Bryan B A, Gao L, Ye Y Q, Sun X F, Connor J D, Crossman N D, Stafford-Smith M, Wu J G, He C Y, Yu D Y, Liu Z F, Li A, Huang Q X, Ren H, Deng X Z, Zheng H, Niu J M, Han G D, Hou X Y. China's response to a national land-system sustainability emergency. Nature, 2018, 559(7713): 193-204. DOI:10.1038/s41586-018-0280-2
[7] [8]Chen C, Park T, Wang X H, Piao S L, Xu B D, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z C, Nemani R R, Myneni R B. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2(2): 122-129. DOI:10.1038/s41893-019-0220-7
[9]Feng X M, Fu B J, Piao S L, Wang S, Ciais P, Zeng Z Z, Lü Y H, Zeng Y, Li Y, Jiang X H, Wu B F. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6(11): 1019-1022. DOI:10.1038/nclimate3092
[10]Chen H S, Shao M G, Li Y Y. Soil desiccation in the loess plateau of China. Geoderma, 2008, 143(1/2): 91-100.
[11]Liang X Y, Xin Z B, Shen H Y, Yan T F. Deep soil water deficit causes Populus simonii Carr degradation in the three north shelterbelt region of China. Journal of Hydrology, 2022, 612: 128201. DOI:10.1016/j.jhydrol.2022.128201
[12]Yu Z, Ciais P, Piao S L, Houghton R A, Lu C Q, Tian H Q, Agathokleous E, Kattel G R, Sitch S, Goll D, Yue X, Walker A, Friedlingstein P, Jain A K, Liu S R, Zhou G Y. Forest expansion dominates China's land carbon sink since 1980. Nature Communications, 2022, 13: 5374. DOI:10.1038/s41467-022-32961-2
[13] [14] [15] [16]Cao S X, Sun G, Zhang Z Q, Chen L D, Feng Q, Fu B J, McNulty S, Shankman D, Tang J W, Wang Y H, Wei X H. Greening China naturally. AMBIO, 2011, 40(7): 828-831. DOI:10.1007/s13280-011-0150-8
[17]Zhou G Y, Xia J, Zhou P, Shi T T, Li L. Not vegetation itself but mis-revegetation reduces water resources. Science China Earth Sciences, 2021, 64(3): 404-411. DOI:10.1007/s11430-020-9670-x
[18] [19]Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B, Running S W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625): 1560-1563. DOI:10.1126/science.1082750
[20]Kittredge J. Forest influences. New York: McGraw-Hill Book Co., 1948.
[21]Andréassian V. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 2004, 291(1/2): 1-27.
[22] [23]遠藤泰造. 森林の水源涵養機能に関する論争史(Ⅰ). 水利科学, 2002, 46(5): 54-88.
[24]黄秉维. 确切地估计森林的作用. 地理知识, 1981(1): 1-3.
[25]汪振儒, 黄伯璇. 确切地估计森林的作用——与黄秉维先生商榷. 地理知识, 1981(8): 1-3, 6.
[26]Bradshaw C J A, Sodhi N S, Peh K S H, Brook B W. Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 2007, 13(11): 2379-2395. DOI:10.1111/j.1365-2486.2007.01446.x
[27]Laurance W F. Forests and floods. Nature, 2007, 449(7161): 409-410. DOI:10.1038/449409a
[28]Calder I R, Smyle J, Aylward B. Debate over flood-proofing effects of planting forests. Nature, 2007, 450(7172): 945.
[29]Creed I, Noordwijk M. Forest and water on a changing planet: vulnerability, adaptation and governance opportunities: a global assessment report. IUFRO world series, 2018.
[30]Peng S S, Piao S L, Zeng Z Z, Ciais P, Zhou L M, Li L Z X, Myneni R B, Yin Y, Zeng H. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2915-2919.
[31]Li Y, Piao S L, Li L Z X, Chen A P, Wang X H, Ciais P, Huang L, Lian X, Peng S S, Zeng Z Z, Wang K, Zhou L M. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4(5): eaar4182.
[32]Li Y, Piao S L, Chen A P, Ciais P, Li L Z X. Local and teleconnected temperature effects of afforestation and vegetation greening in China. National Science Review, 2020, 7(5): 897-912.
[33]van Dijke A J H, Herold M, Mallick K, Benedict I, Machwitz M, Schlerf M, Pranindita A, Theeuwen J J E, Bastin J F, Teuling A J. Shifts in regional water availability due to global tree restoration. Nature Geoscience, 2022, 15(5): 363-368.
