首页 > 分享 > 热损伤花岗岩力学劣化特性及损伤演化规律研究

热损伤花岗岩力学劣化特性及损伤演化规律研究

摘要:

深部矿产开采面临的高地温环境导致岩石产生热损伤,易诱发深部工程地质灾害,探究高温后岩石力学性能劣化特性与损伤演化规律对深部高地温环境下的岩体工程具有重要意义。通过将花岗岩进行常温至1 200 ℃范围内的温度处理,采用光学显微镜观测,探究了花岗岩试样在不同高温处理后杨氏模量和抗压强度的劣化特性,从微观角度分析热损伤花岗岩的内部裂纹和损伤演化规律。试验结果表明,高温处理将显著降低花岗岩的力学性能;岩石抗压强度和杨氏模量随着处理温度的升高而降低,裂纹发育程度随着温度的升高而增大;岩石力学性能与内部裂隙结构的发育程度高度相关,花岗岩在不同温度处理后的裂纹密度同抗压强度之间存在幂函数关系,裂纹密度能很好地反应花岗岩的热损伤程度。

Abstract:

The high geothermal environments encountered in deep mineral mining induce thermal damage to rocks, which can trigger geotechnical disasters in deep engineering projects. Therefore, exploring the degradation characteristics of rock mechanical properties and the damage evolution laws after high-temperature exposure is of significant importance for rock engineering in deep high-geothermal environments. By subjecting granite to the temperature range from ambient to 1200 ℃ and conducting macro-microscopic studies using optical microscopy, the degradation characteristics of Young's modulus and compressive strength in granite samples post various high-temperature treatments were investigated. Additionally, an analysis was performed on the internal cracks and damage evolution in thermally damaged granite from a microscopic perspective. The experimental results demonstrate that high-temperature treatments significantly reduce the mechanical properties of granite. The granite's compressive strength and Young's modulus decrease with increasing treatment temperatures, and the extent of crack development increases with temperature. The mechanic cal properties of granite are highly correlated with the development of internal crack structures. There is a power function relationship between the crack density and compressive strength in granite after different temperature treatments, indicating that crack density can effectively reflect the extent of thermal damage in granite.

图  1   花岗岩试样

Figure  1.   Granite specimens

图  2   不同温度处理后花岗岩试样的外观

Figure  2.   Appearance of granite specimens after different temperature treatment

图  3   试样微观结构观察的处理流程

Figure  3.   Specimen handling procedures for microstructure observation

图  4   裂纹密度获取流程

Figure  4.   Flowchart of crack density acquisition

图  5   花岗岩在不同温度处理后的杨氏模量

Figure  5.   Young's modulus of granite after different temperature treatments

图  6   花岗岩在不同温度处理后的抗压强度

Figure  6.   Compressive strength of granite after different temperature treatments

图  7   花岗岩在多种温度处理后的显微图像(裂纹与孔洞区域的蓝色物质为环氧树脂铸体剂)

Figure  7.   Microscopic images of granite after treatment at various temperatures (the blue material in the area of cracks and holes is epoxy resin casting agent)

图  8   由花岗岩薄片统计的裂纹密度

Figure  8.   Crack densities statistically determined from granite flakes

图  9   裂纹密度和抗压强度之间的关系

Figure  9.   Relationship between crack density and compressive strength

图  10   损伤变量随温度的变化

Figure  10.   Variation of damage variables with temperature

表  1   花岗岩物理、力学参数

Table  1   Physical and mechanical parameters of granite

重度/(kN·m-3) 波速/(m·s-1) 孔隙率/% 抗压强度/MPa 抗拉强度/MPa 杨氏模量/GPa 26.06 3 252 0.98 149.9 8.8 41 [1]

GALLUP D L. Production engineering in geothermal technology: a review[J]. Geothermics, 2009, 38(3): 326-334. DOI: 10.1016/j.geothermics.2009.03.001

[2] 齐消寒, 刘阳, 杨雪松, 等. 不同预制温度煤岩冻融损伤及渗流特性研究[J]. 矿业科学学报, 2023, 8(4): 474-486. DOI: 10.19606/j.cnki.jmst.2023.04.004

QI Xiaohan, LIU Yang, YANG Xuesong, et al. Experimental study on freeze-thaw damage and seepage characteristics of coal rock at different prefabrication temperatures[J]. Journal of Mining Science and Technology, 2023, 8(4): 474-486. DOI: 10.19606/j.cnki.jmst.2023.04.004

[3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

XIE Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

[4]

GOMAH M E, LI G C, SUN C L, et al. Macroscopic and microscopic research on Egyptian granodiorite behavior exposed to the various heating and cooling strategies[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(5): 158. DOI: 10.1007/s40948-022-00457-4

