首页 > 分享 > 切花菊‘丽金’响应光照诱导成花特性研究

切花菊‘丽金’响应光照诱导成花特性研究

摘要: 菊花是典型的短日照植物,本研究以切花菊品种‘丽金’组培苗为材料,对其成花感受态和限界光周期进行了分析。在此基础上,利用不同光质配比组合的红光和蓝光LED补光灯对其幼苗进行光照处理,探讨不同光质对植株开花的影响。结果表明:‘丽金’的成花感受态为具有14片叶的组培苗植株,限界性诱导光周期值为短日照下(12 h光照/12 h黑暗)43 d;蓝光是促进幼苗现蕾的必需光源,且复合光(蓝光∶红光=2∶1和红光∶蓝光=2∶1)比单色光(蓝光和红光)和对照组(普通荧光灯)更利于切花菊的成花,其中蓝光∶红光=2∶1是短日照诱导植株快速现蕾和成花的最优光源,成花所需时间仅为(86.19±1.17) d,而红光∶蓝光=2∶1是短日照诱导植株成花且获得高杆植株的最优光源,现蕾高度为(41.44±7.09) cm。这些结果为切花菊高效低能的周年生产提供了重要的参考信息,并为其他观赏植物的设施栽培试验研究提供了参考体系。

Abstract: The chrysanthemum (Chrysanthemum × morifolium Ramat.) is a typical short-day plant. In this study, the cut chrysanthemum ‘Reagan’ (Chrysanthemum × morifolium ‘Reagan’) was selected as material. We comprehensively analyzed the floral competence and the limited inductive photoperiod of seedlings. On these bases, the seedlings were treated under different combinations of red and blue light-emitting diode (LED) qualities, aiming at investigating the effects of different light qualities on the flowering of seedlings. The results showed that 1) the floral competence of seedlings was 14-leaf stage, and the value of limited inductive photoperiod was 43 d under short daylight (12 h light/12 h dark); 2) the blue light was necessary for the budding of seedlings, and the compound lights of blue∶red=2∶1 or red∶blue=2∶1 were more beneficial to the bloom compared with the single light (blue or red) and control group (fluorescent lamp); 3) the blue∶red=2∶1 was the optimal lighting option for the quick budding and bloom of seedlings under short-day light, the necessary time for bloom was only (86.19±1.17) d; and 4) the red∶blue=2∶1 was the optimal lighting option for the bloom under short-day light and the obtainment of high-stem plants (the plant height was (41.44±7.09) cm when budding). These results provide important references for annual production of cut chrysanthemum in a way of high efficiency and low energy, and also lay foundations for the protected cultivation of other ornamental plants.

[1]

WANG Y, MA Y P, DAI S L.The molecular mechanism in regulation of flowering in ornamental plants [J]. Chin Bull Bot, 2010, 45(6): 641-653.

[1] 王翊,马月萍,戴思兰.观赏植物花期调控途径及其分子机制[J]. 植物学报,2010,45(6):641-653. [2]

SHIN K S, MURTHY H N, HEO J W, et al. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants[J].Acta Physiologiae Plantarum, 2008, 30: 339-343.

[2]

HU H R. Preliminary studies on flowering control by means of photoperiod and induction of a novel varied flower in Petunia hybrida ‘Fantasy’ [D]. Wuhan: Huazhong Agricultural University, 2006.

[3]

MAO H Y, GU Z Y, ZHU P F. Effects of different photoperiods on floral bud differentiation and flowering of chrysanthemum ‘C029’[J].Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(10): 2074-2080.

[3]

NGUYEN Q T, KOZAI T, NIU G, et al. Photosynthetic characteristics of coffee (Coffea arabusta) plantlets in vitro in response to different CO2 concentrations and light intensities [J]. Plant Cell Tissue and Organ Culture, 1999, 55:133-139.

[4]

LIN G Y, ZHENG C S, SUN X Z, et al. Effects of photoperiod on floral bud differentiation and contents of endogenous hormones in chrysanthemum [J]. Shandong Agricultural Sciences, 2008(1): 35-39.

