摘要:干旱是一种严重影响农、林业优质、高产的重要环境因子。本文综述了植物抗旱的分子及生理机制,以及林木抗旱基因的研究现状,讨论和分析了林木耐旱性研究的前景和当前存在的问题,并提出了利用分子生物学技术挖掘抗旱相关基因的策略。现阶段主要的抗旱基因为转录因子,从林木中克隆后在杨树、拟南芥或其它林木中进行遗传转化并验证抗旱基因的功能,阐明林木抗旱的分子机制。另外,从育种应用上,从林木中克隆耐旱基因,通过转基因、基因编辑等手段创制抗旱能力强的林木新种质,进而开展中间试验、环境释放等培育抗旱性能力强的林木新品种,增加其在干旱条件下的生物量并提高逆境环境下的抗性和适应性。总之,通过基因工程技术获得耐旱的林木新种质可以进一步改良其耐旱能力,为干旱和半干旱地区提供更多的林木新材料,进而推广抗旱高产林木新品种,促进林业可持续发展,为我国建设绿水青山提供新优林木品种。
关键词:林木 / 耐旱基因 / 遗传改良Abstract:Drought is an important environmental factor that seriously limits the production of agriculture and forestry all over the world. And it is resulted in a large number of losses in agriculture and forestry. In this paper,the mechanism of drought resistance in plants and the research status of drought resistance genes in trees were reviewed. By discussing and analyzing the prospect and existing problems of drought tolerance research of forest trees,it is proposed to make full use of molecular biology technology to mine drought-related genes. At present,the main drought-resistant genes are transcription factors. After cloning from forest trees,genetic transformation was carried out in poplar,Arabidopsis thaliana or other forest trees,and the function of drought-resistant genes was verified to clarify the molecular mechanism of drought resistance in forest trees. In addition,in the breeding application,we cloned drought-resistant genes from forest trees,created new germplasm with strong drought resistance through transgenic and gene editing,and then carried out pilot tests and environmental release to cultivate new varieties with strong drought resistance,so as to increase their biomass under drought conditions and improve their resistance and adaptability under adverse circumstances. Finally,new varieties of forests with strong drought-resistant ability are cultivated and improved by means of molecular genetics and breeding. Cultivating new varieties of drought-resistant forest trees is an effective means to increase their biomass and improve their quality of life under drought conditions. Obtaining drought-resistant forest germplasm through genetic breeding biotechnology could further improve their drought tolerance,provide more new forest materials for arid and semi-arid areas in China,promote the sustainable and benign development of forestry,and provide new germplasm for building beautiful scenes.
[1]栗雨勤,张文英,王有增,等.作物抗旱性鉴定指标研究及进展[J]. 河北农业科学,2004,8(1):58-61.
[2]Change I C. Contribution of working groups I,II and III to the fourth assessment report of the intergovernmental panel on climate change [C]. 2007.
[3]Cavin L,Mountfold E P,Peterken G F,et al. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand [J]. Functional Ecology,2013,27(6):1424-1435.
[4]Zhao M,Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science,2010,329(5994):940.
[5]Allen C D,Macalady A K,Chenchouni H,et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J]. Forest Ecology and Management,2010,259(4):660-684.
[6]Anderegg W R L,Kane J M,Anderegg L D L. Consequences of widespread tree mortality triggered by drought and temperature stress [J]. Nature Climate Change,2012,3(1):30-36.
[7]Press M C,Scholes J D,Keay R W J. Physiological plant ecology [M]. Springer-Verlag,1981.
[8]余星,肖遥,杨龙海. 我国林木抗旱性研究进展[J]. 绿色科技,2018(9):114-117.
[9]阳园燕,郭安红,安顺清,等.土壤水分亏缺条件下根源信号ABA参与作物气孔调控的数值模拟[J]. 应用生态学报,2006,17(1):65-70.
[10]谭云,叶庆生,李玲. 植物抗旱过程中ABA生理作用的研究进展[J]. 植物学报,2001,18(2):197-201.
[11]董永华,史吉平,李广敏,等.外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J]. 西北植物学报,1998(2):202-206.
[12]农倩,谢金兰,林丽,等.干旱胁迫下外源ABA对甘蔗幼苗生理特性和基因表达的影响[J]. 热带作物学报,2023,44(3):553-561.