[5] 高万里, 赵惊涛, 王化伟. 高温作用下干热岩岩石物理实验及岩石物理建模研究[J]. 矿业科学学报, 2023, 8(6): 758-767. DOI: 10.19606/j.cnki.jmst.2023.06.003

GAO Wanli, ZHAO Jingtao, WANG Huawei. Rock physics experiment and rock physical modeling of hot dry rock under high temperature[J]. Journal of Mining Science and Technology, 2023, 8(6): 758-767. DOI: 10.19606/j.cnki.jmst.2023.06.003

[6] 庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm

PANG Zhonghe, LUO Ji, CHENG Yuanzhi, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm

[7]

PERKINS G. Underground coal gasification-Part Ⅰ: Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67: 158-187. DOI: 10.1016/j.pecs.2018.02.004

[8] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

[9] 苏发强, 邓启超, 武俊博, 等. 基于不同气化通道类型的地下气化煤体破裂监测及扩展规律[J]. 煤炭学报, 2023, 48(10): 3845-3858. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202310017.htm

SU Faqiang, DENG Qichao, WU Junbo, et al. Study on fracturing monitoring and expansion law of underground gasification coal based on different gasification channel types[J]. Journal of China Coal Society, 2023, 48(10): 3845-3858. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202310017.htm

[10] 胡少华, 章光, 张淼, 等. 热处理北山花岗岩变形特性试验与损伤力学分析[J]. 岩土力学, 2016, 37(12): 3427-3436, 3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612011.htm

HU Shaohua, ZHANG Guang, ZHANG Miao, et al. Deformation characteristics tests and damage mechanics analysis of Beishan granite after thermal treatment[J]. Rock and Soil Mechanics, 2016, 37(12): 3427-3436, 3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612011.htm

[11] 吴星辉, 蔡美峰, 任奋华, 等. 不同热处理作用下花岗岩纵波波速和导热能力的演化规律分析[J]. 岩石力学与工程学报, 2022, 41(3): 457-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm

WU Xinghui, CAI Meifeng, REN Fenhua, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 457-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm

[12] 黄彦华, 陶然, 陈笑, 等. 高温后花岗岩断裂特性及热裂纹演化规律研究[J]. 岩土工程学报, 2023, 45(4): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202304009.htm

HUANG Yanhua, TAO Ran, CHEN Xiao, et al. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202304009.htm

[13]

YAVUZ H, DEMIRDAG S, CARAN S. Thermal effect on the physical properties of carbonate rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 94-103. DOI: 10.1016/j.ijrmms.2009.09.014

[14] 郭辰光, 孙瑜, 岳海涛, 等. 激光辐照热裂破岩规律及力学性能[J]. 煤炭学报, 2022, 47(4): 1734-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm

GUO Chenguang, SUN Yu, YUE Haitao, et al. Law and mechanics of thermal cracking of rock by laser irradiation[J]. Journal of China Coal Society, 2022, 47(4): 1734-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm

[15]

SHAO S S, RANJITH P G, WASANTHA P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy[J]. Geothermics, 2015, 54: 96-108. DOI: 10.1016/j.geothermics.2014.11.005

[16] 陈家嵘, 周昌台, 周韬, 等. 压剪荷载下含单一裂隙砂岩的应变演化与破坏特征研究[J]. 岩石力学与工程学报, 2023, 42(7): 1743-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202307014.htm

CHEN Jiarong, ZHOU Changtai, ZHOU Tao, et al. Experimental study on strain evolution and failure behavior of sandstone containing a single pre-existing flaw under compressive-shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1743-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202307014.htm

[17]

BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888. DOI: 10.1016/S0148-9062(98)00005-9

[18] 张森, 舒彪, 梁铭, 等. 不同冷却方式下高温花岗岩细观损伤量化和机理分析[J]. 煤田地质与勘探, 2022, 50(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202202013.htm

ZHANG Sen, SHU Biao, LIANG Ming, et al. Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J]. Coal Geology & Exploration, 2022, 50(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202202013.htm

[19]

SHI X C, GAO L Y, WU J, et al. Effects of cyclic heating and water cooling on the physical characteristics of granite[J]. Energies, 2020, 13(9): 2136. DOI: 10.3390/en13092136

[20]

ZUO J P, XIE H P, ZHOU H W, et al. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures[J]. Geophysical Journal International, 2010, 181(2): 593-603.