[4] 胡惠蓉. 幻想矮牵牛开花的光周期调控及一种新型突变花的初步研究[D].武汉:华中农业大学,2006. [5]

YANG N, GUO W M, CHEN F D, et al. Effects of photoperiod on floral bud differentiation and flowering of Chrysanthemum morifolium Ramat. ‘Jinba’ [J].Acta Horticulturae Sinica, 2007, 34 (4): 965-972.

[5] 毛洪玉,顾钊宇,祝朋芳. 不同光周期处理对菊花C029花芽分化及开花的影响[J]. 西北植物学报,2010,30 (10):2074-2080. [6] 林贵玉,郑成淑,孙宪芝,等. 光周期对菊花花芽分化和内源激素的影响[J]. 山东农业科学,2008(1):35-39. [6]

FU J X, YANG Y T, WANG L L, et al. Studies on photoperiod induction of flowering characteristics of Chrysanthemum lavandulifolium[C]// ZHANG Q X. Advances in ornamental horticulture of China. Beijing: China Forestry Publishing House, 2012: 397-401.

[7] 杨娜,郭维明,陈发棣,等.光周期对秋菊品种‘神马’花芽分化和开花的影响[J]. 园艺学报,2007,34 (4):965-972. [7]

PU G B, LIU S Q, LIU L, et al. Effects of different light qualities on growth and physiological characteristics of tomato seedlings [J]. Acta Horticulturae Sinica, 2005, 32(3): 420-425.

[8]

CHEN Y, WANG Z, JI S Y, et al. Effects of different light quality ratios of light emitting diode (LED) on the growth of Anthurium andraeanum plantlets in vitro[J]. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(2): 375-380.

[8]

ZHANG W, FUKAI S, GOI M. Morphological observation on capitulum initiation and floret development of Dendranthema species native to Japan[J]. Journal of the Japanese Society for Horticultural Sciences, 1996, 65 (2): 506-507.

[9]

KOZAI T, KUBOTA C, JEONG B R. Environmental control for large-scale production of plants through in vitro techniques [J]. Plant Cell Tissue and Organ Culture,1997, 51:49-56.

[9]

LA Y F, ZHANG Q X, PAN H T, et al. Growth, development and photosynthetic characteristics of Lilium Oriental hybrids under low light conditions [J]. Journal of Beijing Forestry University, 2010, 32 (4): 213-217.

[10]

CUI Y I, HAHN E J, KOZAI T, et al. Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro [J]. Plant Cell Tissue and Organ Culture, 2000, 62: 219-226.

[10]

LIU T, CUI H J, WU S J, et al. Response of photosynthetic and fluorescence characteristics of Japanese yew seedlings to different light conditions [J]. Journal of Beijing Forestry University, 2013, 35(3): 65-70.

[11]

NHUT D T, HONG L T A, WATANABE H, et al. Growth of banana plantlets cultured in vitro under red and blue light emitting diode (LED) irradiation source [C]//DREW R. International symposium on tropical and subtropical fruits. Belgium: ISHS Acta Horticulturae, 2000:117-124.

[12]

DUONG T N, HONG L T A, WATANABE H, et al. Efficiency of a novel culture system by using light-emitting diode (LED) on in vitro and subsequent growth of micropropagated banana plantlets [C]// ECONOMOU A S, READ P E. International symposium on acclimatization and establishment of micropropagated plants. Belgium: ISHS Acta Horticulturae, 2003: 121-127.

[13]

LIAN M L, PIAO X C, PARK K Y. Effect of light emitting diodes on morphogenesis and growth of bulblets of Lilium in vitro [J]. Journal of the Korean Society for Horticultural Science, 2003, 44:125-128.

[14]

KIM H H, GOINS G D, WHEELER R M, et al. Green light supplementation for enhanced lettuce growth under red and blue light emitting diodes [J]. HortScience, 2004, 39:1617-1622.

[15]

KIM H H, GOINS G D, WHEELER R M, et al. Stomatal conductance of lettuce grown under or exposed to different light qualities [J]. Annals of Botany, 2004, 94:691-697.