[13]Raman P V,Venkat R M. Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance [J]. Plant Biotechnology,2007,24(3):273-282.
[14]孙天国,张梅娟,马天意,等.外源亚精胺对干旱胁迫下甜瓜幼苗抗旱性影响的生理生化机制[J]. 北方园艺,2022(12):34-39.
[15]费克伟,罗晓丽,司怀军,等.五个棉花品种抗旱性与SOD活性相关性分析[J]. 作物杂志,2013(6):134-136.
[16]文建成,陈学宽,符菊芬,等.质膜透性与丙二醛(MDA)含量的变化评价甘蔗品种抗旱性初探[J]. 甘蔗,1998,5(3):1-5.
[17]夏尚光,张金池,梁淑英. 水分胁迫下3种榆树幼苗生理变化与抗旱性的关系[J]. 南京林业大学学报:自然科学版,2008(3):131-134.
[18]于利刚,解莉楠,李玉花. 植物抗逆反应中水孔蛋白的表达调控研究[J]. 生物技术通报,2011(8):5-14.
[19]Shivaraj S M,Sharma Y,Chaudhary J,et al. Dynamic role of aquaporin transport system under drought stress in plants [J]. Environmental and Experimental Botany,2021,184:104367.
[20]Zheng G S,Fan C Y,Di S K,et al. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa(Medicago sativa L.)[J]. Frontiers in Plant Science,2017,8:2125.
[21]Hanson A D,Nelsen C E,Pedersen A R,et al. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance [J]. Crop Science,1979,19(4):489-493.
[22]张林,陈翔,吴宇,等.脯氨酸在植物抗逆中的研究进展[J]. 江汉大学学报:自然科学版,2023,51(1):42-51.
[23]孙宪芝,郑成淑,王秀峰. 木本植物抗旱机理研究进展[J]. 西北植物学报,2007,27(3):629-634.
[24]吴夏雷,董黎,孙宇涵,等.基于干旱胁迫下杉木转录组序列的EST-SSR分子标记开发[J]. 东北林业大学学报,2018,46(2):1-5.
[25]Zhang T,Gao G,Liu J,et al. Transcripts and ABA-dependent signaling in response to drought stress in Hippophae rhamnoides L [J]. Trees,2020,34(4):1033-1045.
[26]Gulyani V,Khurana P. Identification and expression profiling of drought-regulated genes in mulberry(Morus sp.)by suppression subtractive hybridization of susceptible and tolerant cultivars [J]. Tree Genetics & Genomes,2011,7(4):725-738.
[27]Manuel V S G ,Ángeles M C ,Cristina H L,et al. Changes in the transcript and protein profiles of Quercus ilex seedlings in response to drought stress [J]. Journal of Proteomics,2021,243:104263.
[28]Mayne M B,Coleman J R,Blumwald E. Differential response to drought and abscisic acid of two cDNAs corresponding to genes expressed during drought conditioning in jack pine seedlings [J]. New Forests,1997,13(1-3):165-176.
[29]Chang S,Puryear J D,Dias M A D L,et al. Gene expression under water deficit in loblolly pine (Pinus taeda):Isolation and characterization of cDNA clones [J]. Physiologia Plantarum,1996,97(1):139-148.
[30]Chang S,Puryear J,Funkhouser E A,et al. Cloning of a cDNA for a chitinase homologue which lacks chitin-binding sites and is down-regulated by water stress and wounding [J]. Plant Molecular Biology,1996,31(3):693-699.
[31]Li J,Guo W,Zhao J,et al. Transcriptional regulation of the Acer truncatum B. response to drought and the contribution of AtruNAC36 to drought tolerance [J]. Antioxidants,2023,12(7):1339.
[32]Li J B,Guo W,Meng H J,et al. Comprehensive analysis of AP2/ERF gene members in Acer truncatum B. and the positive regulator role of AtruDREB28 in drought tolerance [J]. Industrial Crops and Products,2023,200:116837.
[33]Meng H,Zhao J N,Yang Y F,et al. PeGSTU58,a glutathione S-transferase from Populus euphratica,enhances salt and drought stress tolerance in transgenic Arabidopsis [J]. International Journal of Molecular Sciences,2023,24(11):9354.
