摘要:
目的
探究玉米−花生垄作间作和施磷对土壤团聚体稳定性的影响,为优化带状复合种植技术体系及进一步改善土壤结构和合理施肥提供科学依据。
方法
2010—2022年在河南科技大学试验农场进行田间试验,以玉米‘郑单958’和花生‘花育16’为供试材料,设玉米−花生平作间作(FIC)和玉米−花生垄作间作(RIC)两种种植模式及P2O5 0 kg/hm2 (P0)和180 kg/hm2 (P180) 两个施磷水平。2022年10月夏季作物收获后,采集0—20 cm土层土壤样品,采用干筛、湿筛和Le Bissonnais [慢速湿润(SW)、预湿后扰动(WS)、快速湿润(FW)] 3种方法分析土壤团聚体粒径分布和稳定性。
结果
与玉米−花生平作间作(FIC)相比,玉米−花生垄作间作(RIC)处理土壤>0.25 mm粒径团聚体(R0.25)占比增加了0.2%~6.0%,土壤团聚体平均质量直径(MWD)增加了1.1%~12.9%,几何平均直径(GMD)增加了2.8%~14.3%。与P0相比,P180处理土壤>0.25 mm粒径的团聚体(R0.25)占比增加了2.0%~13.3%,土壤团聚体MWD增加了4.2%~22.7%,GMD增加了8.3%~32.6%。各处理土壤团聚体MWD、GMD和R0.25表现为P0FIC<P0RIC<P180FIC<P180RIC。Le Bissonnais法处理中,土壤团聚体MWD表现为SW>WS>FW。此外,干筛法测定的平均质量直径(MWDD)与SW法测定的平均质量直径(MWDSW)及WS法测定的平均质量直径(MWDWS)呈显著正相关(P<0.001),湿筛法测定的平均质量直径(MWDW)与FW法测定的平均质量直径(MWDFW)呈显著正相关(P<0.001)。
结论
玉米−花生垄作间作(RIC)较玉米−花生平作间作(FIC)增加了土壤大团聚体含量,增强了团聚体的稳定性,且施磷进一步提高了土壤结构的稳定性。
Abstract:
Objectives
Exploring the influence of maize and peanut co-ridge intercropping and phosphorus application on soil aggregate stability, to provide a scientific basis for optimizing strip composite planting technology, and further improve soil structure and rational fertilization.
Methods
From 2010 to 2022, field experiments were conducted at the experimental farm of Henan University of Science and Technology. Maize variety Zhengdan 958 and peanut variety Huayu 16 were used as test materials. Two planting modes, flat intercropping of maize and peanut (FIC) and co-ridge intercropping of maize and peanut (RIC), along with two phosphorus levels, P2O5 0 kg/hm² (P0) and P2O5 180 kg/hm² (P180) were set. After the harvest of summer crops in October 2022, soil samples from the 0−20 cm soil layer were collected, and the particle size distribution and stability of soil aggregates were analyzed using three methods: dry sieving, wet sieving, and Le Bissonnais [slow wetting (SW), wet stirring (WS), and fast wetting (FW)].
Results
Compared with flat intercropping (FIC), the proportion of aggregates larger than 0.25 mm (R0.25) in the co-ridge intercropping (RIC) treatment increased by 0.2% to 6.0%, the mean weight diameter (MWD) of soil aggregates increased by 1.1% to 12.9%, and the geometric mean diameter (GMD) increased by 2.8% to 14.3%. Compared with P0, the P180 treatment increased the proportion of aggregates larger than 0.25 mm (R0.25) by 2.0% to 13.3%, increased the MWD of aggregates by 4.2% to 22.7%, and increased GMD by 8.3% to 32.6%. The order of MWD, GMD, and R0.25 of soil aggregates was P0FIC<P0RIC<P180FIC<P180RIC. In the Le Bissonnais method, the MWD order of soil aggregates was SW>WS>FW. Additionally, the mean weight diameter measured by the dry sieving method (MWDD) was significantly positively correlated with that measured by the SW (MWDSW) and WS (MWDWS) methods (P<0.001). The mean weight diameter measured by the wet sieving method (MWDW) was positively correlated with that measured by the FW (MWDFW) method (P<0.001).
Conclusions
Maize-peanut ridge intercropping (RIC) increased the content of soil aggregates and enhanced the stability of the aggregates. Phosphorus application further improved soil structure stability.