[16]

KIM S J, HAHN E J, HEO J W, et al. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro [J]. Scientia Horticulturae, 2004, 101:143-151.

[17]

POUDEL R P, KATAOKA I, MOCHIOKA R. Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes [J]. Plant Cell Tissue and Organ Culture, 2008, 92:147-153.

[18]

LI H, XU Z, TANG C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro [J]. Plant Cell Tissue and Organ Culture,2010, 103:155-163.

[19]

BULA R J, MORROW T W, TIBBITTS T W, et al. Light-emitting diodes as a radiation source for plants [J]. HortScience, 1991, 26: 203-205.

[20]

BROWN C S, SCHUERGER A C, SAGER J C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting [J]. Journal of the American Society for Horticultural Science, 1995, 120: 808-813.

[21]

HANGARTER R P, STASINOPOULOS T C. Repression of plant tissue culture growth by light is caused by photochemical change in the culture medium [J]. Plant Science, 1991, 79: 253-257.

[22]

HIGUCHI Y, SUMITOMO K, ODA A, et al. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering [J]. Journal of Plant Physiology, 2012, 169(18):1789-1796.

[23]

LYONS R E, NEALE L. Effect of photoperiod, gibberellin, and ancymidol on flowering and vegetative development of California poppy (Eschscholtzia californica Cham.) [J]. HortScience, 1983, 18:573.

[24]

ADAMS S R, PEARSON S, HADLEY P, et al. The effects of temperature and light integral on the phases of photoperiod sensitivity in Petunia × hybrida [J]. Annals of Botany, 1999, 83: 263-269.

[25] 付建新,杨艳婷,王琳琳,等.光周期途径诱导甘菊成花特性研究[C]//张启翔. 中国观赏园艺研究进展. 北京:中国林业出版社,2012:397-401. [26]

KAZAZ S, ASKIN M A, KILIC S, et al. Effects of day length and daminozide on the flowering, some quality parameters and chlorophyll content of Chrysanthemum morifolium Ramat. [J]. Scientific Research and Essays, 2010, 5: 3281-3288.

[27]

LIN C. Plant blue-light receptors [J]. Trends in Plant Science, 2000, 5: 337-342.

[28] 蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响[J].园艺学报,2005,32(3):420-425. [29] 陈颖,王政,纪思羽. LED光源不同光质比例对红掌试管苗生长的影响[J].江西农业大学学报,2013,35(2):375-380. [30]

NHUT D T, TAKAMURA T, WATANABE H, et al. Sugar-free micropropagation of Eucalyptus citriodora using light-emitting diode (LEDs) and film-rockwool culture system [J]. Environment Control in Biology, 2002, 40:147-155.

[31]

NHUT D T, TAKAMURA T, WATANABE H, et al. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LED) [J]. Plant Cell Tissue and Organ Culture, 2003, 73:43-52.

[32] 喇燕菲,张启翔,潘会堂,等. 弱光条件下东方百合的生长发育及光合特性研究[J]. 北京林业大学学报, 2010, 32(4): 213-217. [33] 刘彤,崔海娇,吴淑杰,等. 东北红豆杉幼苗光合和荧光特性对不同光照条件的响应[J]. 北京林业大学学报, 2013, 35(3): 65-70.

相关知识

光周期途径诱导甘菊成花特性研究
几种金花茶离体诱导多倍体研究
光周期诱导甘菊成花中ClFT基因表达特性的研究
牛膝菊和铁苋菜生长及光合特性对水分与光照的响应中期报告
切花菊新品种栽植密度与切花质量的研究
植物激素直接诱导非洲菊花蕾不定芽的研究
出口切花菊“优香”及其在日照地区温室栽培技术
珍稀濒危植物金花茶种子繁殖和生物学特性研究
不同光照条件下生长的曼地亚红豆杉光合特性的比较研究
淡黄花百合珠芽诱导脱分化的研究

网址: 切花菊‘丽金’响应光照诱导成花特性研究 https://m.huajiangbk.com/newsview2038939.html

所属分类:花卉
上一篇: 长日照花卉是每天需要()以上的光
下一篇: [土壤检测仪批发]三合一土壤检测