摘要:
目的
四川平原地区小麦−水稻轮作模式下,小麦苗期易受渍害导致减产。我们从生理和农学效应两个方面研究了叶面施用植物生长调节剂、叶面肥对小麦幼苗抗渍能力的影响,为减轻麦田渍害提供途径。
方法
在成都市大邑县元兴乡开展田间试验,供试材料为多穗型小麦品种蜀麦1963 (SM1963)与大穗型品种蜀麦133 (SM133)。稻茬小麦播种后30天内土壤相对含水量在90%以上,达到产生渍害的条件。在小麦三叶期,设置单独喷施S-诱抗素(S-ABA)、多效唑·甲哌鎓(PM)、氨基酸水溶肥(AF)、腐植酸水溶肥(HF)以及S-ABA和PM配合AF (S+P+A)或者HF (S+P+H)处理,以喷施清水(CK)作为对照。调查分析了麦苗生长速率、叶面积指数、茎蘖生长动态、结实特性、产量等农学性状。拔节期取叶片和分蘖节样品,分析碳氮代谢物积累量、丙二醛(MDA)含量、抗氧化酶活性。
结果
6个喷施处理相比,S+P+H提升抗渍效果与稳产的效应最佳。与CK相比,S+P+H处理显著提升了两个穗型小麦拔节前群体生长速率与叶片净同化率,增加了叶面积指数与叶绿素含量,叶片与分蘖节蔗糖含量提升了38.8%~70.3%,游离氨基酸含量增加16.7%~24.2%,叶片脯氨酸含量提升了48.0%~71.5%,叶片与分蘖节MDA含量较CK降低了28.0%~51.2%,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性较CK分别增加41.3%、47.6%、89.9%、38.7%以上,提升了碳氮代谢与抗氧化能力;SM1963、 SM133小麦单株分蘖力较CK分别增加28.2%、58.3%,有效分蘖发生速率显著增加,主茎穗粒数、分蘖穗重与穗粒数显著提升,分蘖产量贡献率分别提升了6.1%、8.8%,最终产量分别提升26.3%、13.2%。单独喷施HF也有助于苗期叶片生长与光合,SM1963、 SM133小麦分蘖产量贡献率分别提升12.2%、5.6%,实际产量分别提升15.4%与16.5%。多穗型蜀麦1963喷施S-ABA增产13.3%,大穗型蜀麦133喷施AF增产10%。
结论
三叶期喷施一种或者配合喷施几种植物生长调节剂和叶面肥,可从不同途径不同程度地缓解渍害对麦苗生长的不利影响,从生理角度看,可以促进小麦叶片生长和叶绿素含量,提高叶片和分蘖节中糖氮代谢物的积累,增强抗氧化酶活性降低膜损伤,保护分蘖发生并增强第一分蘖的可塑性,从农学角度看,喷施植物生长调节剂和叶面肥可提升茎蘖群体数量,促进群体生长速率,提高成穗质量,最终提高产量。相较大穗型蜀麦133,多穗型蜀麦1963喷施组合试剂后叶片、分蘖节糖代谢物含量及叶片SOD、APX活性提升更多,其氮代谢物含量、MDA含量更低,成穗的分蘖多。总体而言,喷施腐植酸叶面肥的效果大于喷施氨基酸叶面肥,S-诱抗素和多效唑·甲哌鎓与腐植酸叶面肥的组合效应也大于与氨基酸叶面肥的组合效应。
Abstract:
Objectives
Water logging damage during wheat seedling stage is a common disaster limiting the growth and yield of wheat under wheat-rice rotation system in Sichuan Plain. We studied the effect of foliar application of plant stimulants and fertilizers on the water logging resistance of wheat seedlings from the points of physiological responses and population growth, to provide an approach for alleviating the damage caused by water logging in wheat fields.