[34]Teo H C, Raghavan S V, He X, Zeng Z, Cheng Y, Luo X, Lechner A, Ashfold M J, Lamba A, Sreekar R, Zheng Q, Chen A, Koh L P. Large-scale reforestation can increase water yield and reduce drought risk for water-insecure regions in the Asia-Pacific. Global Change Biology, 28(21), 6385-6403.
[35] [36]Onuchin A, Burenina T, Shvidenko A, Guggenberger G, Musokhranova A. Hydrology of taiga forests in high northern latitudes. 2016
[37]王金叶, 于澎涛, 王彦辉. 森林生态水文过程研究: 以甘肃祁连山水源涵养林为例. 北京: 科学出版社, 2008.
[38] [39] [40]Cheng G D, Li X, Zhao W Z, Xu Z M, Feng Q, Xiao S C, Xiao H L. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 2014, 1(3): 413-428.
[41]Li X, Cheng G, Tian W, Zhang Y, Zhou J, Pan X, Ge Y, Hu X. Hydrological cycle in the Heihe River Basin and its implication for water resource management in inland river basins (invited). 2013
[42]McCulloch J S G, Robinson M. History of forest hydrology. Journal of Hydrology, 1993, 150(2/3/4): 189-216.
[43]Marsh G P. Man and Nature, Or Physical Geography as Modified by Human Action. New York. 1864.
[44]Hegg C, McArdell B W, Badoux A. One hundred years of mountain hydrology in Switzerland by the WSL. Hydrological Processes, 2006, 20(2): 371-376.
[45]Bates C G, Henry A J. Streamflow at wagon wheel gap, COLO. Monthly Weather Review, 1921, 49(12): 637-650.
[46]Bates C G, Henry A J. Second phase of streamflow experiment at wagon wheel gap, colo. Monthly Weather Review, 1928, 56(3): 79-80.
[47]States U, Zon R. Forests and water in the light of scientific investigation By Raphael Zon. Forest service, United States Department of agriculture. Washington: Govt. print. off, 1927.
[48]Rodda J C. International symposium on forest hydrology. The Commonwealth Forestry Review, 1966, 45(124): 160-162.
[49]Hewlett J, Nutter W. An outline of forest hydrology. 1969
[50]Bormann F, Likens G. An ecological study. (book reviews: pattern and process in a forested ecosystem. disturbance, development and the steady state based on the Hubbard brook ecosystem study). 1981
[51]Lee R. Forest Hydrology. Columbia University Press, 1980.
[52]Beschta Robert L. The first national symposium on forest hydrology 1982. Forest Science, 1983, 29(3): 438.
[53]Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 1982, 55(1/2/3/4): 3-23.
[54]Ffolliott P F, Guertin D P. Forest hydrological resources in China-An analytical assessment. U.S. MAB. 1990.
[55]马雪华. 森林水文学. 北京: 中国林业出版社, 1993.
[56]刘世荣. 中国森林生态系统水文生态功能规律. 北京: 中国林业出版社, 1996.
[57]Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3): 701-708.
[58]Chang M. Forest hydrology: an introduction to water and forests. 2002
[59]Andréassian V. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 2004, 291(1/2): 1-27.
[60]Jackson R B, Jobbágy E G, Avissar R, Roy S B, Barrett D J, Cook C W, Farley K A, le Maitre D C, McCarl B A, Murray B C. Trading water for carbon with biological carbon sequestration. Science, 2005, 310(5756): 1944-1947.
[61]Sun G, Zhou G Y, Zhang Z Q, Wei X H, McNulty S G, Vose J M. Potential water yield reduction due to forestation across China. Journal of Hydrology, 2006, 328(3/4): 548-558.
[62]Calder I R, Smyle J, Aylward B. Debate over flood-proofing effects of planting forests. Nature, 2007, 450(7172): 945.
[63]Laurance W F. Forests and floods. Nature, 2007, 449(7161): 409-410.
[64]Bradshaw C J A, Sodhi N S, Peh K S H, Brook B W. Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 2007, 13(11): 2379-2395.
[65]Sun G, Liu S R, Zhang Z Q, Wei X H. Forest hydrology in China: introduction to the featured Collection1. JAWRA Journal of the American Water Resources Association, 2008, 44(5): 1073-1075.
[66]National Research Council. Hydrologic Effects of a Changing Forest Landscape. Washington, D.C.: National Academies Press, 2008.
