智慧渔业的出现,养殖生产效率是人工的数百倍,有效减轻繁重的渔业生产对劳动体力的依赖。新农人们的养殖管理方式不再是脚趟泥泞,面朝黄土背朝天,而是仰望蓝天白云,动动手指操控智能手机,即可实现鱼塘管理。
渔业科研
鱼群摄食图像分割是提取鱼群分布特征及量化鱼群摄食行为的前提条件。但在实际的养殖环境中,由于鱼群摄食图像存在鱼群边界模糊、目标相似等问题,使得处于养殖场景下的鱼群摄食图像分割成为难题。
示意图
为解决上述问题,中国农业大学国家数字渔业创新中心与北京林业大学信息学院、农业农村部智慧养殖技术重点实验室、北京市农业物联网工程技术研究中心、中国农业大学信息与电气工程学院、国家林业和草原局林业智能信息处理工程技术研究中心等科研机构,组成了陈英义教授团队,提出一种用于养殖场景下鱼群摄食图像分割方法。
流程图
该方法首先通过数据清洗减少因鱼群边界模糊等问题导致的数据集不良标记问题,并在Mask R-CNN(Mask Region-based Convolutional Neural Network)的基础上使用融合置换注意力机制的轻量级神经网络VoVNetv2作为骨干网络,建立鱼群摄食图像实例分割网络SA_VoVNetv2_RCNN,提升模型对鱼群关键特征的提取能力以及对重点信息的关注能力,同时减少网络参数。
示意图
该方法的平均分割精度达71.014%,相比于SOLOv2、BlendMask和CondInst分别提升18.258%、3.982%和12.068%。为进一步验证模型对鱼群摄食行为量化的有效性,对真实环境下的鱼群进行验证实验,结果表明,模型对摄食和非摄食状态的鱼群具有良好的分割效果,在一定程度上解决了因分割精度低导致的鱼群摄食行为量化错误的问题。
检测图
该研究提出的SA_VoVNetv2_RCNN网络能够实现鱼群摄食和非摄食图像的准确分割,为水下鱼群的摄食行为量化提供决策支撑。
数据对比
让设备代替劳动力,可以管理更多数量的养殖塘口、根据不同种类的水产品控制不同的生长环境,一人一部手机也能实现养100吨鱼,打破空间限制,让更多的劳动力闲下来,一个劳动力就能干更多的活。有效节省人力资源,提高养殖效率,同时达到科学、安全、精准养殖的目的。
相关知识
摄食
猫咪的异常摄食行为有哪些?纠正猫咪异常摄食的办法
大型底栖动物摄食功能群研究
日本沼虾视觉研究:波长影响下的摄食与趋光行为
草鱼对不同种类沉水植物的摄食研究
三疣梭子蟹螯足断肢及再生对摄食和攻击行为的影响
光色、光照度和光周期对大菱鲆幼鱼生长和摄食的影响
工程鲫简介,生长速度快且摄食力强
水生所揭示鱼类摄食习性偏好机制及其适应性代谢策略
不同颜色光照对日本蟳摄食与生长的影响
网址: 量化摄食行为,鱼群摄食图像分割方法 https://m.huajiangbk.com/newsview2061737.html
上一篇: 微距摄影《花间暮》拍摄花朵浸入碱 |
下一篇: 付秀宏:鲜花肴:从“花痴”到“花 |