首页 > 分享 > Research progress on the effect of the transition between shrub and grass vegetation on grassland ecosystem and its water

Research progress on the effect of the transition between shrub and grass vegetation on grassland ecosystem and its water

[1]

Criado M G, Myers-Smith I H, Bjorkman A D, Lehmann C E R, Stevens N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 2020, 29(5): 925-943. DOI:10.1111/geb.13072

[2]

Archer S R, Andersen E M, Predick K I, Schwinning S, Steidl R J, Woods S R. Woody plant encroachment: causes and consequences//Briske D, ed. Rangeland Systems: Processes, Management and Challenges. Cham: Springer, 2017: 25-84.

[3]

Geissler K, Fiedler S, Ni J, Herzschuh U, Jeltsch F. Combined effects of grazing and climate warming drive shrub dominance on the Tibetan Plateau. The Rangeland Journal, 2019, 41(5): 425-439. DOI:10.1071/RJ19027

[4]

Ward D, Trinogga J, Wiegand K, Du Toit J, Okubamichael D, Reinsch S, Schleicher J. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma, 2018, 310: 153-162. DOI:10.1016/j.geoderma.2017.09.023

[5]

Huxman T E, Wilcox B P, Breshears D D, Scott R L, Snyder K A, Small E E, Hultine K, Pockman W T, Jackson R B. Ecohydrological implications of woody plant encroachment. Ecology, 2005, 86(2): 308-319. DOI:10.1890/03-0583

[6]

Daryanto S, Wang L X, Fu B J, Zhao W W, Wang S. Vegetation responses and trade-offs with soil-related ecosystem services after shrub removal: a meta-analysis. Land Degradation & Development, 2019, 30(10): 1219-1228.

[7]

Ding J Y, Eldridge D J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 39: 125460. DOI:10.1016/j.ppees.2019.125460

[8]

Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H J, Kögel-Knabner I. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 2019, 333: 149-162. DOI:10.1016/j.geoderma.2018.07.026

[9]

Doetterl S, Berhe A A, Nadeu E, Wang Z G, Sommer M, Fiener P. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews, 2016, 154: 102-122. DOI:10.1016/j.earscirev.2015.12.005

[10]

Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature, 2015, 521(7551): 204-207. DOI:10.1038/nature14400

[11]

Ito A. Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced emissions and non-CO2 carbon export flows: a global model assessment. Earth System Dynamics, 2019, 10(4): 685-709. DOI:10.5194/esd-10-685-2019

[12]

Eldridge D J, Bowker M A, Maestre F T, Roger E, Reynolds J F, Whitford W G. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. DOI:10.1111/j.1461-0248.2011.01630.x

[13]

Jackson R B, Banner J L, Jobbágy E G, Pockman W T, Wall D H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418(6898): 623-626. DOI:10.1038/nature00910

[14]

Ding J Y, Travers S K, Delgado-Baquerizo M, Eldridge D J. Multiple trade-offs regulate the effects of woody plant removal on biodiversity and ecosystem functions in global rangelands. Global Change Biology, 2020, 26(2): 709-720. DOI:10.1111/gcb.14839

[15]

Archer S R, Predick K I. An ecosystem services perspective on brush management: research priorities for competing land-use objectives. Journal of Ecology, 2014, 102(6): 1394-1407. DOI:10.1111/1365-2745.12314

[16]

Ratajczak Z, Nippert J B, Collins S L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology, 2012, 93(4): 697-703. DOI:10.1890/11-1199.1

[17]

Van Auken O W. Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 2000, 31: 197-215. DOI:10.1146/annurev.ecolsys.31.1.197

[18]

Soliveres S, Maestre F T, Eldridge D J, Delgado-Baquerizo M, Quero J L, Bowker M A, Gallardo A. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Global Ecology and Biogeography, 2014, 23(12): 1408-1416. DOI:10.1111/geb.12215

[19]

Eldridge D J, Ding J Y. Remove or retain: ecosystem effects of woody encroachment and removal are linked to plant structural and functional traits. New Phytologist, 2021, 229(5): 2637-2646. DOI:10.1111/nph.17045

[20]

Barger N N, Archer S R, Campbell J L, Huang C Y, Morton J A, Knapp A K. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research, 2011, 116(G4): G00K07.