图 1 不同间作方式和磷水平下不同粒径土壤团聚体含量分布
注:(A)干筛法测定的土壤团聚体粒径分布,(B)湿筛法测定的土壤团聚体粒径分布。FIC为玉米−花生平作间作;RIC为玉米−花生垄作间作;P0—P2O5 0 kg/hm2;P180—P2O5 180 kg/hm2。柱上不同小写字母表示处理间差异显著(P<0.05)。Note: (A) Particle size distribution of soil aggregates determined by dry sieving method, (B) Particle size distribution of soil aggregates determined by the wet sieving method. FIC—Flat intercropping of maize and peanut; RIC—Co-ridge intercropping of maize and peanut; P0—P2O5 0 kg/hm2; P180—P2O5 180 kg/hm2. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).
Figure 1. Distribution of soil aggregate particle size fractions under different intercropping methods and phosphorus levels
图 2 不同间作方式和磷水平下各粒径土壤团聚体含量分布
注:SW—慢速湿润;WS—预湿后扰动;FW—快速湿润。FIC为玉米−花生平作间作;RIC为玉米−花生垄作间作;P0—P2O5 0 kg/hm2;P180—P2O5180 kg/hm2。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 2. Distribution of soil aggregate particle size fractions under different intercropping methods and phosphorus levels
Note: SW—Slow-wetting; WS—Wet stirring; FW—Fast-wetting; FIC—Flat intercropping of maize and peanut; RIC—Co-ridge intercropping of maize and peanut; P0—P2O5 0 kg/hm2; P180—P2O5 180 kg/hm2. Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 level.
图 3 不同间作方式和磷水平下土壤团聚体稳定性
注:FIC为玉米−花生平作间作;RIC为玉米−花生垄作间作;P0为P2O5 0 kg/hm2;P180为P2O5 180 kg/hm2。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 3. Soil aggregate stability under different intercropping methods and phosphorus levels
Note: MWD—Mean weight diameter; GMD—Geometric mean diameter. FIC—Flat intercropping of maize and peanut; RIC—Co-ridge intercropping of maize and peanut; P0—P2O5 0 kg/hm2; P180—P2O5180 kg/hm2. Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 level.
图 4 不同间作方式和磷水平下不同方法测定的土壤团聚体稳定性
注:SW—慢速湿润;WS—预湿后扰动;FW—快速湿润。FIC为玉米−花生平作间作;RIC为玉米−花生垄作间作;P0—P2O5 0 kg/hm2;P180—P2O5 180 kg/hm2。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 4. Soil aggregate stability measured by different methods under different intercropping methods and phosphorus levels
Note: MWD—Mean weight diameter; GMD—Geometric mean diameter. SW—Slow-wetting; WS—Wet stirring; FW—Fast-wetting; FIC—Flat intercropping of maize and peanut; RIC—Co-ridge intercropping of maize and peanut; P0—P2O5 0 kg/hm2; P180—P2O5 180 kg/hm2. Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 level.
图 5 不同间作方式和磷水平下土壤团聚体稳定性指数与不同粒径团聚体含量的相关关系
注:MWDD—干筛法测定的平均质量直径;MWDW—湿筛法测定的平均质量直径;MWDFW—FW法测定的平均质量直径;MWDWS—WS法测定的平均质量直径;MWDSW—SW法测定的平均质量直径。SW—慢速湿润;WS—预湿后扰动;FW—快速湿润。*—P<0.05;**—P<0.01。
Figure 5. Correlation between soil aggregate stability index and aggregate content of different particle sizes under different intercropping methods and phosphorus levels
Note: MWDD—The mean weight diameter measured by the dry sieving method; MWDW—The mean weight diameter measured by the wet sieving method; MWDFW—The mean weight diameter measured by the FW method; MWDWS—The mean weight diameter measured by the WS method; MWDSW—The mean weight diameter measured by the SW method. SW—Slow-wetting; WS—Wet stirring; FW—Fast-wetting. *—P<0.05; **—P<0.01.