Methods
A field experiment was carried out in Dayi County, Sichuan Province during wheat season after rice, the wheat cultivars included a multi-spike type ‘Shumai 1963’ and a large-spike type ‘Shumai 133’. Within 30 days after sowing of wheat, the relative soil moisture content was above 90%, leading to water lodging damage seriously on wheat seedlings. Six foliar treatments were setup at the three-leaf stage of wheat seedlings, included spraying S-Abscisic acid (S-ABA), poleiotropic azole·meata (PM), amino acid water soluble fertilizer (AF), humic acid water soluble fertilizer (HF), and combined spraying S-ABA and PM with AF (S+P+A), or with HF (S+P+H), and spraying tap water (CK) as a control. The seedling traits, leaf area index, development dynamics of tillerings and stems, grain-setting characteristics, and yield of wheat population were investigated. At jointing stage, leaf and tillering node samples were collected for determination of the malondialdehyde (MDA) content, antioxidant enzyme activities, and the accumulation of carbon and nitrogen assimilation.
Results
Among the six treatments, S+P+H showed the highest anti-water logging effect and stable production effects on the multi spike type of Shumai 1963, and it can also produce similar effects on the large spike type of Shumai 133. Specifically, both spike types of wheat significantly improve the pre jointing population growth rate and leaf net assimilation rate, increase leaf area index and chlorophyll content; The sucrose content in leaves and tillering nodes increased by 38.8% to 70.3% compared to CK, the free amino acid content increased by 16.7% to 24.2%, and the proline content in leaves increased by 48.0% to 71.5%, respectively. MDA content in leaves and tiller nodes decreased by 28.0% to 51.2% compared to CK, while the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in leaves increased by more than 41.3%, 47.6%, 89.9%, and 38.7% compared to CK, improving carbon and nitrogen metabolism and antioxidant capacity. The tillering ability of Shumai 1963 and Shumai 133 spikes increased by 28.2% and 58.3% compared to the control group, and the effective tillering rate significantly increased. The number of grains per spike, tiller spike weight, and grain number per spike on the main stem significantly increased, and the contribution rate of tiller yield increased by 6.1% and 8.8%, respectively. The final yield increased by 26.3% and 13.2%, respectively. Spraying HF alone also contributed to leaf growth and photosynthesis during the seedling stage, with a 12.2%, 5.6% increase in tiller yield contribution for Shumai 1963 and Shumai 133, and an actual yield increase of 15.4% and 16.5%, respectively. Spraying S-ABA on multi spike Shumai 1963 increased yield by 13.3%, while spraying AF on large spike Shumai 133 increased yield by 10%.
Conclusions
Spraying one or a combination of several plant growth regulators and foliar fertilizers at the three-leaf stage can mitigate the adverse effects of water logging on wheat seedling growth through different pathways and to varying degrees. Physiologically, this practice promotes wheat leaf growth and chlorophyll content, enhances the accumulation of sugar and nitrogen metabolites in leaves and tillering nodes, boosts antioxidant enzyme activity to reduce membrane damage, protects tillering occurrence, and enhances the plasticity of the first tiller. From an agronomic perspective, applying plant growth regulators and foliar fertilizers can increase the population of stems and tillers, accelerate the growth rate of the population, improve the quality of spike formation, and ultimately boost yield. After applying the combined treatment, Shumai 1963 (a multi-spike variety) exhibited higher levels of sugar metabolites in leaves and tillering nodes, as well as higher SOD and APX activities in leaves, compared to Shumai 133 (a large-spike variety). Additionally, Shumai 1963 had lower nitrogen metabolite content and MDA content, and produced more tillers that formed spikes. Overall, the effect of spraying humic acid-based foliar fertilizer is greater than that of amino acid-based foliar fertilizer. The combined effect of S-abscisic acid (S-ABA), paclobutrazol·piperidine, and humic acid-based foliar fertilizer is also more pronounced than their combination with amino acid-based foliar fertilizer.
图 1 小麦播种至拔节期的降水量与土壤相对含水量
Figure 1. The precipitation and relative soil moisture content during 70 days from sowing to jointing of wheat
图 2 不同喷施措施下两个品种小麦叶片与分蘖节碳代谢物含量
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 2. Carbon metabolite content in leaves and tillering nodes of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 3 不同喷施措施对两个品种小麦叶片与分蘖节氮代谢物的影响
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 3. Effects of different spraying measures on nitrogen metabolites in leaves and tillering nodes of two wheat varieties
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 4 不同喷施措施下两个品种小麦叶片与分蘖节丙二醛(MDA)含量
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 4. Malondialdehyde (MDA) content in leaves and tiller nodes of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 5 不同喷施措施下两个品种小麦叶片抗氧化酶活性
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 5. Antioxidant enzyme activity in leaves of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. SOD—Superoxide dismutase, APX—Ascorbate peroxidase, POD—Peroxidase, CAT—Catalase. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 6 不同喷施措施下两个品种小麦茎蘖动态
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。图中横线及其连出的坐标为方法中提及的“有效分蘖临界点”。
Figure 6. Stem and tiller dynamics of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. The horizontal lines and their associated coordinates are the “critical points of effective tillering” referred to in the method.
