首页 > 分享 > 日本科学家发现植物体内各组织的生物钟节律存在差异

日本科学家发现植物体内各组织的生物钟节律存在差异

日本科学家发现植物体内各组织的生物钟节律存在差异

我们知道植物体内也有生物钟。日本科学家在新一期英国《自然》杂志网络版上报告说,他们发现植物体内各组织的生物钟节律存在很大差异。这一发现有助于开发控制植物花期的生长调节剂。 科学界认为,植物的生物钟与动物一样,都是以约24小时为一个周期,但是一直不清楚植物生物钟的机制。 京都大学研究生院助教远藤求率领的研究小组利用拟南芥的叶片进行了实验。他们采集叶片上维管束(又称为叶脉)、叶肉、表皮等部位的细胞,详细分析了各部位的生物钟基因。他们发现,各部位生物钟基因发挥作用的节律有很大差异。 研究人员借助超声波和酶,大幅缩短了分离植物组织所需的时间,从而能够对各组织的生物钟基因进行定量分析。 他们发现,如果阻碍维管束生物钟基因的功能,那么叶片内所有的生物钟都会停止,拟南芥的开花就会推迟,而阻碍叶肉和表皮的生物钟基因功能,则不会影响维管束的生物钟。研究人员据此认为,维管束的生物钟基因对花的生长发挥了重要作用。 远藤求指出:“这一发现......阅读全文

植物所在生物钟调控水稻耐盐性机制解析研究中获进展

  水稻是主要粮食作物,对盐胁迫敏感,盐渍环境会导致水稻产量显著下降。生物钟是内在的时间维持机制,在调节植物非生物胁迫响应过程中发挥关键作用,然而,目前关于水稻生物钟核心组分是否参与耐盐性调节及其相关机制尚不清楚。  中国科学院植物研究所研究员王雷研究组发现,在转录水平,水稻生OsPRR(Oryza

植物所在生物钟调控水稻耐盐性的机制解析中获进展

  水稻是全球主要的粮食作物,对盐胁迫敏感,盐渍环境会导致水稻产量显著下降。生物钟是内在的时间维持机制,在调节植物非生物胁迫响应过程中发挥关键作用,但目前,学界尚不清楚水稻生物钟核心组分是否参与耐盐性调节及其相关机制。  中国科学院植物研究所研究员王雷课题组发现,在转录水平,水稻生OsPRR(Ory

Science专题:生物钟生理学

无论是植物,动物,还是细菌真菌,在生理或者分子机理作用方面都存在昼夜节律(circadian rhythms),但是要进行这一领域的研究并不容易,首先需要跨越模型系统,昼夜节律研究包含了核心生物钟蛋白和其调控因子之间的详细分子相互作用,维持多变环境中,一段持续时间内稳定的系统整体水平分析,还有对于不

Cell子刊发布首个植物转录因子文库

  近日科学家们借助自动化平台,建立了首个植物遗传学开关的综合性文库,以帮助全球学者更好的理解植物对环境改变的适应,培育更好的植物品种。相关论文于七月十七日发表在Cell旗下的Cell Reports杂志上。  该文库的建立耗时八年,包含大约两千个植物转录因子的克隆。转录因子是天然的遗传学开关,研究

菊花开花时间调控研究获进展

  近期,南京农业大学园艺学院菊花遗传育种与种质创新团队蒋甲福教授和房伟民教授揭示了菊花CmERF110和CmFLK相互作用通过生物钟共同参与菊花花期调控。论文发表于Plant,Cell & Environment(《植物、细胞与环境》)。  菊花是世界范围广泛栽培和应用的观赏植物,多数菊花品种为短

破解“按蚊相亲”奥秘-干扰交配有助绿色控蚊

  蚊子叮咬不仅派发“红包”(红肿),而且传播疟疾、登革热等多种疾病。中国科学院分子植物科学卓越创新中心王四宝研究员领衔的研究团队1月22日在国际顶尖学术期刊《科学》上发表了题为“生物钟基因、光照和环境温度协同调控疟疾媒介按蚊的性信息素合成、婚飞和交配”的论文,该项研究破解蚊子“求偶”奥秘,有助蚊虫