[67]Ellison D, Futter M N, Bishop K. On the forest cover-water yield debate: from demand- to supply-side thinking. Global Change Biology, 2012, 18(3): 806-820.
[68]Zhang M F, Wei X H. Deforestation, forestation, and water supply. Science, 2021, 371(6533): 990-991.
[69]FAO, IUFRO, USDA. A guide to forest-water management. FAO Forestry Paper No. 185. Rome. 2021.
[70]Wang Y H, Yu P T, Xiong W, Shen Z X, Guo M C, Shi Z J, Du A P, Wang L M. Water-yield reduction after afforestation and related processes in the semiarid liupan mountains, northwest China1. JAWRA Journal of the American Water Resources Association, 2008, 44(5): 1086-1097.
[71]Jackson R B, Randerson J T, Canadell J G, Anderson R G, Avissar R, Baldocchi D D, Bonan G B, Caldeira K, Diffenbaugh N S, Field C B, Hungate B A, Jobbágy E G, Kueppers L M, Nosetto M D, Pataki D E. Protecting climate with forests. Environmental Research Letters, 2008, 3(4): 044006.
[72]Ellison D, Morris C E, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, van Noordwijk M, Creed I F, Pokorny J, Gaveau D, Spracklen D V, Tobella A B, Ilstedt U, Teuling A J, Gebrehiwot S G, Sands D C, Muys B, Verbist B, Springgay E, Sugandi Y, Sullivan C A. Trees, forests and water: cool insights for a hot world. Global Environmental Change, 2017, 43: 51-61.
[73]Liu N, Caldwell P V, Dobbs G R, Miniat C F, Bolstad P V, Nelson S A C, Sun G. Forested lands dominate drinking water supply in the conterminous United States. Environmental Research Letters, 2021, 16(8): 084008. DOI:10.1088/1748-9326/ac09b0
[74]Wang S, Fu B J, He C S, Sun G, Gao G Y. A comparative analysis of forest cover and catchment water yield relationships in Northern China. Forest Ecology and Management, 2011, 262(7): 1189-1198. DOI:10.1016/j.foreco.2011.06.013
[75] [76]Eisenbies M H, Aust W M, Burger J A, Adams M B. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians-a review. Forest Ecology and Management, 2007, 242(2/3): 77-98.
[77]Bathurst J C, Fahey B, Iroumé A, Jones J. Forests and floods: using field evidence to reconcile analysis methods. Hydrological Processes, 2020, 34(15): 3295-3310. DOI:10.1002/hyp.13802
[78]Bruijnzeel L A. Hydrological functions of tropical forests: not seeing the soil for the trees?. Agriculture, Ecosystems & Environment, 2004, 104(1): 185-228.
[79]Wang J, Endreny T A, Nowak D J. Mechanistic simulation of tree effects in an urban water balance Model1. JAWRA Journal of the American Water Resources Association, 2008, 44(1): 75-85. DOI:10.1111/j.1752-1688.2007.00139.x
[80]Zhou G Y, Wei X H, Chen X Z, Zhou P, Liu X D, Xiao Y, Sun G, Scott D F, Zhou S, Han L S, Su Y X. Global pattern for the effect of climate and land cover on water yield. Nature Communications, 2015, 6: 5918. DOI:10.1038/ncomms6918
[81]Caldwell P V, Miniat C F, Elliott K J, Swank W T, Brantley S T, Laseter S H. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Global Change Biology, 2016, 22(9): 2997-3012. DOI:10.1111/gcb.13309
[82]Aguilos M, Sun G, Noormets A, Domec J C, McNulty S, Gavazzi M, Minick K, Mitra B, Prajapati P, Yang Y, King J. Effects of land-use change and drought on decadal evapotranspiration and water balance of natural and managed forested wetlands along the southeastern US lower coastal plain. Agricultural and Forest Meteorology, 2021, 303: 108381. DOI:10.1016/j.agrformet.2021.108381
[83]Tian A, Wang Y H, Webb A A, Liu Z B, Ma J, Yu P T, Wang X. Water yield variation with elevation, tree age and density of larch plantation in the Liupan Mountains of the Loess Plateau and its forest management implications. Science of the Total Environment, 2021, 752: 141752. DOI:10.1016/j.scitotenv.2020.141752
[84]Hua F Y, Bruijnzeel L A, Meli P, Martin P A, Zhang J, Nakagawa S, Miao X R, Wang W Y, McEvoy C, Peña-Arancibia J L, Brancalion P H S, Smith P, Edwards D P, Balmford A. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 2022, 376(6595): 839-844. DOI:10.1126/science.abl4649