图 7 抗逆代谢与有效穗形成相关性分析
注:L—叶片;T—分蘖节。蓝色表示指标间为负相关,红色表示正相关,颜色深度为相关性强度,*—P<0.05.
Figure 7. Correlation analysis between stress resistance metabolism and effective panicle formation
Note: L—leaf; T—tiller node; LAI—Leaf area index; SOD—Superoxide dismutase; CAT—Catalase; APX—Ascorbate peroxidase; POD—Peroxidase; TDR—Tiller death rate; TC—Tiller capacity per plant; TER1—The rate of tiller emergence from the start to the end point of effective. Blue indicates negative correlation between indicators, red indicates positive correlation, and color depth indicates correlation strength. *—P<0.05.
表 1 不同喷施措施下两个品种小麦的生长速率
Table 1 The growth rate of two wheat cultivar populations under different spraying treatments
品种 Cultivar (C) 处理 Treatment (T) 相对生长速率 RGR [mg/(g·d)] 群体生长速率 CGR [g/(m2·d)] 净同化率 NAR [mg/(m2·d)] SM1963 CK 32.37 c 3.44 b 3.51 d S-ABA 34.22 bc 3.41 b 3.81 c PM 40.13 a 3.93 a 4.19 ab AF 32.33 c 3.15 b 3.81 c HF 35.77 b 4.01 a 3.97 bc S+P+A 39.84 a 4.07 a 4.17 ab S+P+H 37.92 a 4.29 a 4.31 a SM133 CK 28.18 d 2.61 c 2.93 c S-ABA 28.82 d 2.68 c 3.39 b PM 35.32 c 3.43 b 3.60 b AF 26.64 d 2.38 c 2.97 c HF 36.81 bc 3.63 ab 3.94 a S+P+A 39.81 a 3.94 a 4.23 a S+P+H 37.90 ab 4.09 a 4.10 a 方差分析 ANOVA C 32.9* 109.0** 81.8* T 59.3** 22.2** 29.5** C×T 7.3** 1.4 5.3** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。表 2 不同喷施措施下两个品种小麦叶片性状和叶绿素含量
Table 2 The leaf traits and chlorophyll content of two wheat cultivars under different spraying treatments
品种表 3 不同喷施措施下两个品种小麦分蘖发生与消亡速率
Table 3 The occurrence and extinction rates of tillering in two wheat varieties under different spraying measures
品种表 4 不同喷施措施下两个品种小麦茎蘖穗部性状
Table 4 Characteristics of tillers and spikes in two wheat varieties under different spraying measures
品种表 5 不同喷施措施下两个品种小麦产量
Table 5 Yield of two wheat varieties under different spraying measures
品种Wang T Y, Guo S M, Chang Q, et al. Building higher level of "Tianfu Granary": Historical evolution realistic challenges and future prospects[J]. Journal of Sichuan Agricultural University, 2024, 42(1): 207−214.