图 6 干筛法、湿筛法和Le Bissonnais法测定的土壤团聚体稳定性指标的相关性
注:MWDD—干筛法测定的平均质量直径;MWDW—湿筛法测定的平均质量直径;MWDFW—FW法测定的平均质量直径;MWDWS—WS法测定的平均质量直径;MWDSW—SW法测定的平均质量直径。SW—慢速湿润;WS—预湿后扰动;FW—快速湿润。 *—P<0.05;**—P<0.01;***—P<0.001。
Figure 6. Correlation between soil aggregate stability indexes from dry sieve, wet sieve, and Le Bissonnais methods
Note: MWDD—The mean weight diameter measured by the dry sieving method; MWDW—The mean weight diameter measured by the wet sieving method; MWDFW—The mean weight diameter measured by the FW method; MWDWS—The mean weight diameter measured by the WS method; MWDSW—The mean weight diameter measured by the SW method. SW—Slow-wetting; WS—Wet stirring; FW—Fast-wetting. *—P<0.05; **—P<0.01; ***—P<0.001.
[1]Li S Y, Gu X, Zhuang J, et al. Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility[J]. Soil and Tillage Research, 2016, 155: 199−206. DOI: 10.1016/j.still.2015.08.009
[2] 朱玲, 周蓉, 沈玉叶, 等. 稻壳及稻壳生物炭对土壤团聚体稳定性及有机碳分布的影响[J]. 植物营养与肥料学报, 2023, 29(2): 242−252.Zhu L, Zhou R, Shen Y Y, et al. Effects of rice husk and its derived biochar on soil properties and stability of aggregates[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 242−252.
[3] 向蕊, 伊文博, 赵薇, 等. 间作对土壤团聚体有机碳储量的影响及其氮调控效应[J]. 水土保持学报, 2019, 33(5): 303−308.Xiang R, Yi W B, Zhao W, et al. Effect of intercropping on soil aggregate-associated organic carbon storage and nitrogen regulation[J]. Journal of Soil and Water Conservation, 2019, 33(5): 303−308.
[4] 李婕, 杨学云, 孙本华, 张树兰. 不同土壤管理措施下塿土团聚体的大小分布及其稳定性[J]. 植物营养与肥料学报, 2014, 20(2): 346−354.Li J, Yang X Y, Sun B H, Zhang S L. Effects of soil management practices on stability and distribution of aggregates in Lou soil[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 346−354.
[5] 孙涛, 冯晓敏, 高新昊, 等. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响[J]. 中国农业科学, 2023, 56(15): 2929−2940.Sun T, Feng X M, Gao X H, et al. Effects of diversified cropping on the soil aggregate composition and organic carbon and total nitrogen content[J]. Scientia Agricultura Sinica, 2023, 56(15): 2929−2940.
[6] 张晓娜, 陈平, 杜青, 等. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响[J]. 中国生态农业学报(中英文), 2019, 27(8): 1183−1194.Zhang X N, Chen P, Du Q, et al. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1183−1194.
[7] 唐秀梅, 黄志鹏, 吴海宁, 等. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析[J]. 生态环境学报, 2020, 29(2): 223−230.Tang X M, Huang Z P, Wu H N, et al. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system[J]. Ecology and Environmental Sciences, 2020, 29(2): 223−230.
[8] 乔鑫鑫, 王艳芳, 李乾云, 等. 复种模式对豫西褐土团聚体稳定性及其碳、氮分布的影响[J]. 植物营养与肥料学报, 2021, 27(3): 380−391.Qiao X X, Wang Y F, Li Q Y, et al. Effects of multi-cropping systems on cinnamon soil aggregate stability, carbon and nitrogen distribution in western Henan Province[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 380−391.
[9] 黄丹丹, 刘淑霞, 张晓平, 等. 保护性耕作下土壤团聚体组成及其有机碳分布特征[J]. 农业环境科学学报, 2012, 31(8): 1560−1565.Huang D D, Liu S X, Zhang X P, et al. Constitute and organic carbon distribution of soil aggregates under conservation tillage[J]. Journal of Agro-Environment Science, 2012, 31(8): 1560−1565.
[10] 谢孟林, 查丽, 郭萍, 等. 垄作覆膜对川中丘区土壤物理性状和春玉米产量的影响[J]. 干旱地区农业研究, 2017, 35(2): 31−38.Xie M L, Zha L, Guo P, et al. Effects of different ridging and mulching measures on soil physical properties and yield of spring maize in hilly area of central Sichuan Basin[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 31−38.
[11]Egan G, Crawley M J, Fornara D A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions[J]. Science of the Total Environment, 2018, 613: 810−819.