[85]Schwärzel K, Zhang L L, Montanarella L, Wang Y H, Sun G. How afforestation affects the water cycle in drylands: a process-based comparative analysis. Global Change Biology, 2020, 26(2): 944-959. DOI:10.1111/gcb.14875
[86]Zhang J, Bruijnzeel L A, Quiñones C M, Tripoli R, Asio V B, van Meerveld H J. Soil physical characteristics of a degraded tropical grassland and a 'reforest': implications for runoff generation. Geoderma, 2019, 333: 163-177. DOI:10.1016/j.geoderma.2018.07.022
[87] [88]Hewlett J D, Helvey J D. Effects of forest clear-felling on the storm hydrograph. Water Resources Research, 1970, 6(3): 768-782. DOI:10.1029/WR006i003p00768
[89]Boggs J L, Sun G. Urbanization alters watershed hydrology in the piedmont of north Carolina. Ecohydrology, 2011, 4(2): 256-264. DOI:10.1002/eco.198
[90] [91]Jobbágy E G, Jackson R B. Groundwater use and salinization with grassland afforestation. Global Change Biology, 2004, 10(8): 1299-1312. DOI:10.1111/j.1365-2486.2004.00806.x
[92]Zhou G Y, Wei X H, Luo Y, Zhang M F, Li Y L, Qiao Y N, Liu H G, Wang C L. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resources Research, 2010, 46(9): 1-10.
[93]Peña-Arancibia J L, Bruijnzeel L A, Mulligan M, van Dijk A I J M. Forests as 'sponges' and 'pumps': assessing the impact of deforestation on dry-season flows across the tropics. Journal of Hydrology, 2019, 574: 946-963. DOI:10.1016/j.jhydrol.2019.04.064
[94]Hewlett J D. Principles of Forest Hydrology. Athens, Ga.: University of Georgia Press, 1982.
[95]Wei X H, Liu W F, Zhou P C. Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: a critical review of research methods. Water, 2013, 5(2): 728-746. DOI:10.3390/w5020728
[96]Sun G, Alstad K, Chen J Q, Chen S P, Ford C R, Lin G H, Liu C F, Lu N, McNulty S G, Miao H X, Noormets A, Vose J M, Wilske B, Zeppel M, Zhang Y, Zhang Z Q. A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology, 2011, 4(2): 245-255. DOI:10.1002/eco.194
[97]Sun G, Caldwell P, Noormets A, McNulty S G, Cohen E, Moore Myers J, Domec J C, Treasure E, Mu Q Z, Xiao J F, John R, Chen J Q. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. Journal of Geophysical Research, 2011, 116: G00J05.
[98]Zhang L, Hickel K, Dawes W R, Chiew F H S, Western A W, Briggs P R. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 2004, 40(2): 1-14.
[99]Wang C, Wang S, Fu B J, Zhang L. Advances in hydrological modelling with the Budyko framework. Progress in Physical Geography: Earth and Environment, 2016, 40(3): 409-430. DOI:10.1177/0309133315620997
[100]Gan G J, Liu Y B, Sun G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Science Reviews, 2021, 212: 103451. DOI:10.1016/j.earscirev.2020.103451
[101]Abbott M B, Bathurst J C, Cunge J A, O'Connell P E, Rasmussen J. An introduction to the European Hydrological System-Systeme Hydrologique Europeen, "SHE", 1:structure of a physically-based, distributed modelling system. Journal of Hydrology, 1986, 87(1/2): 45-59.
[102]Abbott M B, Bathurst J C, Cunge J A, O'Connell P E, Rasmussen J. An introduction to the European Hydrological System-Systeme Hydrologique Europeen, "SHE", 2:structure of a physically-based, distributed modelling system. Journal of Hydrology, 1986, 87(1/2): 61-77.
[103]Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large area hydrologic modeling and assessment part i: model development. Journal of the American Water Resources Association, 1998, 34(1): 73-89. DOI:10.1111/j.1752-1688.1998.tb05961.x
[104]Tague C L, Band L E. RHESSys: regional hydro-ecologic simulation system-an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interactions, 2004, 8(19): 1-42. DOI:10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
[105]Zhang L, Potter N, Hickel K, Zhang Y Q, Shao Q X. Water balance modeling over variable time scales based on the Budyko framework-Model development and testing. Journal of Hydrology, 2008, 360(1/2/3/4): 117-131.