[2] 汤永禄, 李朝苏, 吴春, 等. 成都平原周年耕作模式对稻茬小麦产量与品质性状的持续效应[J]. 中国农业科学, 2012, 45(18): 3721−3732. DOI: 10.3864/j.issn.0578-1752.2012.18.005Tang Y L, Li C S, Wu C, et al. The sustained effects of annual tillage mode on yield and quality traits of wheat in rice stubble in Chengdu Plain[J]. Scientia Agricultura Sinica, 2012, 45(18): 3721−3732. DOI: 10.3864/j.issn.0578-1752.2012.18.005
[3] 曾晓珊, 汤国华, 谢红军, 等. 耐迟收水稻品种的筛选及其在淹水降镉中的应用[J]. 中国农业科学, 2021, 54(17): 3561−3572. DOI: 10.3864/j.issn.0578-1752.2021.17.001Zeng X S, Tang G H, Xie H J, et al. Selection of PMS rice varieties and application in flooding irrigation for cadmium reduction[J]. Scientia Agricultura Sinica, 2021, 54(17): 3561−3572. DOI: 10.3864/j.issn.0578-1752.2021.17.001
[4] 姜东, 陶勤南, 张国平. 渍水对小麦扬麦5号旗叶和根系衰老的影响[J]. 应用生态学报, 2002, 13(11): 1519−1521. DOI: 10.3321/j.issn:1001-9332.2002.11.039Jiang D, Tao Q N, Zhang G P. Effect of waterlogging on senescence of flag leaf and root of wheat Yangmai 5[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1519−1521. DOI: 10.3321/j.issn:1001-9332.2002.11.039
[5] 高敬文, 苏瑶, 沈阿林, 等. 渍害胁迫下小麦生长的响应机理及调控措施研究进展[J]. 应用生态学报, 2020, 31(12): 4321−4330.Gao J W, Su Y, Shen A L, et al. Research progress of the response mechanism of wheat growth to waterlogging stress and the related regulating managements[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4321−4330.
[6] 吴元奇, 李朝苏, 樊高琼, 等. 渍水对四川小麦生理性状及产量的影响[J]. 应用生态学报, 2015, 26(4): 1162−1170.Wu Y Q, Li C S, Fan G Q, et al . Effect of waterlogging on physical traits and yield of wheat in Sichuan [J] Chinese Journal of Applied Ecology, 2015, 26(4): 1162−1170.
[7] 银敏华, 李援农, 周昌明, 等. 调亏灌水和分蘖干扰对冬小麦生长的补偿效应[J]. 应用生态学报, 2015, 26(10): 3011−3019.Yin M H, Li Y N, Zhou C M, et al. Compensation effects of regulated deficit irrigation and tillering interference to winter wheat[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3011−3019.
[8] 李小明, 龙惊惊, 周悦, 等. 叶面肥的应用及研究进展[J]. 安徽农业科学, 2017, 45(3): 127−130. DOI: 10.3969/j.issn.0517-6611.2017.03.043Li X M, Long J J, Zhou Y, et al. Application and research progress of foliar fertilizer[J]. Journal of Anhui Agricultural Sciences, 2017, 45(3): 127−130. DOI: 10.3969/j.issn.0517-6611.2017.03.043
[9]Liu Y M, Chen S H, Wei P P, et al. A briefly overview of the research progress for the abscisic acid analogues[J]. Frontiers in Chemistry, 2022: 967404.
[10] 张亚琴, 李思佳, 邓秋林, 等. 化肥与植物生长延缓剂配施对麦冬产量形成和次生代谢产物的影响[J]. 草业科学, 2019, 36(6): 1544−1552.Zhang Y Q, Li S J, Deng Q L, et al. Effects of combined application of chemical fertilizers and plant growth retardants on yield and formation of secondary metabolites of Ophiopogon japonicus[J]. Pratacultural Science, 2019, 36(6): 1544−1552.
[11] 成臣, 雷凯, 程慧煌, 等. 苗期不同浓度多效唑对南方晚粳稻秧苗素质、茎蘖动态及产量的影响[J]. 中国水稻科学, 2020, 34(2): 150−158.Cheng C, Lei K, Cheng H H, et al. Different concentrations of paclobutrazol during seedling stage on the quality of southern late japonica rice seedlings[J]. Chinese Journal of Rice Science, 2020, 34(2): 150−158.
[12] 杨靖, 孙海燕, 李友勇. 11种非必需氨基酸对离体植物生长的胁迫作用[J]. 生物技术, 2008, (4): 72−74.Yang J, Sun H Y, Li Y Y. Stress on the growth of plants in vitro of non-essential amino acids[J]. Biotechnology Bulletin, 2008, (4): 72−74.
