摘要:
近年来,鱼藤在红树林中快速扩散,对红树林生态系统造成严重威胁。本研究基于2013—2022年的逐年国产高分遥感数据,选取广西廉州湾地区南流江入海口的典型鱼藤(Derris trifoliata)扩散区,分析鱼藤在秋茄(Kandelia obovala)和桐花树(Aegiceras corniculatum)红树林中的扩散规律,探究鱼藤对红树林退化的影响。结果表明,2013—2022年廉州湾地区鱼藤面积累计增长92.5 hm2,年增长率达13.8%;鱼藤呈点状在红树林中爆发,以同心圆向外扩散,并逐渐连成片,其对红树林斑块的负面影响不断增加,鱼藤影响轻微型、鱼藤影响中度型、鱼藤影响重度型3处典型红树林区鱼藤扩散面积占比分别为40.5%、90.0%和89.3%,红树林退化面积占比分别为12.9%、43.3%和59.5%;红树林从被鱼藤攀附到彻底退化死亡,历时约4~6 a。研究结果可为红树林保护和鱼藤治理提供科学依据。
关键词: 红树林退化 / 鱼藤 / 高分数据 / 秋茄 / 桐花树Abstract:
Derris trifoliata, a native liana, commonly associated with mangrove ecosystems, predominantly grows in coastal mudflat shrubs. However, its rapid spread in mangrove ecosystems in recent years has posed a significant ecological threat. This research seeks to investigate the spread patterns of D. trfoliata within mangrove ecosystems and the mechanisms underlying its contribution to mangrove degradation, using Chian’s high-resolution remote sensing data collected between 2013 and 2022. The dataset comprised imagery from GF-1 (2 m resolution), GF-2 (1 m resolution), GF-6 (2 m resolution), and ZY-3 (2 m resolution) satellites, focusing on a representative zone of D. trfoliata expansion at the Nanliu River Coastal estuary in Lianzhou Bay, Guangxi Province. The spatial distribution of mangrove wetlands and D. trfoliata was identified through visual interpretation, while trend analysis was employed to assess changes in vegetation NDVI. NDVI analysis was performed to evaluate the effects of D. trfoliata on mangrove degradation. By 2022, D. trfoliata coverage in the mangrove wetlands of Lianzhou Bay reached 134.4 hm², reflecting a cumulative increase of 92.5 hm² since 2013, at an average annual growth rate of 13.8%. Based on D. trfoliata coverage and the degree of mangrove degradation, three representative expansion areas were classified into slight, moderate, and severe impact zones. D. trfoliata spread ratios were 40.5%, 90.0%, and 89.3%, with corresponding mangrove degradation rates of 12.9%, 43.3%, and 59.5%, respectively.The spread of D. trfoliata primarily follows two patterns: (1) from absence to presence, where D. trfoliata initially appears in spot-like distributions and gradually expands concentrically into mangroves, and (2) from localized patches to widespread coverage, characterized by the coalescence of adjacent D. trfoliata patches and their continuous outward expansion along the boundary. NDVI analysis indicated that NDVI values initially rose before declining during the mangrove degradation process, which spanned approximately 4 to 6 years from the onset of D. trfoliata attachment to complete mangrove loss. These findings offer essential scientific insights for mangrove conservation and the effective management of D. trfoliata.