PNAS惊人发现:感知气温的基因

  夏日的午后总是让人昏昏欲睡,这是为什么呢?Leicester大学的科学家们发现了一个感知气温的基因,向人们展示了环境温度和天气状况对基因活性的影响。这项研究发表在六月二十八日的美国国家科学院院PNAS杂志上。  为了适应地球自转引起的昼夜周期性变化,我们进化出了生物钟协调不同组织与器官的昼夜节律

“生物钟”不可小觑-突破性研究共同解读生物钟奥秘

  “日出而作,日落而息”,地球上大部分生物从几十万年前就开始就遵从这种大自然的特殊规律。当然日常生活中人们也并没有非常在意这中自然规律/现象,直到现代医学的发展进步才让我们将这种顺应自然的规律同生物钟画起了等号。当然随之而来的就是科学家们对生物钟的各种深度研究。  很多科学研究都发现,人类生活中各

揭示生物钟基因在东方粘虫飞行与生殖行为中的重要作用

  近日,中国农业科学院植物保护研究所粮食作物害虫监测与控制创新团队在《昆虫科学》上发表了题为“The clock gene, period, influences migratory flight and reproduction of the oriental armyworm, Mythimn

加拿大发现生物钟功能紊乱内部机制-或可基因调控

  乘坐跨时区过夜航班或是经常倒夜班,常常会让人彻夜难眠。据最新一期《神经元》杂志报道,加拿大麦吉尔大学研究人员日前发现,该现象与蛋白合成这一基本生物学过程密切相关。这一发现将有助于治疗因跨时区旅行和倒夜班造成的睡眠障碍,以及抑郁症和帕金森氏症等慢性疾病。   地球自转产生白天和黑夜,给众生赋予了

Nature子刊:生物钟基因影响自身免疫性疾病严重程度

  人体的免疫系统像一支纪律严明的军队,24小时昼夜不停地保护着我们的健康。《Nature Communications》杂志上最新发表的一项研究将为我们揭开生物钟是如何影响人体免疫反应的。  越来越多的证据说明了生物钟和时间表对免疫功能的影响。比如说,轮班工作人员、频繁的航空旅客和更大的昼夜节律紊

PNAS:生物钟竟影响基因修复!或可用于提高肿瘤化疗疗效

  顺铂是一种主要的肿瘤化疗药物,它通过形成Pt-d(GpG)二元加成物破坏癌细胞DNA来杀伤癌细胞。但是它仍然有着严重的副作用,包括肾脏毒性和肝脏毒性,这严重限制了顺铂的使用范围和剂量。时间疗法是在治疗过程中考虑生物钟、通过提高治疗效果或者限制毒副作用以提高治疗指数的方法。   图片来源:CC0

深度解读诺贝尔生理医学奖——昼夜节律的调控机制

  北京时间10月2日下午17:30,2017年诺贝尔生理学或医学奖揭晓,来自缅因大学的研究者Jeffrey C. Hall, 布兰迪斯大学的研究者Michael Rosbash和洛克菲勒大学的研究者Michael W. Young因发现控制昼夜节律的分子机制而获得此奖。  地球上的生命适应了地球的

植物转基因技术的特点

  利用植物来生产疫苗的最大优点是他可以作为食品直接口服。通过各种植物转基因技术将多台疫苗基因转入植物,从而得到表达多肽疫苗的转基因植物。随着抗体基因工程能将抗体基因(从小的活性单位到完整抗体的重、轻链基因)从单抗杂交瘤中分离出来,人们就开始想办法利用转基因植物来表达这些抗体。  1989年Hiat

植物基因沉默怎么搞?

  “植物的种子时期,大量基因都被沉默,直到植物成年以后才按需活化,”植物生化和光合作用研究所(IBVF)的Myriam Calonje Macaya博士解释道。细胞分裂后,基因沉默状态还会传递给子细胞,从而建立细胞记忆。多梳蛋白家族(Polycomb-group proteins,PcG蛋白)参与

首个植物基因编辑安全证书!