[13] 向胤春, 彭春华, 林立金, 等. 氨基酸水溶肥对枇杷幼苗生长及养分吸收的影响[J]. 四川农业大学学报, 2024, 42(1): 103−110.Xiang Y C, Peng C H, Lin L J et al. Effects of amino acid water-soluble fertilizer on growth and nutrient absorption of loquat seedlings[J]. Journal of Sichuan Agricultural University, 2024, 42(1): 103−110.
[14] 高纪超, 石元亮, 魏占波, 等. 腐殖酸与硝化抑制剂配施对油菜生长及品质的影响[J]. 中国土壤与肥料, 2021, (4): 208−223. DOI: 10.11838/sfsc.1673-6257.20246Gao J C, Shi Y L, Wei Z B, et al. The effect of combined application of humic acid and nitrification inhibitor on the growth and quality of rapeseed[J]. Soil and Fertilizer Sciences in China, 2021, (4): 208−223. DOI: 10.11838/sfsc.1673-6257.20246
[15]Mora V, Nica, Eva B, et al. NO and IAA key regulators in the shoot growth promoting action of humic acid in Cucumis sativus L.[J]. Journal of Plant Growth Regulation, 2014, (2): 430−439.
[16] 李芳汀, 骆璐, 孙伟, 等. 活性腐殖酸肥对花生叶片光合特性及产量的影响[J]. 花生学报, 2023, 52(4): 40−46.Li F T, Luo L, Sun W, et al. Effects of active humic acid fertilizer on the photosynthetic characteristics and yield of peanut[J]. Journal of Peanut Science, 2023, 52(4): 40−46.
[17] 张沁怡, 李文蔚, 阳晶, 等. 腐殖酸对水稻剑叶光合特性、必需元素和产量的影响及其相关性研究[J]. 云南农业大学学报, 2015, 30(2): 185−191.Zhang Q Y, Li W W, Yang J, et al. Effects of humic acid on the photosynthetic characteristics, essential elements and yield of Oryza sativa and their correlation analysis[J]. Journal of Yunnan Agricultural University, 2015, 30(2): 185−191.
[18] 赵海燕, 甘淳丹, 兰汝佳, 等. 喷施新型腐殖酸型叶面肥对小麦旗叶抗氧化和产量及品质的影响[J]. 南京农业大学学报, 2018, 41(4): 685−690. DOI: 10.7685/jnau.201712019Zhao H Y, Gan C D, Lan R J, et al. Effects of a new humic acid-foliar fertilizer on flag leaf senescence, yield and quality of spring wheat[J]. Journal of Nanjing Agricultural University, 2018, 41(4): 685−690. DOI: 10.7685/jnau.201712019
[19] GB/T 32752—2016, 农田渍涝气象等级[S].GB/T 32752−2016, Meteorological grade of agricultural waterlogging[S].
[20] 肖云, 陈松鹤, 杨洪坤, 等. 优化栽培管理对四川丘陵旱地不同穗型小麦分蘖质量与产量形成的影响[J]. 核农学报, 2021, 35(11): 2616−2625. DOI: 10.11869/j.issn.100-8551.2021.11.2616Xiao Y, Chen S H, Yang H K, et al. The effect of optimizing cultivation management on tillering quality and yield formation of different spike types of wheat in hilly and arid areas of Sichuan Province[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2616−2625. DOI: 10.11869/j.issn.100-8551.2021.11.2616
[21] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.Gao J F. Guidelines for plant physiology experiments[M]. Beijing: Higher Education Press, 2006.
[22] 由继红, 董春光, 史晓昆. 小麦叶片可溶性糖含量测定方法的研究[J]. 实验室科学, 2021, 24(2): 27−29. DOI: 10.3969/j.issn.1672-4305.2021.02.007You J H, Dong C G, Shi X K. Study on determination method of soluble sugar content in wheat leaves[J]. Laboratory Science, 2021, 24(2): 27−29. DOI: 10.3969/j.issn.1672-4305.2021.02.007
[23] 董树刚, 吴以平. 植物生理学实验技术[M]. 北京: 中国海洋大学出版社, 2006.Dong S G, Wu Y P . Experimental techniques in plant physiology[M]. Beijing: Ocean University of China Press, 2006.
[24] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.Li H S . Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2000.