[21]

GAO J W, XI Y, FAN L F, et al. Real-time visual analysis of the microcracking behavior of thermally damaged granite under uniaxial loading[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6549-6564. DOI: 10.1007/s00603-021-02639-0

[22] 杨欣欣, 郤保平, 何水鑫, 等. 砂岩热冲击破裂特征及其孔隙连通性分析[J]. 岩土工程学报, 2022, 44(10): 1925-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210019.htm

YANG Xinxin, XI Baoping, HE Shuixin, et al. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210019.htm

[23]

GIBB F G F. High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste? [J]. Waste Management, 1999, 19(3): 207-211. DOI: 10.1016/S0956-053X(99)00050-1

[24] 王亚超, 窦斌, 喻勇, 等. 不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究[J]. 地质科技通报, 2022, 41(3): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203021.htm

WANG Yachao, DOU Bin, YU Yong, et al. Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203021.htm

[25] 贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

JIA Peng, YANG Qiyao, LIU Dongqiao, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

[26] 马鸿文, 苏双青, 王芳, 等. 钾长石分解反应热力学与过程评价[J]. 现代地质, 2007, 21(2): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702030.htm

MA Hongwen, SU Shuangqing, WANG Fang, et al. Thermodynamic Analysis on Decomposition reactions of Potassium Feldspar and Evaluation of the Processes[J]. Geoscience, 2007, 21(2): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702030.htm

[27]

ZHOU C S, LI K F, PANG X Y. Geometry of crack network and its impact on transport properties of concrete[J]. Cement and Concrete Research, 2012, 42(9): 1261-1272. DOI: 10.1016/j.cemconres.2012.05.017

[28]

WANG F, KONIETZKY H, FRVHWIRT T, et al. Impact of cooling on fracturing process of granite after high-speed heating[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104155. DOI: 10.1016/j.ijrmms.2019.104155

[29] 张蕾, 李海兵, 孙知明, 等. 断裂熔融作用中单质铁的形成及其指示的孕震环境[J]. 岩石学报, 2019, 35(6): 1875-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906015.htm

ZHANG Lei, LI Haibing, SUN Zhiming, et al. Metallic iron formed by melting and its seismogenic setting indication[J]. Acta Petrologica Sinica, 2019, 35(6): 1875-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906015.htm

[30]

TAYLOR D. The thermal expansion behaviour of the framework silicates[J]. Mineralogical Magazine, 1972, 38(297): 593-604. DOI: 10.1180/minmag.1972.038.297.08

[31]

GLOVER P W J, BAUD P, DAROT M, et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International, 1995, 120(3): 775-782. DOI: 10.1111/j.1365-246X.1995.tb01852.x

[32]

KESHAVARZ M, PELLET F L, LORET B. Damage and changes in mechanical properties of a gabbro thermally loaded up to 1000℃[J]. Pure and Applied Geophysics, 2010, 167(12): 1511-1523. DOI: 10.1007/s00024-010-0130-0

[33] 赵亚永, 魏凯, 周佳庆, 等. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报, 2017, 36(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701012.htm

ZHAO Yayong, WEI Kai, ZHOU Jiaqing, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701012.htm

[34]

ZHANG F, ZHANG Y H, YU Y D, et al. Influence of cooling rate on thermal degradation of physical and mechanical properties of granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104285. DOI: 10.1016/j.ijrmms.2020.104285

[35]

WU X G, HUANG Z W, CHENG Z H, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite[J]. Applied Thermal Engineering, 2019, 156: 99-110. DOI: 10.1016/j.applthermaleng.2019.04.046

[36] 徐小丽, 高峰, 高亚楠, 等. 高温后花岗岩力学性质变化及结构效应研究[J]. 中国矿业大学学报, 2008, 37(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200803025.htm

XU Xiaoli, GAO Feng, GAO Yanan, et al. Effect of high temperatures on the mechanical characteristics and crystal structure of granite[J]. Journal of China University of Mining & Technology, 2008, 37(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200803025.htm

相关知识

花岗岩球状构造成因新解
辣椒机械采摘损伤机理及试验研究
Mechanical Properties of Granite Under Ultra
广西资源花岗岩矿山环境评估及恢复治理方案
厦门地区花岗岩残积土动力特性及模型参数辨识技术应用研究
湖南尖峰岭含钨铌钽稀有金属花岗岩矿物学特征与成矿过程
飞秒激光下多层石墨烯损伤研究与微图案化潜力
花岗岩风化碳汇规律及影响因素的研究.pdf
高速公路强风化花岗岩边坡生态恢复技术研究——以云南保龙高速公路为例
氢氧同位素在岩石研究中的应用

网址: 热损伤花岗岩力学劣化特性及损伤演化规律研究 https://m.huajiangbk.com/newsview2375518.html

所属分类:花卉
上一篇: 一种淋巴组织流式检测样本保存液及
下一篇: MPP 管搬运与堆放:降低物理损