摘要:
目的
花的开放过程伴随着各种花器官,特别是花瓣的协调运动,然而花瓣运动和花朵开放的机制尚不清楚。本研究通过对百合和花韭花朵开放的物理过程和表皮细胞解剖观察,探讨两者花瓣开放运动机理与解剖结构的异同。
方法
以东方百合“西伯利亚”和花韭“玫红”为试验材料,结合解剖学和生理学方法,测量不同开放时期的花瓣长度,统计细胞数量,并观察细胞的形态变化,分析影响花朵开放的影响因素。
结果
百合花朵开放过程分为5个时期(S1 ~ S5),S1—S5期花瓣长度逐渐增长且细胞形态发生明显变化。S1—S2期细胞数量明显增长且内表皮细胞数量增长显著大于外表皮,但S2—S5期细胞数量增长不明显。花韭花朵开放过程分为3个过程(T1 ~ T3),T1—T3期花瓣长度和细胞形态均无明显变化,在T1和T3时期,内表皮细胞数量大于外表皮细胞数量,但T2期则相反。
结论
百合内外表皮细胞数量在S2期存在明显差异,促使百合花瓣突然绽放,S3、S4和S5 3个时期内外表皮细胞数量差异较小,可能是由于细胞的膨胀生长导致花瓣进一步开放,直到花朵枯萎凋谢;花韭在T2时期外表皮细胞数量明显大于内表皮,在T3时期内表皮细胞数量明显大于外表皮,推测花瓣两侧细胞数量不对称增长是导致花韭在T2期花朵开放T3期闭合的原因。
Abstract:
Objective
The process of flower blooming is accompanied by the coordinated movement of various flower organs, especially petals, however, the mechanism of petal movement and flower blooming is still unclear. In this study, the physical process of flower blooming and epidermal cell anatomy of two different flowers of the same family, “lily” and “Leek”, were observed to understand the similarities and differences of blooming mechanism and anatomical structure of lily and leek petals.
Method
Using Oriental lily “Sibirica” and Isoetes “Rose-red” as experimental materials, the factors promoting the blooming of Oriental lily and isoetes were studied by measuring the length of petals, counting the number of cells and observing the morphological changes of cells in different blooming periods by anatomical and physiological methods.
Result
The blooming process of lily flowers can be divided into five stages: S1−S5 stage. The length of petals gradually increased and the cell morphology changed obviously in S1−S5 stage. The number of cells increased significantly in S1−S2 stage and the number of inner epidermal cells increased significantly than that in outer epidermis, but the number of cells in S2−S5 stage didn’t increase significantly. The flower blooming process was divided into three processes: T1−T3. There were no significant changes in petal length and cell morphology in T1−T3. The number of inner epidermal cells was greater than that of outer epidermal cells in T1 and T3, but the opposite was true in T2.
Conclusion
There were obvious differences in the number of epidermal cells inside and outside the lily in S2 stage, which promoted the sudden blooming of lily petals. The difference in number of epidermal cells inside and outside the lily in S3, S4 and S5 stages was small, which may be due to the expansion and growth of cells leading to further blooming of petals until the flowers withered and faded. The number of epidermal cells in the T2 stage was significantly greater than that in the inner epidermis, and the number of epidermal cells in the T3 stage was significantly greater than that in the T3 stage. It is speculated that the asymmetric growth of the number of cells on both sides of petals is the reason for the opening and closing of the flowers in T2 stage.