[21]

Wigley B J, Augustine D J, Coetsee C, Ratnam J, Sankaran M. Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology, 2020, 101(5): e03008.

[22]

Zhou L H, Shen H H, Chen L Y, Li H, Zhang P J, Zhao X, Liu T Y, Liu S S, Xing A J, Hu H F, Fang J J. Ecological consequences of shrub encroachment in the grasslands of northern China. Landscape Ecology, 2019, 34(1): 119-130. DOI:10.1007/s10980-018-0749-2

[23]

Zhu Y K, Shen H H, Feng Y P, Li H, Akinyemi D S, Hu H F, Fang J Y. Effects of shrub encroachment on soil aggregates and organic carbon vary in different grasslands in Inner Mongolia, China. Ecosphere, 2021, 12(2): e03363.

[24]

Hopping K A, Knapp A K, Dorji T, Klein J A. Warming and land use change concurrently erode ecosystem services in Tibet. Global Change Biology, 2018, 24(11): 5534-5548. DOI:10.1111/gcb.14417

[25]

Yashiro Y, Shizu Y, Hirota M, Shimono A, Ohtsuka T. The role of shrub (Potentilla fruticosa) on ecosystem CO2 fluxes in an alpine shrub meadow. Journal of Plant Ecology, 2010, 3(2): 89-97. DOI:10.1093/jpe/rtq011

[26]

Clemmensen K E, Durling M B, Michelsen A, Hallin S, Finlay R D, Lindahl B D. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecology Letters, 2021, 24(6): 1193-1204. DOI:10.1111/ele.13735

[27]

Chen Y L, Xu T L, Fu W, Hu Y J, Hu H W, You L C, Chen B D. Soil organic carbon and total nitrogen predict large-scale distribution of soil fungal communities in temperate and alpine shrub ecosystems. European Journal of Soil Biology, 2021, 102: 103270. DOI:10.1016/j.ejsobi.2020.103270

[28]

Collins C G, Spasojevic M J, Alados C L, Aronson E L, Benavides J C, Cannone N, Caviezel C, Grau O, Guo H, Kudo G, Kuhn N J, Müllerová J, Phillips M L, Pombubpa N, Reverchon F, Shulman H B, Stajich J E, Stokes A, Weber S E, Diez J M. Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Global Change Biology, 2020, 26(12): 7112-7127. DOI:10.1111/gcb.15340

[29]

Witzgall K, Vidal A, Schubert D I, Höschen C, Schweizer S A, Buegger F, Pouteau V, Chenu C, Mueller C W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12(1): 4115. DOI:10.1038/s41467-021-24192-8

[30] [31]

Jia Y F, Zhai G Q, Zhu S S, Liu X J, Schmid B, Wang Z H, Ma K P, Feng X J. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161: 108375. DOI:10.1016/j.soilbio.2021.108375

[32]

Ma T, Zhu S S, Wang Z H, Chen D M, Dai G H, Feng B W, Su X Y, Hu H F, Li K H, Han W X, Liang C, Bai Y F, Feng X J. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 2018, 9(1): 3480. DOI:10.1038/s41467-018-05891-1

[33]

Wragg P D, Schuster M J, Roth A M, Bockenstedt P, Frelich L E, Reich P B. Revegetation to slow buckthorn reinvasion: strengths and limits of evaluating management techniques retrospectively. Restoration Ecology, 2021, 29(1): e13290.

[34]

Williams C J, Johnson J C, Pierson F B, Burleson C S, Polyakov V O, Kormos P R, Nouwakpo S K. Long-term effectiveness of tree removal to re-establish sagebrush steppe vegetation and associated spatial patterns in surface conditions and soil hydrologic properties. Water, 2020, 12(8): 2213. DOI:10.3390/w12082213

[35]

Abdallah M A B, Mata-González R, Noller J S, Ochoa C G. Ecosystem carbon in relation to woody plant encroachment and control: juniper systems in Oregon, USA. Agriculture, Ecosystems & Environment, 2020, 290: 106762.