[25] Faiza G. Functional characterization of maize transcription factor ZmWRKY79 under drought stress[D]. 四川成都: 四川农业大学博士学位论文, 2022.Faiza G. Functional characterization of maize transcription factor ZmWRKY79 under drought stress[D]. Chengdu, Sichuan: PhD Dissertation of Sichuan Agricultural University, 2022.
[26]Mohd I, Hayat S, Hayat Q, et al. Physiological and biochemical changes in plants under waterlogging[J]. Protoplasma, 2010, (1): 14.
[27] 武辉, 向镜, 陈惠哲, 等. 外源调节剂对淹涝水稻幼苗株高及碳水化合物消耗的影响[J]. 应用生态学报, 2018, 29(1): 149−157.Wu H, Xiang J, Chen H Z, et al. Effects of exogenous growth regulators on plant elongation and carbohydrate consumption of rice seedlings under submergence[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 149−157.
[28] 王彩虹, 郝水源. 长期施用腐殖酸复合微生物肥对小麦生长及产量的影响[J]. 江苏农业科学, 2022, 50(7): 100−105.Wang C H, Hao S Y, Effects of long-term application of humic acid compound microbial fertilizer on wheat growth and yield[J]. Jiangsu Agricultural Sciences, 2022, 50(7): 100−105.
[29] 刘伟, 刘景辉, 萨如拉, 等. 腐殖酸水溶肥料对水分胁迫下小麦光合特性及产量的影响[J]. 中国农学通报, 2014, 30(3): 196−200. DOI: 10.11924/j.issn.1000-6850.2013-0789Liu W, Liu J H, Sa R L, et al. Effect of humic acid water-soluble fertilizer on wheat photosynthetic characteristics and yield under water stress[J]. Chinese Agricultural Science Bulletin, 2014, 30(3): 196−200. DOI: 10.11924/j.issn.1000-6850.2013-0789
[30] 涂雯, 安琪, 何永刚, 等. 水稻低节位早发分蘖与秧苗叶片形态、碳氮代谢的关系[J]. 湖北农业科学, 2019, 58(21): 22−29.Tu W, An Q, He Y G, et al. The relationship between early tillers at low-nodes and leaf morphological characters, carbon and nitrogen metabolism in rice[J]. Chinese Agricultural Science Bulletin, 2019, 58(21): 22−29.
[31] 赵会杰, 任琴, 郭天财, 等. 大穗型小麦兰考906分蘖发育的生理特征及其调控[J]. 麦类作物学报, 2001, 21(4): 69−71. DOI: 10.7606/j.issn.1009-1041.2001.04.106Zhao H J, Ren Q, Guo T C, et al. Physiological characteristics and the regulation of tiller growth of large-ear cultivar Lankao 906[J]. Journal of Triticeae Crops, 2001, 21(4): 69−71. DOI: 10.7606/j.issn.1009-1041.2001.04.106
[32] 盛坤. 两种穗型冬小麦品种碳氮代谢与分蘖成穗关系的研究[D]. 河南郑州: 河南农业大学博士论文, 2009.Sheng K. Study on the relationship between carbon and nitrogen metabolism and tillering and panicle formation in two winter wheat varieties with different spike types[D]. Zhengzhou, Henan: PhD Dissertation of Henan Agricultural University, 2009.
[33] 郭天财, 徐丽娜, 冯伟, 等. 种植密度对兰考矮早八幼穗分化和碳氮代谢的影响[J]. 华北农学报, 2009, 24(1): 194−198. DOI: 10.7668/hbnxb.2009.01.043Guo T C, Xu L N, Feng W, et al. Effects of plant density on spike differentiation and C/N metabolism of Lankao Aizao 8[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(1): 194−198. DOI: 10.7668/hbnxb.2009.01.043
[34] 刘畅, 杜羽晨, 李宁辉, 等. 不同抗寒性小麦品种生长点发育进程及生理指标差异分析[J]. 麦类作物学报, 2023, 43(6): 721−728.Liu C, Du Y C, Li N H, et al. Difference analysis of development process of growing point and physiological index in wheats with different cold resistance[J]. Journal of Triticeae Crops, 2023, 43(6): 721−728.