[12]Bindraban S P, Dimkpa O C, Pandey R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health[J]. Biology and Fertility of Soils, 2020, 56(3): 299−317. DOI: 10.1007/s00374-019-01430-2
[13] 郭童鑫, 姚晓华, 吴昆仑, 姚有华. 青稞和豌豆根系形态和养分效率对种植模式和施肥水平的响应[J]. 植物营养与肥料学报, 2023, 29(6): 1048−1059.Guo T X, Yao X H, Wu K L, Yao Y H. Root morphology and nutrient efficiency of Tibetan barley and peas in response to planting patterns and fertilization levels[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(6): 1048−1059.
[14]Zhang H Y, Niu L A, Hu K L, et al. Long-term effects of nitrogen and phosphorus fertilization on soil aggregate stability and aggregate-associated carbon and nitrogen in the North China Plain[J]. Soil Science Society of America Journal, 2021, 85(3): 732−745. DOI: 10.1002/saj2.20197
[15] 王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021, (1): 17−25.Wang L, Wang Y L, Li H, et al. Redundancy analysis of influencing factors of phosphorus availability in red soil upland under long-term fertilization[J]. Soil and Fertilizer Sciences in China, 2021, (1): 17−25.
[16]Le Bissonnais Y, Arrouays D. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science, 1997, 48(1): 39−48. DOI: 10.1111/j.1365-2389.1997.tb00183.x
[17]Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology[J]. European Journal of Soil Science, 1996, 47(4): 425−437. DOI: 10.1111/j.1365-2389.1996.tb01843.x
[18]Zan Z M, Jiao N Y, Ma R T, et al. Long-term maize intercropping with peanut and phosphorus application maintains sustainable farmland productivity by improving soil aggregate stability and P availability[J]. Agronomy, 2023, 13(11): 2846. DOI: 10.3390/agronomy13112846
[19]Kemper W D, Rosenau R C. Aggregate stability and size distributions[A]. Methods of soil analysis, Part I: Physical and mineralogical methods[M]. Madison, Wisconsin: American Society of Agronomy, Inc. , 1986.
[20]Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627−633. DOI: 10.2136/sssaj1986.03615995005000030017x
[21] 姜敏, 刘毅, 刘闯, 等. 丹江口库区不同土地利用方式土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2016, 30(6): 265−270.Jiang M, Liu Y, Liu C, et al. Study on the stability and fractal characteristics of soil aggregates under different land use patterns in the Danjiangkou Reservoir[J]. Journal of Soil and Water Conservation, 2016, 30(6): 265−270.
[22] 曾全超, 董扬红, 李鑫, 等. 基于Le Bissonnais法对黄土高原森林植被带土壤团聚体及土壤可蚀性特征研究[J]. 中国生态农业学报, 2014, 22(9): 1093−1101.Zeng Q C, Dong Y H, Li X, et al. Soil aggregate stability and erodibility under forest vegetation in the Loess Plateau using the Le Bissonnais method[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1093−1101.
[23] 万琪慧, 马黎华, 蒋先军. 垄作免耕对水稻根系特性和氮磷钾养分累积的影响[J]. 草业学报, 2019, 28(10): 44−52.Wan Q H, Ma L H, Jiang X J. Root characteristics and accumulation of nitrogen, phosphorus and potassium in rice plants cultivated under three different systems[J]. Acta Prataculturae Sinica, 2019, 28(10): 44−52.
[24] 任金虎, 谢军红, 李玲玲, 等. 种植模式对旱地玉米光合特性和产量的影响[J]. 干旱地区农业研究, 2017, 35(5): 8−13.Ren J H, Xie J H, Li L L, et al. Effects of planting patterns on photosynthetic pharacteristics and grain yield of maize in dryland[J]. Agricultural Research in the Arid Areas, 2017, 35(5): 8−13.
[25] 张志毅, 熊又升, 徐祥玉, 等. 免耕起垄对冷浸田土壤有机碳活性的影响[J]. 土壤通报, 2015, 46(1): 192−197.Zhang Z Y, Xiong Y S, Xu X Y, et al. Effects of no-tillage and combing ridge on soil organic carbon active in cold waterlogged paddy field[J]. Chinese Journal of Soil Science, 2015, 46(1): 192−197.
[26] 潘浩男, 覃潇敏, 肖靖秀, 等. 不同磷水平下间作对红壤团聚体及有效磷特征的影响[J]. 中国土壤与肥料, 2022, (4): 1−8.Pan H N, Qin X M, Xiao J X, et al. Effects of intercropping on soil aggregates and available phosphorus under different phosphorus levels[J]. Soil and Fertilizer Sciences in China, 2022, (4): 1−8.
