摘要: 为有效去除富营养化水体中硝态氮,以再力花(Thalia dealbata)、香蒲(Typha orientalis)和芦苇(Phragmites australis)3种水生植物为原材料制备生物炭,并采用氯化铁改性后进行吸附试验,探索改性水生植物生物炭对水体中低浓度硝态氮的吸附效果。结果表明:铁改性水生植物生物炭表面负载了大量Fe3+形成Fe-O基团,大幅提升了其对硝态氮的吸附性能,其中铁改性香蒲生物炭平衡吸附量最大,达到1.747 mg·g-1。3种改性水生植物生物炭对低浓度硝态氮的吸附符合准二级动力学和Freundlich模型,吸附主要为生物炭表面非均一多分子层化学吸附。溶液初始pH值在3.0~9.0范围内对铁改性水生植物生物炭吸附硝态氮能力影响较小,吸附最适合pH为中性。因此,铁改性水生植物生物炭能有效去除水体中低浓度硝态氮,同时实现了水生植物资源化,具有良好的应用前景。
关键词: 生物炭 / 水生植物 / 吸附 / 改性 / 低浓度硝态氮Abstract: To remove the low concentration nitrate in water and eliminate eutrophication, the biochar was prepared from three kinds of macrophytes, including Thalia dealbata, Typha orientalis and Phragmites australis, and then were modified by ferric chloride. FTIR and SEM-EDS results of the biochar and equilibrium adsorption tests show that the Fe-O was formed on the surface of the modified biochar which greatly enhanced biochar's adsorption performance to the nitrate-nitrogen. The nitrate was absorbed rapidly in 4 hours and then reached equilibrium slowly in 24 hours. The equilibrium adsorption capacity of the modified Typha orientalis biochar was the highest, which reached up to 1.747 mg·g-1. The adsorption performance of low concentration nitrate onto three kinds of modified macrophytes biochar fitted well to pseudo-second-order equation and Freundlich equation, indicating that inhomogeneous polymolecular layer chemisorption occurred on the surface of modified biochar. The initial pH of the solution in the range of 3.0-9.0 has little effect on the adsorption performance of nitrate, and the most appropriate pH is neutral. At the initial nitrate-nitrogen concentration of 2 mg·L-1, the most appropriate dosages of the three kinds of modified macrophytes biochar are 1.50, 1.14, and 1.22 g·L-1 for iron modified biochar of Thalia dealbata, Typha orientalis and Phragmites australis, respectively. Therefore, the iron modified macrophytes biochar can not only effectively remove the nitrate-nitrogen in water, but also realize resource utilization of the macrophytes, which has a promising application prospect.
[1]LEHMANN J,GAUNT J,RONDON M.Bio-Char Sequestration in Terrestrial Ecosystems:A Review[J].Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427.
[2] 孔丝纺,姚兴成,张江勇,等.生物质炭的特性及其应用的研究进展[J].生态环境学报,2015(4):716-723.[KONG Si-fang,YAO Xing-cheng,ZHANG Jiang-yong,et al.Review of Characteristics of Biochar and Research Progress of Its Applications[J].Ecology and Environmental Sciences,2015,24(4):716-723.] [3] 袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476.[YUAN Jin-hua,XU Ren-kou.Effects of Rice-Hull-Based Biochar Regulating Acidity of Red Soil and Yellow Brown Soil[J].Journal of Ecology and Rural Environment,2010,26(5):472-476.] [4]DEMIRAL H,GUNDUZOGLU G.Removal of Nitrate From Aqueous Solutions by Activated Carbon Prepared From Sugar Beet Bagasse[J].Bioresource Technology,2010,101(6):1675-1680.