  4日,从山东舜丰生物科技有限公司(以下简称舜丰生物)获悉,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。  基因编辑是世界生物育种领域的前沿技术。与转基因不同,基因编辑育种仅对作物自身基因进行修饰,并不转入其他物种的基因,

植物基因转化常用方法2

(二)Ti质粒转化植物细胞的战略  1 . Ti质粒的改造  有以下理由使天然的Ti质粒不能作为表达载体使用:  a. 生长在培养基上的植物转化细胞产生大量的生长素和分裂素阻止了细胞再生长为整株植物,因此,必须除去生长素和分裂素基因。  b. 有机碱的合成与T-DNA的转化无关,而且可能会影响植物细

植物转基因的相关介绍

  植物转基因是基因组中含有外源基因的植物。它可通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,有可能改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种,如玉米稻 、转基因三倍体毛白杨。而且可用转基因植物或离体培养的细胞,来生产外源基

植物基因转化常用方法3

(三)改良植物性状的策略  基因克隆技术提供了一种新的改良植物的方法,它可以直接的改变植物的基因型。有两种策略可以应用。  1) 基因附加:通过添加1个或多个基因改变植物的性状。  2) 基因扣除:利用基因工程技术使一个或多个植物已经存在的基因失活。  灭活植物基因是通过反义技术来实现的。将外源基因

植物基因转化常用方法4

1.2 其它的基因附加工程在水稻、棉花、马铃薯、番茄和其它作物上也进行了δ-内毒素工程,获得昆虫抗性也不仅仅是指有着一种方法。蛋白酶抑制剂也是较好的选择,它可以一只昆虫肠道内的蛋白酶活性,阻止或减缓害虫生长,许多植物能产生蛋白酶抑制剂,如豇豆和common bean, 他们的基因已经被成功的转移到其

生物钟“守时”奥秘揭开

  法国国家科研中心15日发表公报说,该机构研究人员通过对绿藻的观测,揭开了生物钟“守时”的秘密。     为了揭开其中的奥秘,法国国家科研中心巴纽尔斯海洋观测站的研究人员对常见的单细胞绿藻进行了24小时观测,并根据其体内蛋白质的生成数量绘制了曲线图。结果他们发现,生物钟只在某些特定时刻对光线敏

昆明植物所建立全新植物基因链接与克隆系统

  随着高通量测序技术的普及与基因组信息爆炸式的增长,解析基因与基因组孕藏的功能信息成为我们了解生命密码的必需步骤。功能基因研究是破解基因组信息这部天书的重要手段之一,而功能基因的研究离不开载体的构建与转基因方法。传统的载体构建耗时耗力,伴随着烦琐的酶切与连接手段,成功地构建一个用于植物转化的载体往

植物所揭示裸子植物线粒体丢失基因的进化命运

  线粒体经内共生事件起源后,丢失了大量的基因,演变为半自主性细胞器。不同生物支系的线粒体基因组差异巨大,尤其是相较于动物和其他真核生物(其蛋白质编码基因含量较稳定),陆地植物的多个支系中线粒体基因的转移/丢失经常发生。因此,植物线粒体编码基因的组成以及丢失基因的进化命运引发关注。  裸子植物代表了

生科院揭示蓝光和环境温度协同调控植物生物节律新机制

  11月12日,国际学术期刊《植物细胞》(The Plant Cell)在线发表了中国科学院上海生命科学研究院植物生理生态研究所刘宏涛研究组题为Blue Light -and Low Temperature-Regulated COR27 and COR28 Play Roles in the A

大豆生育期基因克隆与功能解析方面取得进展

  大豆开花是作物重要农艺性状之一,对作物产量形成、植株形态建成、驯化以及生态适应性等方面具有显著影响。大豆开花是在外部环境和内部因素共同作用下,从营养生长转变为生殖生长的结果。大豆是典型的光周期敏感短日照作物,光照是决定开花时间最重要的外界环境因素之一,短日照促进开花,长日照抑制开花,它是由光周期

植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

植物叶绿体基因组基因表达调控的研究

  叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式

植物叶绿体基因组基因表达调控的研究

  叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式

植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

相关知识

植物的节律与生物钟.pptx
植物的生物钟与节律
理解植物的生物钟与节律调控.pptx
科学家揭示光信号调控植物生物钟分子机理—论文—科学网
生物节律
植物的光周期调控和节律生物学.pptx
豆科植物为什么喜欢“睡觉”它们体内是否也有生物钟?
植物所等发现植物生物钟的新调控因子
植物的生物节律与环境响应.pptx
植物的生物钟:为什么植物知道昼夜变化?

网址: 日本科学家发现植物体内各组织的生物钟节律存在差异 https://m.huajiangbk.com/newsview1829498.html

所属分类:花卉
上一篇: 哪些花是时钟花 时钟花介绍
下一篇: 植物的生物钟