[27] 李健. 磷肥施用对旱地土壤氮素转化及水分运移的影响[D]. 陕西西安: 西安理工大学硕士学位论文, 2024.Li J. Effects of phosphorus fertilizer application on nitrogen conversion and water transport in dryland soil[D]. Xi'an, Shaanxi: MS Thesis of Xi'an University of Technology, 2024.
[28] 李丹妮, 王天舒, 王丽, 等. 不同种植模式对稻田土壤剖面构型及团聚体稳定性的影响[J]. 中国土壤与肥料, 2023, (11): 1−8.Li D N, Wang T S, Wang L, et al. Effects of different planting patterns on profile configuration of the soil and aggregate stability in paddy fields[J]. Soil and Fertilizer Sciences in China, 2023, (11): 1−8.
[29] 马瑞, 杨帅, 秦鑫, 等. 不同耕作措施及玉米生育期对黄壤坡耕地土壤团聚体稳定性的影响[J]. 长江科学院院报, 2020, 37(11): 46−51.Ma R, Yang S, Qin X, et al. Effects of different tillage measures and maize growing seasons on soil aggregates’ stability in sloping yellow soil cropland[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(11): 46−51.
[30] 石艳香, 迟凤琴, 张久明, 等. 不同施肥处理黑土中添加秸秆对土壤团聚体稳定性及有机碳贡献率的影响[J]. 土壤通报, 2023, 54(4): 856−863.Shi Y X, Chi F Q, Zhang J M, et al. Effects of straw addition on stability of soil aggregates and contribution of organic carbon under different fertilization treatments in black soil[J]. Chinese Journal of Soil Science, 2023, 54(4): 856−863.
[31] 刘雷, 安韶山, 黄华伟. 应用Le Bissonnais法研究黄土丘陵区植被类型对土壤团聚体稳定性的影响[J]. 生态学报, 2013, 33(20): 6670−6680. DOI: 10.5846/stxb201301160103Liu L, An S S, Huang H W. Application of Le Bissonnais method to study soil aggregate stability under different vegetaion on the Loess Plateau[J]. Acta Ecologica Sinica, 2013, 33(20): 6670−6680. DOI: 10.5846/stxb201301160103
[32] 郑楠, 邵阳, 罗敏, 等. 土壤团聚体制备方法对其稳定性及固碳潜力评价的影响研究[J]. 中国环境科学, 2022, 42(6): 2821−2827.Zheng N, Shao Y, Luo M, et al. Effects of soil aggregate preparation methods on the stability and carbon sequestration potential evaluation[J]. China Environmental Science, 2022, 42(6): 2821−2827.
[33] 王珊, 毛玲. 应用Le Bissonnais法研究不同植烟年限土壤团聚体的稳定性[J]. 西南农业学报, 2017, 30(5): 1153−1157.Wang S, Mao L. Application of Le Bissonnais method to study stability of soil aggregate in different tobacco planting years[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(5): 1153−1157.
[34] 王苗苗, 王恩姮, 韩明钊, 等. 基于Le Bissonnais法研究有机物料对黑土团聚体稳定性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 191−199.Wang M M, Wang E H, Han M Z, et al. Organic materials effects on black soil aggregate stability based on the Le Bissonnais method[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(4): 191−199.
相关知识
化肥与不同有机物料配施对土壤有机碳组分及土壤水稳性团聚体的影响
土壤通报
不同轮作模式对东北黑土地影响的研究进展
玉米花生带状间作对植株氮吸收和土壤微生物群落的影响
不同轮作模式对青贮玉米产量、品质及土壤肥力的影响
氮、磷、钾肥配施对花生产量和品质的影响
基于长期定位试验的土壤健康研究与展望
化学农药对生态环境安全评价研究——Ⅰ.化学农药对土壤微生物的影响与评价
茅苍术间作对连作花生土壤线虫群落的影响
氮磷钾配施对制种玉米产量及经济效益的影响
网址: 基于不同方法评价玉米−花生垄作间作和施磷对土壤团聚体稳定性的影响 https://m.huajiangbk.com/newsview2093280.html
上一篇: 粗砂养花怎么处理(介绍一种养花的 |
下一篇: 长寿花肥料能否替代蔬菜肥料?科学 |