[106]Sun G, Wei X, Hao L, Sanchis M G, Hou Y, Yousefpour R, Tang R, Zhang Z. Forest hydrology modeling tools for watershed management: A review. Forest Ecology and Management, 2022.
[107]Budyko M I. The heat balance of the earth's surface, US Dept. of Commerce. Weather Bureau, Washington, DC, USA. 1958.
[108]Crawford N, Linsley R. Digital simulation in hydrology' stanford watershed model 4., 1966
[109]Wischmeier W H, Smith D. A universal soil-loss equation to guide conservation farm planning. Transactions 7th int Congr Soil Sci, 1960.
[110]Bicknell B, Imhoff J, Kittle J, Jobes T, Donigian A. Hydrological Simulation Program-FORTRAN: HSPF Version 12.2 User's Manual, Athens, GA. 2005.
[111]Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Bulletin, 1979, 24(1): 43-69. DOI:10.1080/02626667909491834
[112]Skaggs R W. A water management model for shallow water table soils: Water Resources Research Institute of the University of North Carolina, 1978.
[113]Bernier P Y. Variable source areas and storm-flow generation: an update of the concept and a simulation effort. Journal of Hydrology, 1985, 79(3/4): 195-213.
[114]Goldstein R A, Mankin J, Luxmoore R. Documentation of Prosper. A model of atmosphere-soil-plant water flow: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1974.
[115]Zhao R J. The xinanjiang model. In Proceedings of the Oxford Symposium, 1980.
[116]Tedela N H, McCutcheon S C, Rasmussen T C, Hawkins R H, Swank W T, Campbell J L, Adams M B, Jackson C R, Tollner E W. Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States. Journal of Hydrologic Engineering, 2012, 17(11): 1188-1198. DOI:10.1061/(ASCE)HE.1943-5584.0000436
[117]Federer C A. BROOK 90: A simulation model for evaporation, soil water, and streamflow. 2002.
[118]Douglass J E. The potential for water yield augmentation from forest management in the eastern United States. Journal of the American Water Resources Association, 1983, 19(3): 351-358. DOI:10.1111/j.1752-1688.1983.tb04592.x
[119]Beasley D B, Huggins L F, Monke E J. ANSWERS: a model for watershed planning. Transactions of the ASAE, 1980, 23(4): 938-944. DOI:10.13031/2013.34692
[120] [121]Regan R S, Markstrom S L, Hay L E, Viger R J, Norton P A, Driscoll J M, LaFontaine J H. Description of the national hydrologic model for use with the precipitation-runoff modeling system (prms): US Geological Survey, 2018.
[122]Garcia-Prats A, del Campo A D, Pulido-Velazquez M. A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research, 2016, 52(10): 8277-8294. DOI:10.1002/2015WR018273
[123]Elliot W J. Erosion processes and prediction with WEPP technology in forests in the northwestern U.S. Transactions of the ASABE, 2013, 56(2): 563-579. DOI:10.13031/2013.42680
[124]McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey, 1988.
[125]Sellers P J, Mintz Y, Sud Y C, Dalcher A. A simple biosphere model (SIB) for use within general circulation models. Journal of the Atmospheric Sciences, 1986, 43(6): 505-531. DOI:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
[126]Melillo J M, McGuire A D, Kicklighter D W, Moore B, Vorosmarty C J, Schloss A L. Global climate change and terrestrial net primary production. Nature, 1993, 363(6426): 234-240. DOI:10.1038/363234a0
[127]Liang X, Lettenmaier D P, Wood E F, Burges S J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 1994, 99(D7): 14415. DOI:10.1029/94JD00483
[128]Zhang L, Dawes W. An integrated energy and water balance model. CSIRO Land and Water Technical Report, 1998.
[129]Aber J D, Federer C A. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 1992, 92(4): 463-474. DOI:10.1007/BF00317837
[130]Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 1994, 30(6): 1665-1679. DOI:10.1029/94WR00436
[131]Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 1997, 95(3): 209-228. DOI:10.1016/S0378-1127(97)00026-1
[132]Running S W, Hunt E R Jr. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling Physiological Processes. Amsterdam: Elsevier, 1993, 141-158.