[35] 董成武, 张叶子, 石岩. 新型复合保水剂对干旱胁迫下小麦幼苗生长和生理特性的影响[J]. 中国土壤与肥料, 2021, (6): 255−261. DOI: 10.11838/sfsc.1673-6257.20442Dong C W, Zhang Y Z, Shi Y. The effect of a new composite water retaining agent on the growth and physiological characteristics of wheat seedlings under drought stress[J]. Chinese Soil and Fertilizer, 2021, (6): 255−261. DOI: 10.11838/sfsc.1673-6257.20442
[36] 丁美云, 刘丽杰, 于梦迪, 等. 油菜素内酯对寒地冬小麦越冬期生理代谢的影响[J]. 麦类作物学报, 2022, 42(7): 864−871. DOI: 10.7606/j.issn.1009-1041.2022.07.10Ding Y M, Liu L J, Yu M D, et al. Effect of brassinolide on physiological metabolism of winter wheat in cold area[J]. Journal of Triticeae Crops, 2022, 42(7): 864−871. DOI: 10.7606/j.issn.1009-1041.2022.07.10
[37] 丁锦峰, 苏盛楠, 梁鹏, 等. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响[J]. 麦类作物学报, 2017, 37(11): 1473−1479. DOI: 10.7606/j.issn.1009-1041.2017.11.10Ding J F, Su S N, Liang P, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473−1479. DOI: 10.7606/j.issn.1009-1041.2017.11.10
[38] 田中伟, 王妮妮, 李怡香, 等. 分蘖期和拔节期干旱对小麦主茎和分蘖穗粒形成的影响[J]. 麦类作物学报, 2018, 38(6): 734−741. DOI: 10.7606/j.issn.1009-1041.2018.06.14Tian Z W, Wang N N, Li Y X, et al. Effect of water deficit on main stem and tiller grain number formation of wheat during tillering stage and jointing stage[J]. Journal of Triticeae Crops, 2018, 38(6): 734−741. DOI: 10.7606/j.issn.1009-1041.2018.06.14
[39] 刘北城, 张艳艳, 戎亚思, 等. 干旱胁迫下喷施14-羟基芸苔素甾醇对冬小麦穗花发育及碳氮代谢的调控[J]. 植物营养与肥料学报, 2021, 27(6): 4−12. DOI: 10.11674/zwyf.20584Liu B C, Zhang Y Y, Rong Y S, et al. Regulation of spraying 14-hydroxylated brassinosteroid on spike and fertile floret development and carbon and nitrogen metabolism of winter wheat under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 4−12. DOI: 10.11674/zwyf.20584
[40] 王玉竹, 尹燕枰, 李勇, 等. 雨养条件下施氮水平对冬小麦小花发育与结实的影响[J]. 山东农业科学, 2016, 48(9): 77−83.Wang Y Z, Yin Y P, Li Y, et al. Nitrogen levels on floret development and grain setting of winter wheat under rain fed conditions[J]. Shandong Agricultural Sciences, 2016, 48(9): 77−83.
[41] 张艳艳, 关涵文, 刘淋茹, 等. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753−2765.Zhang Y Y, Guan H W, Liu L R, et al. Effects of phosphorus application on spike and fertile floret development and yield of winter wheat under different water treatments[J]. Acta Agronomica Sinica, 2023, 49(10): 2753−2765.
相关知识
小麦春季喷药,搭配哪些叶面肥和调节剂有利于增产丰收?
植物生长调节剂对花生渍涝胁迫的调控效应
植物生长调节剂(第一百一十七期)常见植物生长调节剂
磷、钾肥施用对稻茬小麦籽粒产量、品质和养分利用的影响
花后植物生长调节剂对低温水稻的调控效果
植物生长调节剂在水稻上的登记和应用分析
小麦灌浆期喷施洁特叶面肥增产效果研究
常见植物生长调节剂大汇总(系统、全面、实用),赶快收藏!
什么是植物激素?什么是植物生长调节剂?植物生长调节剂按功能分哪几种?
植物内源生长调节剂芸苔素作用 永康市中翼工贸供应
网址: 喷施植物生长调节剂和叶面肥提升稻茬小麦抗渍能力的生理和农学效应 https://m.huajiangbk.com/newsview1925034.html
上一篇: 蔬菜喷施植物生长调节剂注意事项有 |
下一篇: 发财树叶子黄了怎么处理怎么补救( |