[36]

Aguirre D, Benhumea A E, McLaren J R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biology and Biochemistry, 2021, 153: 108121. DOI:10.1016/j.soilbio.2020.108121

[37]

Michalet R, Chen S Y, An L Z, Wang X T, Wang Y X, Guo P, Ding C C, Xiao S. Communities: are they groups of hidden interactions?. Journal of Vegetation Science, 2015, 26(2): 207-218. DOI:10.1111/jvs.12226

[38]

Wang X T, Michalet R, Chen S Y, Zhao L, An L Z, Du G Z, Zhang X C, Jiang X P, Xiao S. Contrasting understorey species responses to the canopy and root effects of a dominant shrub drive community composition. Journal of Vegetation Science, 2017, 28(6): 1118-1127. DOI:10.1111/jvs.12565

[39]

Wang X T, Michalet R, Liu Z Y, Guo A F, Zhou X H, Du G Z, Ge W J, Chen S Y, Xiao S. Stature of dependent forbs is more related to the direct and indirect above- and below-ground effects of a subalpine shrub than are foliage traits. Journal of Vegetation Science, 2019, 30(3): 403-412. DOI:10.1111/jvs.12739

[40]

Li W J, Knops J M H, Png G K, Yan X, Dong H, Li J H, Zhou H K, Sierra R D. Six-year removal of co-dominant grasses alleviated competitive pressure on subdominant grasses but dominant shrub removal had neutral effects in a subalpine ecosystem. Global Ecology and Conservation, 2020, 23: e01167. DOI:10.1016/j.gecco.2020.e01167

[41]

Zeidler M, Šipoš J, Banaš M, Černohorský J. The successive trend of vegetation confirms the removal of non-indigenous woody species as an insufficient restoration action. Biodiversity and Conservation, 2021, 30(3): 699-717. DOI:10.1007/s10531-021-02113-x

[42]

Deng Y H, Li X Y, Shi F Z, Hu X. Woody plant encroachment enhanced global vegetation greening and ecosystem water-use efficiency. Global Ecology and Biogeography, doi: 10.1111/geb.13386.

[43]

Viglizzo E F, Nosetto M D, Jobbágy E G, Ricard M F, Frank F C. The ecohydrology of ecosystem transitions: a meta-analysis. Ecohydrology, 2015, 8(5): 911-921. DOI:10.1002/eco.1540

[44]

Asbjornsen H, Goldsmith G R, Alvarado-Barrientos M S, Rebel K, Van Osch F P, Rietkerk M, Chen J Q, Gotsch S, Tbón C, Geissert D R, Gómez-Tagle A, Vache K, Dawson T E. Ecohydrological advances and applications in plant-water relations research: a review. Journal of Plant Ecology, 2011, 4(1/2): 3-22.

[45]

Ma Y J, Li X Y, Guo L, Lin H. Hydropedology: interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth-Science Reviews, 2017, 171: 181-195. DOI:10.1016/j.earscirev.2017.05.014

[46]

D'Odorico P, Okin G S, Bestelmeyer B T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5(5): 520-530. DOI:10.1002/eco.259

[47]

Li X Y, Hu X, Zhang Z H, Peng H Y, Zhang S Y, Li G Y, Li L, Ma Y J. Shrub hydropedology: preferential water availability to deep soil layer. Vadose Zone Journal, 2013, 12(4): 1-12.

[48]

Zhang D H, Li X R, Zhang F, Zhang Z S, Chen Y L. Effects of rainfall intensity and intermittency on woody vegetation cover and deep soil moisture in dryland ecosystems. Journal of Hydrology, 2016, 543: 270-282. DOI:10.1016/j.jhydrol.2016.10.003

[49]

Yu X N, Huang Y M, Li E G, Li X Y, Guo W H. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China. Journal of Arid Land, 2017, 9(2): 188-199. DOI:10.1007/s40333-017-0054-y

[50]

Gao Z, Hu X, Li X Y. Changes in soil water retention and content during shrub encroachment process in Inner Mongolia, northern China. CATENA, 2021, 206: 105528. DOI:10.1016/j.catena.2021.105528