[5] 李丽,陈旭,吴丹,等.固定化改性生物质炭模拟吸附水体硝态氮潜力研究[J].农业环境科学学报,2015,34(1):137-143.[LI Li,CHEN Xu,WU Dan,et al.Adsorption of Aqueous Nitrate-N by Immobilized Modified Biochar[J].Journal of Agro-Environment Science,2015,34(1):137-143.] [6] 崔丽娟,李伟,张曼胤,等.不同湿地植物对污水中氮磷去除的贡献[J].湖泊科学,2011,23(2):203-208.[CUI Li-juan,LI Wei,ZHANG Man-yin,et al.Different Wetland Plant Roles of Removing Nitrogen and Phosphorus on Sewage Water[J].Journal of Lake Sciences,2011,23(2):203-208.] [7] 张振华,高岩,郭俊尧,等.富营养化水体治理的实践与思考:以滇池水生植物生态修复实践为例[J].生态与农村环境学报,2014,30(1):129-135.[ZHANG Zhen-hua,GAO Yan,GUO Jun-yao,et al.Practice and Reflections of Remediation of Eutrophicated Waters:A Case Study of Haptophyte Remediation of the Ecology of Dianchi[J].Journal of Ecology and Rural Environment,2014,30(1):129-135.] [8] 李际会,吕国华,白文波,等.改性生物炭的吸附作用及其对土壤硝态氮和有效磷淋失的影响[J].中国农业气象,2012,33(2):220-225.[LI Ji-hui,LÜ Guo-hua,BAI Wen-bo,et al.Effect of Modified Biochar on Soil Nitrate Nitrogen and Available Phosphorus Leaching[J].Chinese Journal of Agrometeorology,2012,33(2):220-225.] [9]BHATNAGAR A,JI M,YANG H C,et al.Removal of Nitrate From Water by Adsorption Onto Zinc Chloride Treated Activated Carbon[J].Separation Science and Technology,2008,43(4):886-907.
[10]SWIATKOWSKI A,PAKULA M,BINIAK S,et al.Influence of the Surface Chemistry of Modified Activated Carbon on Its Electrochemical Behaviour in the Presence of Lead (Ⅱ) Ions[J].Carbon,2004,42(15):3057-3069.
[11]LIU Z G,ZHANG F S,SASAI R.Arsenate Removal From Water Using Fe3O4:Loaded Activated Carbon Prepared From Waste Biomass[J].Chemical Engineering Journal,2010,160(1):57-62.
[12] 吕欣田,张文,刘茜,等.改性香蒲炭模拟水体氮、磷吸附效果研究[J].广州化工,2017,45(15):75-78.[LÜ Xin-tian,ZHANG Wen,LIU Qian,et al.Study on Adsorption of Nitrogen and Phosphorus From Modified Cattail Biochars[J].Guangzhou Chemical Industry,2017,45(15):75-78.] [13] 唐登勇,黄越,胥瑞晨,等.改性芦苇生物炭对水中低浓度磷的吸附特征[J].环境科学,2016,37(6):2195-2201.[TANG Deng-yong,HUANG Yue,XU Rui-chen,et al.Adsorption Behavior of Low Concentration Phosphorus From Water Onto Modified Reed Biochar[J].Environmental Science,2016,37(6):2195-2201.] [14]GERENTE C,LEE V K C,CLOIREC P L,et al.Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption:Mechanisms and Models Review[J].Critical Reviews in Environmental Science and Technology,2007,37(1):41-127.
[15] 杜衍红,蒋恩臣,李治宇,等.稻壳炭对铵态氮的吸附机理研究[J].农业机械学报,2016,47(2):193-199.[DU Yan-hong,JIANG En-chen,LI Zhi-Yu,et al.Adsorption Mechanism of Ammonium Nitrogen Onto Rice Husk Biochar[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):193-199.] [16] 王荣荣,赖欣,李洁,等.花生壳生物炭对硝态氮的吸附机制研究[J].农业环境科学学报,2016,35(9):1727-1734.[WANG Rong-rong,LAI Xin,LI Jie,et al.Adsorption of Nitrate Nitrogen by Peanut Shell Biochar[J].Journal of Agro-Environment Science,2016,35(9):1727-1734.] [17]LOGANATHAN P,VIGNESWARAN S,KANDASAMY J.Enhanced Removal of Nitrate From Water Using Surface Modification of Adsorbents:A Review[J].Journal of Environmental Management,2013,131:363-374.