图 1 百合和花韭花瓣分区
Figure 1. Partition of lily and Chinese leek petals
图 2 百合5个花朵开放时期
S1. 蕾期;S2. 初开期;S3. 盛开前期;S4. 盛开后期;S5. 衰败期
Figure 2. Five blooming periods of lily flowers
图 3 百合花瓣开放形态变化
a ~ c. 百合蕾期形态变化;d. 百合初开期形态变化;e ~ g. 百合盛开期形态变化;h ~ i. 百合花瓣反卷期形态变化
Figure 3. Morphology changes of lily petals in blooming process
图 4 花韭花朵开放变化
a. 花韭蕾期;b. 花韭盛开期;c. 花韭收拢期
Figure 4. Blooming changes of Chinese leek flowers
图 5 百合和花韭外围花被片的长度变化
不同小写字母表示不同时间段百合花韭开花长度差异显著(P < 0.05)。
Figure 5. Variation in perianth segment length of lily and Chinese leek
图 6 百合和花韭a区内外表皮细胞变化
S1A. 内表皮a区;S1B. 外表皮a区;S2A. 内表皮a区;S2B. 外表皮a区;S3A. 内表皮a区;S3B. 外表皮a区;S4A. 内表皮a区;S4B. 外表皮a区;S5A. 内表皮a区;S5B. 外表皮a区;T1A. 内表皮a区;T1B. 外表皮a区;T2A. 内表皮a区;T2B. 外表皮a区;T3A. 内表皮a区;T3B. 外表皮a区
Figure 6. Changes in inner and outer epidermal cells in region a of lily and Chinese leek
图 7 百合b区c区内外表皮细胞变化
S1A. 内表皮b区;S1B. 外表皮b区;S2A. 内表皮b区;S2B. 外表皮b区;S3A. 内表皮b区;S3B. 外表皮b区;S4A. 内表皮b区;S4B. 外表皮b区;S5A. 内表皮b区;S5B. 外表皮b区;S1C. 内表皮c区;S1D. 外表皮c区;S2C. 内表皮c区:S2D. 外表皮c区;S3C. 内表皮c区;S3D. 外表皮c区;S4C. 内表皮c区;S4D. 外表皮c区;S5C. 内表皮c区;S5D. 外表皮c区
Figure 7. Changes in epidermal cells in area b and c of lily
图 8 百合细胞参数统计
不同小写字母表示不同时间段参数差异显著(P < 0.05)。ABSP.花瓣中轴距外表皮的距离;ADSP.花瓣中轴距内表皮的距离。下同。
Figure 8. Statistics in lily cell parameters
图 9 花韭花瓣细胞参数统计
不同小写字母表示不同时间段花韭细胞参数的差异显著(P < 0.05)。
Figure 9. Statistics in cell parameters of Chinese leek petals
表 1 百合各个时期视野中细胞数目
Table 1 Number of cells in the visual field at different periods of lily
时期 内表皮a 内表皮b 内表皮c 外表皮a 外表皮b 外表皮c S1 454.00 ± 55.03 b 335.00 ± 71.13 b 325.00 ± 56.79 b 472.00 ± 217.15 a 303.00 ± 15.72 b 378.00 ± 11.13 a S2 750.00 ± 58.39 a 418.00 ± 60.06 a 479.00 ± 119.93 a 561.00 ± 60.02 a 353.00 ± 43.13 a 406.00 ± 25.17 a S3 148.00 ± 19.08 c 204.00 ± 17.35 c 208.00 ± 32.74 c 162.00 ± 11.53 b 141.00 ± 12.29 c 113.00 ± 11.36 c S4 131.00 ± 10.15 c 110.00 ± 18.19 d 149.00 ± 18.52 c 163.00 ± 10.82 b 117.00 ± 18.68 c 154.00 ± 24.06 b S5 163.00 ± 32.51 c 104.00 ± 17.35 d 105.00 ± 27.84 c 192.00 ± 4.36 b 125.00 ± 6.56 c 138.00 ± 10.82 bc 注:同列不同小写字母表示差异显著(P < 0.05)。下同。表 2 百合内外表皮的膨胀系数(前一花期/后一花期)
Table 2 Expansion coefficients of inner and outer epidermis of lily (the previous blooming stage/the later blooming stage)
时期 内表皮a 内表皮b 内表皮c 外表皮a 外表皮b 外表皮c S1 ~ S2 0.60 ± 0.45 b 0.80 ± 0.07 c 0.69 ± 0.06 c 0.83 ± 0.31 b 0.87 ± 0.16 b 1.26 ± 0.08 b S2 ~ S3 5.08 ± 1.20 a 2.04 ± 0.12 a 2.29 ± 0.27 a 3.39 ± 0.40 a 2.50 ± 0.22 a 2.68 ± 0.31 a S3 ~ S4 1.14 ± 0.20 b 1.87 ± 0.15 a 1.40 ± 0.35 b 1.00 ± 0.12 b 1.13 ± 0.11 b 0.75 ± 0.16 c S4 ~ S5 0.82 ± 0.17 b 1.06 ± 0.06 b 1.47 ± 0.35 b 0.85 ± 0.07 b 0.94 ± 0.17 b 1.11 ± 0.78 b表 3 花韭不同时期内外表皮细胞数
Table 3 Number of inner and outer epidermis cells of Chinese leek at different stages
时期 内表皮下1/2 外表皮下1/2 T1 583.00 ± 15.72 a 495.00 ± 7.81 a T2 332.00 ± 31.05 b 603.00 ± 15.72 a T3 748.00 ± 146.04 a 316.00 ± 97.00 b [1]Tomoko N, Takamasa S, Yumiko T, et al. Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SlMYB21 transcription factor in tomato[J]. Bioscience, Biotechnology, and Biochemistry, 2018, 82(2): 292−303. doi: 10.1080/09168451.2017.1422107
[2]Chenxia C, Qin Y, Yaru W, et al. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida)[J]. The Plant Cell, 2021, 33(4): 1229−1251. doi: 10.1093/plcell/koab031
[3]Zhang H, Xue F, Guo L, et al. The mechanism underlying asymmetric bending of lateral petals in Delphinium (Ranunculaceae)[J]. Current Biology, 2024, 34(4): 755−768. doi: 10.1016/j.cub.2024.01.004
[4]Halket A C. The flowers of Silene saxifraga L.: an inquiry into the cause of their day closure and the mechanism concerned in effecting their periodic movements[J]. Annal Botany, 1931, 45(1): 15−36.