[51]

Sirimarco X, Barral M P, Villarino S H, Laterra P. Water regulation by grasslands: a global meta-analysis. Ecohydrology, 2018, 11(4): e1934. DOI:10.1002/eco.1934

[52]

Marquart A, Eldridge D J, Travers S K, Val J, Blaum N. Large shrubs partly compensate negative effects of grazing on hydrological function in a semi-arid savanna. Basic and Applied Ecology, 2019, 38: 58-68. DOI:10.1016/j.baae.2019.06.003

[53]

Liu X, Zhuang Q L, Lai L M, Zhou J H, Sun Q L, Yi S G, Liu B B, Zheng Y R. Soil water use sources and patterns in shrub encroachment in semiarid grasslands of Inner Mongolia. Agricultural and Forest Meteorology, 2021, 308-309: 108579. DOI:10.1016/j.agrformet.2021.108579

[54]

Wang J, Fu B J, Lu N, Zhang L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 2017, 609: 27-37. DOI:10.1016/j.scitotenv.2017.07.133

[55]

Marchesini V A, Fernández R J, Reynolds J F, Sobrino J A, Di Bella C M. Changes in evapotranspiration and phenology as consequences of shrub removal in dry forests of central Argentina. Ecohydrology, 2015, 8(7): 1304-1311. DOI:10.1002/eco.1583

[56]

Dammeyer H C, Schwinning S, Schwartz B F, Moore G W. Effects of juniper removal and rainfall variation on tree transpiration in a semi-arid karst: evidence of complex water storage dynamics. Hydrological Processes, 2016, 30(24): 4568-4581. DOI:10.1002/hyp.10938

[57]

Bradford J B, Schlaepfer D R, Lauenroth W K, Burke I C. Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance. Journal of Ecology, 2014, 102(6): 1408-1418. DOI:10.1111/1365-2745.12289

[58]

Inouye R S. Effects of shrub removal and nitrogen addition on soil moisture in sagebrush steppe. Journal of Arid Environments, 2006, 65(4): 604-618. DOI:10.1016/j.jaridenv.2005.10.005

[59]

Holdo R M, Onderdonk D A, Barr A G, Mwita M, Anderson T M. Spatial transitions in tree cover are associated with soil hydrology, but not with grass biomass, fire frequency, or herbivore biomass in Serengeti savannahs. Journal of Ecology, 2020, 108(2): 586-597. DOI:10.1111/1365-2745.13303

[60]

Williams C J, Pierson F B, Kormos P R, Al-Hamdan O Z, Nouwakpo S K, Weltz M A. Vegetation, hydrologic, and erosion Responses of sagebrush steppe 9 Yr following mechanical tree removal. Rangeland Ecology & Management, 2019, 72(1): 47-68.

[61]

Case M F, Nippert J B, Holdo R M, Staver A C. Root-niche separation between savanna trees and grasses is greater on sandier soils. Journal of Ecology, 2020, 108(6): 2298-2308. DOI:10.1111/1365-2745.13475

[62]

Barron-Gafford G A, Knowles J F, Sanchez-Cañete E P, Minor R L, Lee E, Sutter L, Tran N, Murphy P, Hamerlynck E P, Kumar P, Scott R L. Hydraulic redistribution buffers climate variability and regulates grass-tree interactions in a semiarid riparian savanna. Ecohydrology, 2021, 14(3): e2271.

[63]

Kulmatiski A, Adler P B, Foley K M. Hydrologic niches explain species coexistence and abundance in a shrub-steppe system. Journal of Ecology, 2020, 108(3): 998-1008. DOI:10.1111/1365-2745.13324

[64]

Mutema M, Chaplot V, Jewitt G, Chivenge P, Blöschl G. Annual water, sediment, nutrient, and organic carbon fluxes in river basins: a global meta-analysis as a function of scale. Water Resources Research, 2015, 51(11): 8949-8972. DOI:10.1002/2014WR016668

[65]

