effect of application conditions of Coniothyrium minitans to control Sclerotinia sclerotiorum.Annual Report of the Kansai Plant Protection Society, 2015, 57: 19–23DOI:10.4165/kapps.57.19. [4]Raza W, Ling N, Zhang RF, Huang QW, Xu YC, Shen QR. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies.Critical Reviews in Biotechnology, 2017, 37(2): 201–212 [5]Nejat N, Rookes J, Mantri NL, Cahill DM. Plant-pathogen interactions:toward development of next-generation disease-resistant plants.Critical Reviews in Biotechnology, 2017, 37(2): 229–237DOI:10.3109/07388551.2015.1134437. [6]Dildey ODF, Broetto L, Rissato BB, Gonçalves-Trevisoli EDV, Coltro-Roncato S, Dal'Maso EG, Meinerz CC, Henkemeier NP, Stangarlin JR, Kuhn OJ, Webler TFB. Trichoderma-bean interaction:defense enzymes activity and endophytism.African Journal of Agricultural Research, 2016, 11(43): 4286–4292DOI:10.5897/AJAR. [7]Kannangara S, Dharmarathna RMGCS, Jayarathna DL. Isolation, identification and characterization of Trichoderma species as a potential biocontrol agent against Ceratocystis paradoxa.Journal of Agricultural Sciences, 2017, 12(1): 51–62DOI:10.4038/jas.v12i1.8206. [8] Magotra S, Trakroo D, Ganjoo S, Vakhlu J. Bacillus-mediated-induced systemic resistance (ISR) against Fusarium corm Rot//Choudhary DK, Varma A. Microbial-mediated Induced Systemic Resistance in Plants. Singapore:Springer, 2016:15-22. [9] PR Newswire. Biopesticides market-global industry analysis, size, share, growth and forecast 2015-2023. London:PR Newswire, 2016. [10]Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health.Trends in Plant Science, 2012, 17(8): 478–486DOI:10.1016/j.tplants.2012.04.001. [11]Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes.Plant Molecular Biology, 2016, 90(6): 575–587DOI:10.1007/s11103-015-0417-8. [12]Rout ME, Southworth D. The root microbiome influences scales from molecules to ecosystems:the unseen majority.American Journal of Botany, 2013, 100(9): 1689–1691DOI:10.3732/ajb.1300291. [13]Massart S, Martinez-Medina M, Jijakli MH. Biological control in the microbiome era:challenges and opportunities.Biological Control, 2015, 89: 98–108DOI:10.1016/j.biocontrol.2015.06.003. [14]Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities.Annual Review of Microbiology, 2012, 66: 265–283DOI:10.1146/annurev-micro-092611-150107. [15]Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.Science, 2015, 349(6250): 860–864DOI:10.1126/science.aaa8764. [16]Herrera Paredes S, Lebeis SL. Giving back to the community:microbial mechanisms of plant-soil interactions.Functional Ecology, 2016, 30(7): 1043–1052DOI:10.1111/fec.2016.30.issue-7. [17]Fisher PJ, Petrini O, Scott HML. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.).New Phytologist, 1992, 122(2): 299–305DOI:10.1111/nph.1992.122.issue-2. [18]Kim HY, Choi GJ, Lee HB, Lee SW, Lim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim JC. Some fungal endophytes from vegetable crops and their anti-Oomycete activities against tomato late blight.Letters in Applied Microbiology, 2007, 44(3): 332–337DOI:10.1111/lam.2007.44.issue-3. [19]Larran S, Perelló A, Simón MR, Moreno V. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.)leaves.World Journal of Microbiology and Biotechnology, 2002, 18(7): 683–686DOI:10.1023/A:1016857917950. [20]Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage.Mycologia, 2007, 99(2): 175–184DOI:10.1080/15572536.2007.11832577. [21]Yan XN, Sikora RA, Zheng JW. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita.Journal of Zhejiang University Science B, 2011, 12(3): 219–225DOI:10.1631/jzus.B1000165. [22]Yuan ZL, Zhang CL, Lin FC, Kubicek CP. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.Applied and Environmental Microbiology, 2010, 76(5): 1642–1652DOI:10.1128/AEM.01911-09. [23]U'Ren JM, Lutzoni F, Miadlikowska J, Arnold AE. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens.Microbial Ecology, 2010, 60(2): 340–353DOI:10.1007/s00248-010-9698-2. [24]Olmo-Ruiz MD, Arnold AE. Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica.Mycologia, 2014, 106(1): 8–21DOI:10.3852/13-098. [25]Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX. Diversity, distribution and biotechnological potential of endophytic fungi.Annals of Microbiology, 2016, 66(2): 529–542DOI:10.1007/s13213-015-1153-7. [26]Sturz AV, Nowak J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops.Applied Soil Ecology, 2000, 15(2): 183–190DOI:10.1016/S0929-1393(00)00094-9. [27]Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops.Canadian Journal of Microbiology, 1997, 43(10): 895–914DOI:10.1139/m97-131. [28]Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts.Molecular Plant-microbe Interactions, 2006, 19(8): 827–837DOI:10.1094/MPMI-19-0827. [29]Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. Plant growth-promoting bacterial endophytes.Microbiological Research, 2016, 183: 92–99DOI:10.1016/j.micres.2015.11.008. [30]Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA. Are tropical fungal endophytes hyperdiverse?.Ecology Letters, 2000, 3(4): 267–274DOI:10.1046/j.1461-0248.2000.00159.x. [31]Hyde KD, Soytong K. The fungal endophyte dilemma.Fungal Diversity, 2008, 33: 163–173 [32]Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes.Natural Product Reports, 2006, 23(5): 753–771DOI:10.1039/b609472b. [33]Zimmerman NB, Vitousek PM. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape.Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(32): 13022–13027DOI:10.1073/pnas.1209872109. [34]Lindow SE, Brandl MT. Microbiology of the phyllosphere.Applied and Environmental Microbiology, 2003, 69(4): 1875–1883DOI:10.1128/AEM.69.4.1875-1883.2003. [35]Peñuelas J, Terradas J. The foliar microbiome.Trends in Plant Science, 2014, 19(5): 278–280DOI:10.1016/j.tplants.2013.12.007. [36]Vorholt JA. Microbial life in the phyllosphere.Nature Reviews Microbiology, 2012, 10(12): 828–840DOI:10.1038/nrmicro2910. [37]Lindow SE, Leveau JHJ. Phyllosphere microbiology.Current Opinion in Biotechnology, 2002, 13(3): 238–243DOI:10.1016/S0958-1669(02)00313-0. [38]Izhaki I, Fridman S, Gerchman Y, Halpern M. Variability of bacterial community composition on leaves between and within plant species.Current Microbiology, 2013, 66(3): 227–235DOI:10.1007/s00284-012-0261-x. [39]Peñuelas J, Rico L, Ogaya R, Jump AS, Terradas J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest.Plant Biology, 2012, 14(4): 565–575DOI:10.1111/j.1438-8677.2011.00532.x. [40]Rico L, Ogaya R, Terradas J, Peñuelas J. Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought.Plant Biology, 2014, 16(3): 586–593DOI:10.1111/plb.2014.16.issue-3. [41]Whipps JM, Hand P, Pink D, Bending GD. Phyllosphere microbiology with special reference to diversity and plant genotype.Journal of Applied Microbiology, 2008, 105(6): 1744–1755DOI:10.1111/jam.2008.105.issue-6. [42]Copeland JK, Yuan LJ, Layeghifard M, Wang PW, Guttman DS. Seasonal community succession of the phyllosphere microbiome.Molecular Plant-Microbe Interactions, 2015, 28(3): 274–285DOI:10.1094/MPMI-10-14-0331-FI. [43]Farré-Armengol G, Filella I, Llusia J, Peñuelas J. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions.Trends in Plant Science, 2016, 21(10): 854–860DOI:10.1016/j.tplants.2016.06.005. [44]Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere:microbial jungle at the plant-climate interface.Annual Review of Ecology, Evolution, and Systematics, 2016, 47: 1–24DOI:10.1146/annurev-ecolsys-121415-032238. [45]Sarrocco S, Matarese F, Baroncelli R, Vannacci G, Seidl-Seiboth V, Kubicek CP, Vergara M. The constitutive endopolygalacturonase TvPG2 regulates the induction of plant systemic resistance by Trichoderma virens.Phytopathology, 2017DOI:10.1094/PHYTO-03-16-0139-R. [46]Alkooranee JT, Aledan TR, Ali AK, Lu GY, Zhang XK, Wu JS, Fu CH, Li MT. Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.PLoS One, 2017, 12(1): e0168850DOI:10.1371/journal.pone.0168850. [47] Desai S, Kumar GP, Amalraj LD, Bagyaraj DJ, Ashwin R. Exploiting PGPR and AMF biodiversity for plant health management//Singh DP, Singh HB, Prabha R. Microbial Inoculants in Sustainable Agricultural Productivity. India:Springer, 2016:145-160. [48]Yang R, Zhan FQ, Hou M, Hou XQ, Zhang HT, Long XQ, Cui WD. Research on synergistic action between plant rhizosphere bacteria and AMF bacteria.Xinjiang Agricultural Sciences, 2014, 51(7): 1253–1262(in Chinese)
杨蓉, 詹发强, 侯敏, 侯新强, 张慧涛, 龙宣杞, 崔卫东. 植物根际促生细菌与AMF菌的协同作用研究.新疆农业科学, 2014, 51(7): 1253–1262. [49]Busby PE, Ridout M, Newcombe G. Fungal endophytes:modifiers of plant disease.Plant Molecular Biology, 2016, 90(6): 645–655DOI:10.1007/s11103-015-0412-0. [50]de Souza Maia Filho F, da Silva Fonseca AO, Persici BM, de Souza Silveira J, Braga CQ, Pötter L, de Avila Botton S, Brayer Pereira DI. Trichoderma virens as a biocontrol of Toxocara canis:in vivo evaluation.Revista Iberoamericana de Micología, 2017, 34(1): 32–35DOI:10.1016/j.riam.2016.06.004. [51]Taribuka J, Wibowo A, Widyastuti SM, Sumardiyono C. Potency of six isolates of biocontrol agents endophytic Trichoderma against fusarium wilt on banana.Journal of Degraded and Mining Lands Management, 2017, 4(2): 723–731DOI:10.15243/jdmlm. [52]Rodriguez Estrada AE, Jonkers W, Corby Kistler H, May G. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays:an endophyte, a pathogen, and their shared plant host.Fungal Genetics and Biology, 2012, 49(7): 578–587DOI:10.1016/j.fgb.2012.05.001. [53]Rodríguez MA, Rothen C, Lo TE, Cabrera GM, Godeas AM. Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents:selection and evaluation of Clonostachys rosea BAFC1646.Biocontrol Science and Technology, 2015, 25(12): 1388–1409DOI:10.1080/09583157.2015.1052372. [54]Kandula DRW, Jones EE, Stewart A, McLean KL, Hampton JG. Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species.Biocontrol Science and Technology, 2015, 25(9): 1052–1069DOI:10.1080/09583157.2015.1028892. [55]Grosch R, Dealtry S, Schreiter S, Berg G, Mendonça-Hagler L, Smalla K. Biocontrol of Rhizoctonia solani:complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods.Plant and Soil, 2012, 361(1/2): 343–357 [56]Sylla J, Alsanius BW, Krüger E, Reineke A, Strohmeier S, Wohanka W. Leaf microbiota of strawberries as affected by biological control agents.Phytopathology, 2013, 103(10): 1001–1011DOI:10.1094/PHYTO-01-13-0014-R. [57]Schreiter S, Ding GC, Grosch R, Kropf S, Antweiler K, Smalla K. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce.FEMS Microbiology Ecology, 2014, 90(3): 718–730DOI:10.1111/fem.2014.90.issue-3. [58]Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of Barley.Microbial Ecology, 2010, 60(2): 381–393DOI:10.1007/s00248-010-9720-8. [59]Chen F, Wang M, Zheng Y, Li SJ, Wang HZ, Han DD, Guo SJ. The effect of biocontrol bacteria on rhizosphere bacterial communities analyzed by plating and PCR-DGGE.Current Microbiology, 2013, 67(2): 177–182DOI:10.1007/s00284-013-0347-0. [60]Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R, Hartmann A, Grosch R. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community.PLoS One, 2013, 8(7): e68818DOI:10.1371/journal.pone.0068818. [61]Scherwinski K, Wolf A, Berg G. Assessing the risk of biological control agents on the indigenous microbial communities:Serratia plymuthica hro-c48 and Streptomyces sp. hro-71 as model bacteria.BioControl, 2007, 52(1): 87–112DOI:10.1007/s10526-006-9006-8. [62]Yin DH, Wang N, Xia F, Li Q, Wang W. Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere.European Journal of Soil Biology, 2013, 59: 36–42DOI:10.1016/j.ejsobi.2013.09.001. [63]Zhang XJ, Harvey PR, Stummer BE, Warren RA, Zhang GZ, Guo K, Li JS, Yang HT. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.Functional & Integrative Genomics, 2015, 15(5): 599–610 [64]Wu XQ, Lv YP, Ren H, Zhao XY, Zhao ZJ, Zhang GZ, Li JS, Zhang XJ, Yang HT. Tolerance and elimination of oxolic acid by Trichoderma spp.Microbiology China, 2016, 43(9): 1988–1998(in Chinese)
吴晓青, 吕玉平, 任何, 赵晓燕, 赵忠娟, 张广志, 李纪顺, 张新建, 杨合同. 木霉对草酸耐受和消除作用的初步分析.微生物学通报, 2016, 43(9): 1988–1998. [65]Benítez MS, McSpadden Gardener BB. Linking sequence to function in soil bacteria:sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression.Applied and Environmental Microbiology, 2009, 75(4): 915–924DOI:10.1128/AEM.01296-08. [66]Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS Ⅲ, Ryu CM. The multifactorial basis for plant health promotion by plant-associated bacteria.Applied and Environmental Microbiology, 2011, 77(5): 1548–1555DOI:10.1128/AEM.01867-10. [67]Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed.Applied and Environmental Microbiology, 2001, 67(10): 4742–4751DOI:10.1128/AEM.67.10.4742-4751.2001. [68]Erlacher A, Cardinale M, Grosch R, Grube M, Berg G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome.Frontiers in Microbiology, 2014, 5: 175 [69]Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota.Nature, 2015, 528(7582): 364–369DOI:10.1038/nature16192. [70]Schreiter S, Sandmann M, Smalla K, Grosch R. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.PLoS One, 2014, 9(8): e103726DOI:10.1371/journal.pone.0103726. [71]Kröber M, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP, Hartmann A, Pühler A, Schlüter A. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing.Frontiers in Microbiology, 2014, 5: 252 [72]Grosch R, Scherwinski K, Lottmann J, Berg G. Fungal antagonists of the plant pathogen Rhizoctonia solani:selection, control efficacy and influence on the indigenous microbial community.Mycological Research, 2006, 110(12): 1464–1474DOI:10.1016/j.mycres.2006.09.014.
相关知识
Application of Rhizospheric Biocontrol Consortia and the Potential M echanisms of Their Enhancing Efficacy on Disease
Research progress on citrus canker disease and its microbial control
植物病害生防菌株的研究进展 Research Development of Microbial Antagonists against Plant Disease
Research Progress in Detection and Identification of Crop Diseases and Insect Pests Based on Deep Learning
Research on agricultural disease and pest monitoring technology based on Internet of Things and big data
Research progress on remediation of pollutants in soil using plant
基于神经结构搜索的多种植物叶片病害识别
刘红梅
Advances in biofertilizer research and development in China
面向大规模多类别的病虫害识别模型
网址: Enlightenment from microbiome research towards biocontrol of plant disease https://m.huajiangbk.com/newsview167601.html