[5]Kaihara S, Takimoto A. Physical basis of flower-opening in Pharbitis nil[J]. Plant Cell Physiology, 1981, 22(2): 20−31.
[6]Karvé A, Engelmann W, Schoser G. Initiation of rhythmical petal movements in Kalanchoë blossfeldiana by transfer from continuous darkness to continuous light or vice versa[J]. Planta, 1961, 56: 700−711. doi: 10.1007/BF01928213
[7]Liu R, Gao Y K, Fan Z P, et al. Effects of different photoperiods on flower opening, flower closing and circadian expression of clock-related genes in Iris domestica and I. dichotoma[J]. Journal of Plant Research, 2022, 135(2): 351−360. doi: 10.1007/s10265-022-01374-z
[8]Xu X J, Gookin T, Jiang C Z, et al. Genes associated with opening and senescence of Mirabilis jalapa flowers[J]. Journal of Experimental Botany, 2007, 58(8): 193−201.
[9] 周兵, 闫小红, 雷艺涵, 等. 紫茉莉开花过程中花色和花色素的变化规律[J]. 植物研究, 2019, 42(3): 475−482.Zhou B, Yan X H, Lei Y H, et al. Variation of flower color and pigment contents of Mirabilis jalapa during flowering[J]. Plant Research, 2019, 42(3): 475−482.
[10]Bieleski R, Elgar J, Heyes J, et al. Flower opening in Asiatic lily is a rapid process controlled by dark-light cycling[J]. Annals of Botany, 2000, 86(6): 1169−1174. doi: 10.1006/anbo.2000.1289
[11]Lae-Hyeon C, Jinmi Y, Gynheung A. The control of flowering time by environmental factors [J]. The Plant Journal: ForCell and Molecular Biology, 2017, 90(4): 708−719.
[12]Ichimura K, Suto K. Environmental factors controlling flower opening and closing in a Portulaca hybrid[J]. Annal Botany, 1998, 82(1): 67−70. doi: 10.1006/anbo.1998.0642
[13]Mari I, Mutsumi T. Trehalose plus chloramphenicol prolong the vase life of tulip flowers[J]. HortScience, 2019, 36: 946−950.
[14] 张建, 周存宇, 费永俊. 温度和授粉影响东北蒲公英花开闭的初步研究[J]. 湖北农业科学, 2016, 55(4): 931−934.Zhang J, Zhou C Y, Fei Y J. Preliminary study on effects of temperature and pollination on flower opening and closing of Taraxacum ohwianum[J]. Hubei Agricultural Sciences, 2016, 55(4): 931−934.
[15]van Doorn W G, van Meeteren U. Floweropening and closure: a review[J]. Journal of Experimental Botany, 2003, 54: 1801−1812.
[16]van Doorn W G, Kamdee C. Flower opening and closure: an update [J]. Journal of Experimental Botany, 2014, 65(20): 5749–5757.
[17]Cao L, Liu D Y, Jiang F, et al. Heterologous expression of LiSEP3 from oriental lilium hybrid ‘Sorbonne’ promotes the flowering of Arabidopsis thaliana L.[J]. Molecular Biotechnology, 2022, 64(10): 1120−1129. doi: 10.1007/s12033-022-00492-2
[18]Sui J J, Cao X, Yi M F, et al. Isolation and characterization of gene in anther development of lily (oriental hybrids)[J]. New Zealand Journal of Crop and Horticultural Science, 2020, 48(4): 257−269. doi: 10.1080/01140671.2020.1806083
[19] 岳娟, 刘雅莉, 娄倩, 等. 花韭表型观察与解剖结构分析[J]. 北方园艺, 2013(11): 104−106.Yue J, Liu Y L, Lou Q, et al. Phenotype observation and anatomical structure analysis of Chinese leek[J]. Northern Horticulture, 2013(11): 104−106.