Qiao L, Zou C B, Stebler E, Will R E. Woody plant encroachment reduces annual runoff and shifts runoff mechanisms in the tallgrass prairie, USA. Water Resources Research, 2017, 53(6): 4838-4849. DOI:10.1002/2016WR019951

[66]

Pierini N A, Vivoni E R, Robles-Morua A, Scott R L, Nearing M A. Using observations and a distributed hydrologic model to explore runoff thresholds linked with mesquite encroachment in the Sonoran Desert. Water Resources Research, 2014, 50(10): 8191-8215. DOI:10.1002/2014WR015781

[67]

Pueyo Y, Moret-Fernández D, Saiz H, Bueno C G, Alados C L. Relationships between plant spatial patterns, water infiltration capacity, and plant community composition in semi-arid mediterranean ecosystems along stress gradients. Ecosystems, 2013, 16(3): 452-466. DOI:10.1007/s10021-012-9620-5

[68]

Merino-Martín L, Moreno-de Las Heras M, Espigares T, Nicolau J M. Overland flow directs soil moisture and ecosystem processes at patch scale in Mediterranean restored hillslopes. CATENA, 2015, 133: 71-84. DOI:10.1016/j.catena.2015.05.002

[69]

Liu Y, Fu B J, Lü Y H, Gao G Y, Wang S, Zhou J. Linking vegetation cover patterns to hydrological responses using two process-based pattern indices at the plot scale. Science China Earth Sciences, 2013, 56(11): 1888-1898. DOI:10.1007/s11430-013-4626-1

[70]

Johnson J C, Williams C J, Guertin D P, Archer S R, Heilman P, Pierson F B, Wei H Y. Restoration of a shrub-encroached semi-arid grassland: implications for structural, hydrologic, and sediment connectivity. Ecohydrology, 2021, 14(4): e2281.

[71]

Berhe A A, Harden J W, Torn M S, Harte J. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research, 2008, 113(G4): G04039.

[72] [73]

Tan Z L, Leung L R, Li H Y, Tesfa T, Vanmaercke M, Poesen J, Zhang X S, Lu H, Hartmann J. A global data analysis for representing sediment and particulate organic carbon yield in earth system models. Water Resources Research, 2017, 53(12): 10674-10700. DOI:10.1002/2017WR020806

[74]

温学发, 张心昱, 魏杰, 吕斯丹, 王静, 陈昌华, 宋贤威, 王晶苑, 戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制. 地球科学进展, 2019, 34(5): 471-479.

[75]

Berhe A A, Barnes R T, Six J, Marín-Spiotta E. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annual Review of Earth and Planetary Sciences, 2018, 46: 521-548. DOI:10.1146/annurev-earth-082517-010018

[76]

de Nijs E A, Cammeraat E L H. The stability and fate of soil organic carbon during the transport phase of soil erosion. Earth-Science Reviews, 2020, 201: 103067. DOI:10.1016/j.earscirev.2019.103067

[77]

Safieddine S A, Heald C L. A global assessment of dissolved organic carbon in precipitation. Geophysical Research Letters, 2017, 44(22): 11672-11681.

[78] [79]

Ma W M, Li Z W, Ding K Y, Huang J Q, Nie X D, Zeng G M, Wang S G, Liu G P. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology, 2014, 226: 217-225. DOI:10.1016/j.geomorph.2014.08.017

[80]

Li M F, Del Giorgio P A, Parkes A H, Prairie Y T. The relative influence of topography and land cover on inorganic and organic carbon exports from catchments in southern Quebec, Canada. Journal of Geophysical Research, 2015, 120(12): 2562-2578. DOI:10.1002/2015JG003073

[81]

Li J Y, Fu B J, Liu S G, Dargush P, Gao G Y, Liu J B, Wei F L. Vegetation restoration changes topsoil biophysical regulations of carbon fluxes in an eroding soil landscape. Land Degradation & Development, 2018, 29(11): 4061-4070.