图 1 广西廉州湾3处鱼藤扩散红树林湿地的位置
Figure 1. Location of 3 mangrove wetlands affected by Derris trifoliata dispersal in the Lianzhou Bay, Guangxi
图 2 广西廉州湾鱼藤扩散红树林湿地遥感解译标志
Figure 2. Remote sensing interpretation markers of mangrove wetland affected by Derris trifoliata dispersal in the Lianzhou Bay, Guangxi
图 3 2013年(a)和2022年(b)廉州湾地区红树林和鱼藤的分布
Figure 3. Distribution of mangroves and Derris trifoliata in the Lianzhou Bay area in 2013 (a) and 2022 (b)
图 4 2013—2022年廉州湾鱼藤影响轻微型红树林湿地鱼藤扩散情况
Figure 4. Dispersal of Derris trifoliata in slightly affected mangrove wetland in the Lianzhou Bay from 2013 to 2022
图 5 2013—2022年廉州湾鱼藤影响轻微型红树林湿地鱼藤扩散面积占比
Figure 5. Proportion of Derris trifoliata dispersal area in slightly affected mangrove wetland in the Lianzhou Bay from 2013 to 2022
图 6 2013—2022年廉州湾鱼藤影响中度型红树林湿地鱼藤扩散情况
Figure 6. Dispersal of Derris trifoliata in moderatly affected mangrove wetland in the Lianzhou Bay from 2013 to 2022
图 7 2013—2022年廉州湾鱼藤影响中度型红树林湿地鱼藤扩散面积占比
Figure 7. Proportion of Derris trifoliata dispersal area in moderatly affected mangrove wetland in the Lianzhou Bay from 2013 to 2022
图 8 2013—2022年廉州湾鱼藤影响严重型红树林湿地鱼藤扩散情况
Figure 8. Dispersal of Derris trifoliata in severely affected mangrove wetland in the Lianzhou Bay from 2013 to 2022
图 9 2013—2022年廉州湾鱼藤影响严重型红树林湿地鱼藤扩散面积占比
Figure 9. Proportion of Derris trifoliata dispersal area in severely affected mangrove wetland in the Lianzhou Bay from 2013 to 2022
图 10 2013—2022年廉州湾受鱼藤扩散影响的红树林湿地NDVI变化
Figure 10. Variation of NDVI in mangrove wetlands affected by Derris trifoliata dispersal in the Lianzhou Bay from 2013 to 2022
图 11 2013—2022年廉州湾地区受鱼藤影响的红树林湿地样本点SNDVI时序变化
Figure 11. Variation of SNDVI at sample points of mangrove wetlands affected by Derris trifoliata dispersal in the Lianzhou Bay from 2013 to 2022
表 1 遥感影像数据基本信息
Table 1 Basic information of remote sensing image data
日期卫星空间分辨率/m 2013-12-30GF-1全色2 m、多光谱8 m2014-09-22GF-1多光谱16 m2014-12-29GF-1多光谱16 m2015-12-17GF-1全色2 m、多光谱8 m2016-05-11GF-2全色1 m、多光谱4 m2016-12-08GF-1多光谱16 m2017-01-09ZY-3全色2 m、多光谱6 m2018-02-03GF-1全色2 m、多光谱8 m2018-12-18ZY-3全色2 m、多光谱6 m2019-11-23GF-6全色2 m、多光谱8 m2020-09-01GF-6全色2 m、多光谱8 m2020-12-04GF-1D全色2 m、多光谱8 m2021-11-30GF-6全色2 m、多光谱8 m2022-10-23GF-2全色1 m、多光谱4 m2022-11-01GF-1D全色2 m、多光谱8 m表 2 NDVI趋势统计
Table 2 NDVI trend statistics
检验统计量S统计量ZNDVI趋势 >0≥1.96显著增加>0−1.96~1.96轻微增加=0−1.96~1.96稳定不变<0−1.96~1.96轻微减少<0<−1.96显著减少 [1] 张乔民, 张叶春. 华南红树林海岸生物地貌过程研究 [J]. 第四纪研究, 1997(4): 344-353. [Zhang Q M, Zhang Y C. Study on biogeomorphologic process of mangrove coasts in south China. Quaternary Sciences, 1997(4): 344-353. ] DOI: 10.3321/j.issn:1001-7410.1997.04.008Zhang Q M, Zhang Y C. Study on biogeomorphologic process of mangrove coasts in south China. Quaternary Sciences, 1997(4): 344-353. DOI: 10.3321/j.issn:1001-7410.1997.04.008
[2] 林鹏. 中国红树林研究进展 [J]. 厦门大学学报(自然科学版), 2001(2): 592-603. [Lin P. A review on the mangrove research in China. Journal of Xiamen University (Natural Science), 2001(2): 592-603. ]Lin P. A review on the mangrove research in China. Journal of Xiamen University (Natural Science), 2001(2): 592-603.