[34]Piyatissa S,Bandupriya D. Genome-wide identification and analysis of late embryogenesis abundant(LEA)genes in Musa acuminata [J]. Tropical Plant Biology,2021,14(3):1-18.
[35]Guo L,Li C F,Jiang Y Z,et al. Heterologous expression of poplar WRKY18/35 paralogs in Arabidopsis reveals their antagonistic regulation on pathogen resistance and abiotic stress tolerance via variable hormonal pathways [J]. International Journal of Molecular Sciences,2020,21(15):5440.
[36]Niu Y T,Li X T,Xu C,et al. Analysis of drought and salt-alkali tolerance in tobacco by overexpressing WRKY39 gene from Populus trichocarpa [J]. Plant Signaling & Behavior,2021,16(7):1918885.
[37]Zhang Y,Zhou Y Y,Zhang D,et al. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar [J]. Environmental and Experimental Botany,2020,176:104117.
[38]Zhao H,Wang S,Chen S,et al. Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii×Populus nigra [J]. Gene,2015,565(1):130-139.
[39]刁科豪,孟会静,赵金娜,等.沙柳SpWRKY33基因的克隆、表达及启动子分析[J/OL]. 分子植物育种,1-18[2024-11-07].
[40]Wang J Y,Wang J P,Yang H F. Identification and functional characterization of the NAC gene promoter from Populus euphratica [J]. Planta,2016,244:417-427.
[41]Lu X,Zhang X,Duan H,et al. Three stress‐responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants [J]. Physiologia Plantarum,2018,162(1):73-97.
[42]Peng H,Cheng H Y,Chen C,et al. A NAC transcription factor gene of Chickpea (Cicer arietinum),CarNAC3,is involved in drought stress response and various developmental processes [J]. Journal of Plant Physiology,2009,166(17):1934-1945.
[43]Movahedi A,Zhang J X,Gao P H,et al. Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars [J]. Plant Cell,Tissue and Organ Culture,2015,120:141-154.
[44]Movahedi A,Zhang J X,Yin T M,et al. Functional analysis of two orthologous NAC genes,CarNAC3,and CarNAC6 from Cicer arietinum,involved in abiotic stresses in poplar [J]. Plant Molecular Biology Reporter,2015,33:1539-1551.
[45]Li S,Lin Y-CJ,Wang P,et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa [J]. The Plant cell,2019,31(3):663-686.
[46]王雪怡,张雪梅,程紫涵,等.杨树转录因子PsnNAC030基因功能[J]. 东北林业大学学报,2021,49(7):1-8.
[47]Fang Q,Wang X Q,Wang H Y,et al. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants [J]. Tree Physiology,2020,40(1):46-59.
[48]Xu C Z,Fu X K,Liu R,et al. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis [J]. Tree Physiology,2017,37(12):1713-1726.
[49]Song Q,Kong L F,Yang X R,et al. PtoMYB142,a poplar R2R3-MYB transcription factor,contributes to drought tolerance by regulating wax biosynthesis [J]. Tree Physiology,2022,42(10):2133-2147.
[50]Yang Y L,Li H G,Wang J,et al. PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica [J]. Journal of Experimental Botany,2020,71(22):7270-7285.
[51]张影,练从龙,段卉,等.胡杨bZIP转录因子PebZIP26和PebZIP33基因的克隆及功能分析[J]. 北京林业大学学报,2017,39(7):18-30.
[52]Dash M,Yordanov Y S,Georgieva T,et al. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress [J]. The Plant Journal,2017,89(4):692-705.
[53]Yu D,Wildhagen H,Tylewicz S,et al. Abscisic acid signalling mediates biomass trade‐off and allocation in poplar [J]. The New Phytologist,2019,223(3):1192-1203.
[54]Chen J H,Xia X L,Yin W L. A poplar DRE-binding protein gene,PeDREB2L,is involved in regulation of defense response against abiotic stress [J]. Gene,2011,483(1):36-42.
[55]Wang Z L,Liu J,Guo H Y,et al. Characterization of two highly similar CBF/DREB1-like genes,PhCBF4a and PhCBF4b,in Populus hopeiensis [J]. Plant Physiology & Biochemistry,2014,83:107-116.