[82]

Ma X L, Liu G M, Wu X D, Smoak J M, Ye L L, Xu H Y, Zhao L, Ding Y J. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau. Science of the Total Environment, 2018, 630: 314-322. DOI:10.1016/j.scitotenv.2018.02.152

[83]

Wei S C, Zhang X P, McLaughlin N B, Chen X W, Jia S X, Liang A Z. Impact of soil water erosion processes on catchment export of soil aggregates and associated SOC. Geoderma, 2017, 294: 63-69. DOI:10.1016/j.geoderma.2017.01.021

[84] [85]

Deng L, Kim D G, Li M Y, Huang C B, Liu Q Y, Cheng M, Shangguan Z P, Peng C H. Land-use changes driven by 'Grain for Green' program reduced carbon loss induced by soil erosion on the Loess Plateau of China. Global and Planetary Change, 2019, 177: 101-115. DOI:10.1016/j.gloplacha.2019.03.017

[86]

Sankey J B, Sankey T T, Li J R, Ravi S, Wang G, Caster J, Kasprak A. Quantifying plant-soil-nutrient dynamics in rangelands: fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sensing of Environment, 2021, 253: 112223. DOI:10.1016/j.rse.2020.112223

[87]

Li J Y, Liu S G, Fu B J, Wang J. Dissolved carbon fluxes in a vegetation restoration area of an eroding landscape. Water Research, 2019, 152: 106-116. DOI:10.1016/j.watres.2018.12.068

[88]

Brazier R E, Turnbull L, Wainwright J, Bol R. Carbon loss by water erosion in drylands: implications from a study of vegetation change in the south-west USA. Hydrological Processes, 2014, 28(4): 2212-2222. DOI:10.1002/hyp.9741

[89]

Chartier M P, Rostagno C M, Videla L S. Selective erosion of clay, organic carbon and total nitrogen in grazed semiarid rangelands of northeastern Patagonia, Argentina. Journal of Arid Environments, 2013, 88: 43-49. DOI:10.1016/j.jaridenv.2012.08.011

[90]

Hunziker M, Caviezel C, Kuhn N J. Shrub encroachment by green alder on subalpine pastures: changes in mineral soil organic carbon characteristics. CATENA, 2017, 157: 35-46. DOI:10.1016/j.catena.2017.05.005

[91]

Puttock A, Dungait J A J, Macleod C J A, Bol R, Brazier R E. Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils. Journal of Geophysical Research, 2014, 119(12): 2345-2357. DOI:10.1002/2014JG002635

[92]

Liu S S, Zhou L H, Li H, Zhao X, Yang Y H, Zhu Y K, Hu H F, Chen L Y, Zhang P J, Shen H H, Fang J Y. Shrub encroachment decreases soil inorganic carbon stocks in Mongolian grasslands. Journal of Ecology, 2020, 108(2): 678-686. DOI:10.1111/1365-2745.13298

[93]

Wen H, Sullivan P L, Macpherson G L, Billings S A, Li L. Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge. Biogeosciences, 2021, 18(1): 55-75. DOI:10.5194/bg-18-55-2021

[94] [95] [96]

Dai G H, Zhu E X, Liu Z G, Wang Y Y, Zhu S S, Wang S M, Ma T, Jia J, Wang X, Hou S J, Fu P Q, Peterse F, Feng X J. Compositional characteristics of fluvial particulate organic matter exported from the world's largest alpine wetland. Journal of Geophysical Research, 2019, 124(9): 2709-2727. DOI:10.1029/2019JG005231

相关知识

Research advances in vegetation restoration and its ecological effects in earth
Research progress on the response processes of vegetation activity to climate change
Research Progress on Nutritional Characteristics of Caragana korshinskii Kom. and Antioxidant Effect of Its Extracts on Sheep
Research progress and hotspots of environmental soil science between 2016
沈海花
Research progress of plant competitor
Research progress on the ecological environment effect of farmland abandonment in karst areas of Southwest China
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
On accurately defining and quantifying the water retention services of forests
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands

网址: Research progress on the effect of the transition between shrub and grass vegetation on grassland ecosystem and its water https://m.huajiangbk.com/newsview1953555.html

所属分类:花卉
上一篇: 科学网—科学家揭示多年生植物寿命
下一篇: 王佳伟小组阐明“年年岁岁花相似”