[18] 吴筱清.太湖水环境特征及沉积物有机质来源识别[D].南京:南京大学,2015.[WU Xiao-qing.Water Environmental Characters and Sediment Organic Matter Source Identification of Lake Taihu[D].Nanjing:Nanjing University,2015.] [19] 陈小华,李小平,王菲菲,等.苏南地区湖泊群的富营养化状态比较及指标阈值判定分析[J].生态学报,2014,34(2):390-399.[CHEN Xiao-hua,LI Xiao-ping,WANG Fei-fei,et al.Research on the Difference in Eutrophication State and Indicator Threshold Value Determination Among Lakes in the Southern Jiangsu Province,China[J].Acta Ecologica Sinica,2014,34(2):390-399.] [20]CHUNG H K,KIM W H,PARK J,et al.Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent[J].Journal of Industrial and Engineering Chemistry,2015,28:241-246.
[21]CHINTALA R,MOLLINEDO J,SCHUMACHER T E,et al.Nitrate Sorption and Desorption in Biochars From Fast Pyrolysis[J].Microporous and Mesoporous Materials,2013,179:250-257.
[22]ZHANG M,GAO B,YAO Y,et al.Synthesis of Porous MgO-Biochar Nanocomposites for Removal of Phosphate and Nitrate From Aqueous Solutions[J].Chemical Engineering Journal,2010,210:26-32.
[23]YAO Y,GAO B,ZHANG M,et al.Effect of Biochar Amendment on Sorption and Leaching of Nitrate,Ammonium and Phosphate in a Sandy Soil[J].Chemosphere,2012,89(11):1467-1471.
[24] 李雅竹.氮、磷面源污染生物炭控制技术[D].湘潭:湖南科技大学,2014.[LI Ya-zhu.Control Technology of Nitrogen and Phosphorus Non-Point Source Pollution With Biochar[D].Xiangtan:Hunan University of Science and Technology,2014.] [25] 张涛,宋新山.潜流人工湿地理化性质及不同形态氮素的空间分布[J].生态环境学报,2010,19(6):1343-1347.[ZHANG Tao,SONG Xin-shan.Physicochemical Character and Nitrogen Changes in Subsurface Flow Constructed Wetland[J].Ecology and Environmental Sciences,2010,19(6):1343-1347.] [26] 李扬,李锋民,张修稳,等.生物炭覆盖对底泥污染物释放的影响[J].环境科学,2013,34(8):3071-3078.[LI Yang,LI Feng-min,ZHANG Xiu-wen,et al.Effects of Biochar Covering on the Release of Pollutants From Sediment[J].Environmental Science,2013,34(8):3071-3078.]相关知识
目前行业硝态氮的处理方式浅谈
植物硝态氮检测|茁彩生物
不同基因型水生植物对铵态氮和硝态氮吸收动力学特性研究
肥料氮素全解:什么是硝态氮,铵态氮,酰胺态氮?
不同种类生物炭对砷污染土壤的改良效应
常用氮素肥料解读,什么是硝态氮,铵态氮,酰胺态氮——
改性蛭石对有机污染物的吸附特性研究
源水中氮的形态分布及溶解性有机氮的吸附与过滤去除特性
氮肥的种类,分为铵态氮肥、硝态氮肥和铵态硝态氮肥等
硝态氮转化为氨氮是什么过程
网址: 改性水生植物生物炭对低浓度硝态氮的吸附特性 https://m.huajiangbk.com/newsview2011256.html
上一篇: Regulation mecha |
下一篇: 南方6类挺水植物净化污水氮素的对 |