[56]Tian Q Q,Chen J H,Wang D,et al. Overexpression of a Populus euphratica CBF4 gene in poplar confers tolerance to multiple stresses [J]. Plant Cell,Tissue and Organ Culture,2017,128:391-407.
[57]Wessels B,Seyfferth C,Escamez S,et al. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition [J]. The New phytologist,2019,224(4):1585-1599.
[58]刘悦,赵凯,吕冠斌,等.杨树ERF11转录因子基因应答渗透胁迫表达分析[J]. 植物研究,2020,40(3):433-440.
[59]Zhou Y Y,Zhang Y,Wang X W,et al. Root-specific NF-Y family transcription factor,PdNF-YB21,positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus [J]. The New phytologist,2020,227(2):407-426.
[60]Shen C,Zhang Y,Li Q,et al. PdGNC confers drought tolerance by mediating stomatal closure resulting from NO and H2O2 production via the direct regulation of PdHXK1 expression in Populus [J]. The New phytologist,2021,230(5):1868-1882.
[61]He F,Wang H,Li H,et al. PeCHYR1,a ubiquitin E3 ligase from Populus euphratica,enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus [J]. Plant Biotechnology Journal,2018,16(8):1514-1528.
[62]邓艾汶,李青遥,杨文,等.毛白杨果胶甲酯酶PtoPME34-1调控植物抗旱性研究[J]. 四川大学学报:自然科学版,2021,58(6):172-180.
[63]周洁,毕毓芳,王婧婧,等.杨树SRK2C基因的克隆及功能分析[C] // 江苏省遗传学会,江苏省遗传学会第八届会员代表大会暨学术研讨会论文集. 南京林业大学森林资源与环境学院,2010:36-38.
[64]Wang H L,Yang Q,Tan S Y,et al. Regulation of cytokinin biosynthesis using PtRD26pro -IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus [J]. Journal of Integrative Plant Biology,2022,64(3):771-786.
[65]Zhao J N,Yang Y F,Jia X X,et al. Ectopic expression of SpABR1 positively regulates drought stress tolerance through the ABA-dependent pathway and by promoting ROS scavenging in Arabidopsis [J]. Environmental and Experimental Botany,2023,215:105491.
[66]徐晨曦,姜静,刘甜甜,等.柽柳泛素结合酶基因(E2s)的序列分析及功能验证[J]. 东北林业大学学报,2007,35(11):1-4.
[67]Caruso A,Morabito D,Delmotte F,et al. Dehydrin induction during drought and osmotic stress in Populus [J]. Plant Physiology Biochemistry,2002,40(12):1033-1042.
[68]Šunderlikova V,Salaj J,Kopecky D,et al. Dehydrin genes and their expression in recalcitrant oak (Quercus robur) embryos[J]. Plant Cell Reports,2009,28(7):1011-1021.
[69]Jiménez J Á,Alonso-Ramírez A,Nicolás C. Two cDNA clones (FsDhn1 and FsClo1) up-regulated by ABA are involved in drought responses in Fagus sylvatica L. seeds [J]. Journal of Plant Physiology,2008,165(17):1798-1807.
[70]李双,苏艳艳,王厚领,等.胡杨miR1444b在拟南芥中正调控植物抗旱性[J]. 北京林业大学学报,2018,40(4):1-9.
[71]Farooq M,Hussain M,Wahid A,et al. Drought stress in plants:an overview [M] //Ruiz-Lozano J M,Porcel R,Bárzana G,et al. Plant responses to drought stress: From morphological to molecular features. Springer Berlin Heidelberg,2012.
[72]Ryan M G. Tree responses to drought [J]. Tree Physiology,2011,31(3):237-239.
相关知识
兰花花色化学及相关功能基因研究进展
林木抗旱树种和优良种质的选育
成花基因研究进展
抗旱
《经济林木花芽分化的分子机理研究进展》
植物花粉发育相关基因的研究进展
林木抗旱措施方案.docx
植物防御系统中抗病相关基因的研究进展
林木花卉转基因育种获阶段性成果
王军辉:林木新种质创制研究进展
网址: 林木抗旱相关基因研究进展 https://m.huajiangbk.com/newsview1918627.html
上一篇: 云杉分布在哪些地方?哪儿有云杉的 |
下一篇: 基因组选择在林木遗传育种研究中的 |