[20] 胡晓聪, 王可, 孙亮. 东方百合'西伯利亚'LoNAC48基因的克隆、表达及功能分析[J]. 农业生物技术学报, 2024, 32(6): 1297−1306. doi: 10.3969/j.issn.1674-7968.2024.06.006Hu X C, Wang K, Sun L. Cloning, expression and functional analysis of LoNAC48 gene in lilium oriental hybrid ‘Siberia’[J]. Chinese Journal of Agricultural Biotechnology, 2024, 32(6): 1297−1306. doi: 10.3969/j.issn.1674-7968.2024.06.006
[21]Yuechong Y, Lan W, Manyi L, et al. Abahd acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid ‘Siberia’[J]. Frontiers in Plant Science, 2023, 14: 60−69.
[22] 刘艳梅. 几种东方百合烯萜合酶基因(TPS)生物信息学对比分析[J]. 分子植物育种, 2024(9): 1−11.Liu Y M. Bioinformatics comparative analysis of oriental lily terpenoid synthase genes (TPS)[J]. Molecular Plant Breeding, 2024(9): 1−11.
[23] 吴中军, 王露. 植物生长调节剂对切花百合瓶插期间花瓣内源激素含量的影响[J]. 经济林研究, 2018, 36(2): 161−168.Wu Z J, Wang L. Effect of plant growth regulators on endogenous hormones content of vase period in cut lily flowers[J]. Research of Economic Forestry, 2018, 36(2): 161−168.
[24] 张英杰, 吕英民. 百合花的开放机制 [C]. 中国园艺学会.中国观赏园艺研究进展, 2012: 143−147.Zhang Y J, Lü Y M. The opening mechanism of lily flower [C]. Chinese Society for Horticultural Science. Advances in Chinese Ornamental Horticulture Research, 2012: 143−147.
[25]Elgar H J, Woolf A B, Bieleski R L. Ethylene production by three lily species and their response to ethylene exposure [J]. Postharvest Biology and Technology, 1999, 16(3): 257−267.
[26]Kiyotoshi T. Stress-induced flowering: the third category of flowering response[J]. Journal of Experimental Botany, 2016, 67(17): 25−34.
[27]Yi X W, Gao H B, Yi Y, et al. Differentially expressed genes related to flowering transition between once- and continuous-flowering roses[J]. Biomolecules, 2021, 12(1): 58. doi: 10.3390/biom12010058
[28]Xu C, Lei S, Chen Y Q, et al. Arabidopsis HSP70-16 is required for flower opening under normal or mild heat stress temperatures[J]. Plant Cell & Environment, 2019, 42(4): 1190−1204.
[29]Yamada K, Norikoshi R, Suzuki K, et al. Cell division and expansion growth during rose petal development[J]. Journal of the Japanese Society for Horticultural Science, 2009, 78(3): 356−362. doi: 10.2503/jjshs1.78.356
[30]Norikoshi R, Imanishi H, Ichimura K. Changes in cell number osmotic potential and concentrations of carbohydrates and inorganic ions in Tweedia caerulea during flower opening[J]. Journal of the Japanese Society for Horticultural Science, 2013, 82(1): 51−56. doi: 10.2503/jjshs1.82.51
[31]Mcclung R C, Lou P, Hermand V, et al. The importance of ambient temperature to growth and the induction of flowering[J]. Frontiers in Plant Science, 2016(7): 1266.
[32]Hou Q Z, Zhao X, Pang X, et al. Why flowers close at noon? A case study of an alpine species Gentianopsis paludosa (Gentianaceae) [J]. Ecology and Evolution, 2022, 12(1): e8490.
[33]Bieleski R, Elgar J, Heyes J. Mechanical aspects of rapid flower opening in Asiatic lily[J]. Annals of Botany, 2000, 86(6): 1175−1183.
[34]Muñoz P, Briones M, Munné-Bosch S. Photoinhibition and photoprotection during flower opening in lilies[J]. Plant Science, 2018, 27(2): 220−229.
相关知识
百合与花韭花朵开放过程的解剖观察
解剖并观察花与果实的结构实验.doc
花的形态和解剖结构.ppt
《实验:解剖和观察花的结构》教学设计
花的形态及解剖结构
实验十四 观察花药和胚囊的解剖结构
三种葱属植物花形态及花药解剖结构观察
解剖并观察花和果实的结构(实验).pptx
解剖和观察花的结构
实验十四观察花药与胚囊解剖结构.ppt
网址: 百合与花韭花朵开放过程的解剖观察 https://m.huajiangbk.com/newsview2227209.html
上一篇: 越洗越黑//@岁月亦静亦好:出现 |
下一篇: 韭菜花籽图片素材下载 |