[133]Smith R A, Schwarz G E, Alexander R B. Regional interpretation of water-quality monitoring data. Water Resources Research, 1997, 33(12): 2781-2798. DOI:10.1029/97WR02171
[134]Sun G, Riekerk H, Comerford N B. Modeling the forest hydrology of wetland-upland ecosystems in Florida. Journal of the American Water Resources Association, 1998, 34(4): 827-841. DOI:10.1111/j.1752-1688.1998.tb01519.x
[135]Sun G, Riekerk H, Comerford N B. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods. Journal of the American Water Resources Association, 1998, 34(4): 843-854. DOI:10.1111/j.1752-1688.1998.tb01520.x
[136]Burnash R. The NWS River Forecast System-catchment modeling. Computer Models of Watershed Hydrology, 1995, 311-366.
[137]Tian H Q, Liu M L, Zhang C, Ren W, Chen G S, Xu X F. DLEM-The Dynamic Land Ecosystem Model. User Manual. the ESRA (Ecosystem Science and Regional Analysis) Laboratory, Auburn University. 2005.
[138]Sharp R, Douglass J, Wolny S, Arkema K, Bernhardt J, Bierbower W, Chaumont N, Denu D, Fisher D, Glowinski K. InVEST 3.8. 5. post0+ ug. gdd887c5. d20201118 User's Guide. The Natural Capital Project Stanford University, University of Minnesota. The Nature Conservancy, and World Wildlife Fund, 2020.
[139]Calder I R. Assessing the water use of short vegetation and forests: Development of the Hydrological Land Use Change (HYLUC) model. Water Resources Research, 2003, 39(11).
[140]Kim J B, Kerns B K, Drapek R J, Pitts G S, Halofsky J E. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model. Climate Services, 2018, 10: 20-32. DOI:10.1016/j.cliser.2018.04.001
[141]Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776. DOI:10.1029/92JD00509
[142]Li C S, Trettin C, Sun G, McNulty S, Butterbach-Bahl K. Modeling carbon and nitrogen biogeochemistry in forest ecosystems. 2005
[143]Zhang Y L, Song C H, Sun G, Band L E, McNulty S, Noormets A, Zhang Q F, Zhang Z Q. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agricultural and Forest Meteorology, 2016, 223: 116-131. DOI:10.1016/j.agrformet.2016.04.003
[144]Komatsu H. Modeling evapotranspiration changes with managing Japanese cedar and cypress plantations. Forest Ecology and Management, 2020, 475: 118395. DOI:10.1016/j.foreco.2020.118395
[145]Francés F, Vélez J I. TETIS: a catchment hydrological distributed conceptual model. 2005
[146]Speich M J R, Zappa M, Scherstjanoi M, Lischke H. FORests and HYdrology under Climate Change in Switzerland v1.0:a spatially distributed model combining hydrology and forest dynamics. Geoscientific Model Development, 2020, 13(2): 537-564. DOI:10.5194/gmd-13-537-2020
[147]Mulligan M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrology Research, 2013, 44(5): 748-769. DOI:10.2166/nh.2012.217
[148]Tian S Y, Youssef M A, Skaggs R W, Amatya D M, Chescheir G M. DRAINMOD-FOREST: integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests. Journal of Environmental Quality, 2012, 41(3): 764-782. DOI:10.2134/jeq2011.0388
[149]Gochis D J, Yu W, Yates D N. The WRF-Hydro model technical description and user's guide, version 3.0. NCAR Tech Doc, 2013, 120.
[150] [151]Xu X L, Liu W, Scanlon B R, Zhang L, Pan M. Local and global factors controlling water-energy balances within the Budyko framework. Geophysical Research Letters, 2013, 40(23): 6123-6129. DOI:10.1002/2013GL058324
相关知识
油菜花农业生态系统中调节生态系统服务的量化和绘图(案例研究:伊朗戈尔甘
植被类型和蓄水层对绿色屋顶蒸散发的影响
Effects of different ecological restoration approaches on ecosystem services and biodiversity: a meta
【water
Impact of agricultural landscape heterogeneity on biodiversity and ecosystem services
植被
Research Advances in the impact of vegetation community characteristics on urban ecosystem services
Spatial relationship between supply and demand of ecosystem services through urban green infrastructure: case of Xi'an City
A review of the potential impacts of climate change on water environment in lakes and reservoirs
外文中英文翻译关于花草自动浇水系统研究.doc
网址: On accurately defining and quantifying the water retention services of forests https://m.huajiangbk.com/newsview1422206.html
上一篇: 杨贵妃都网购的荔枝上市了,就在四 |
下一篇: 荔枝花园,南岭西路 |