[3] 黄歆怡, 钟诚, 陈树誉, 等. 鱼藤对红树林植物的危害及管理 [J]. 湿地科学与管理, 2015, 11(2): 26-29. [Huang X Y, Zhong C, Chen S Y, et al. Mangrove forest threatened by Derris trifoliate. Wetland Science & Management, 2015, 11(2): 26-29. ] DOI: 10.3969/j.issn.1673-3290.2015.02.07Huang X Y, Zhong C, Chen S Y, et al. Mangrove forest threatened by Derris trifoliate. Wetland Science & Management, 2015, 11(2): 26-29. DOI: 10.3969/j.issn.1673-3290.2015.02.07
[4] 张韫, 廖宝文, 杨丽芳, 等. 红树林中乡土伴生藤本植物鱼藤研究概述 [J]. 湿地科学, 2022, 20(3): 421-426. [Zhang Y, Liao B W, Yang L F, et al. Research summary on native associated liana species Derris trifoliata in mangrove forests. Wetland Science, 2022, 20(3): 421-426.]Zhang Y, Liao B W, Yang L F, et al. Research summary on native associated liana species Derris trifoliata in mangrove forests. Wetland Science, 2022, 20(3): 421-426.
[5] 刘秋红. 广州市红树林资源现状及其保护利用对策 [J]. 福建林业科技, 2005(2): 125-128,136. [Liu Q H. Status, protection and utilization countermeasures of mangrove forest resource in Guangzhou City. Journal of Fujian Forestry Science and Technology, 2005(2): 125-128,136.] DOI: 10.3969/j.issn.1002-7351.2005.02.031Liu Q H. Status, protection and utilization countermeasures of mangrove forest resource in Guangzhou City. Journal of Fujian Forestry Science and Technology, 2005(2): 125-128,136. DOI: 10.3969/j.issn.1002-7351.2005.02.031
[6] 吴筠. 福建漳江口红树林数量特征及其退化机制研究 [D]. 福州: 福建农林大学, 2008. [Wu Y. The quantity characteristics and degradation mechanism of mangrove in FuJian Zhangjiangkou[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. ]Wu Y. The quantity characteristics and degradation mechanism of mangrove in FuJian Zhangjiangkou[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008.
[7] 李丽凤, 刘文爱. 广西廉州湾红树林湿地景观格局动态及其成因 [J]. 森林与环境学报, 2018, 38(2): 171-177. [Li L F, Liu W A. Dynamic changes of mangrove wetland landscape pattern in Lianzhou Gulf of Guangxi and its causes. Journal of Forest and Environment, 2018, 38(2): 171-177. ]Li L F, Liu W A. Dynamic changes of mangrove wetland landscape pattern in Lianzhou Gulf of Guangxi and its causes. Journal of Forest and Environment, 2018, 38(2): 171-177.
[8] 李隆飞, 林江. 海南东寨港国家级自然保护区三叶鱼藤的分布及防治建议 [J]. 热带林业, 2019, 47(2): 37-38,36. [Li L F, Lin J. The distribution and preventing strategy of Derris trifoliate in Hainan Dongzhaigang National Nature Reserve. Tropical Forestry, 2019, 47(2): 37-38,36. ]Li L F, Lin J. The distribution and preventing strategy of Derris trifoliate in Hainan Dongzhaigang National Nature Reserve. Tropical Forestry, 2019, 47(2): 37-38,36.
[9] 何翰林, 罗金龙, 卢立, 等. 广东阳东寿长河红树林国家湿地公园植物多样性研究 [J]. 中南林业调查规划, 2020, 39(3): 42-46. [He H L, Luo J L, Lu L, et al. Study on plant diversity of Guangdong Yangdong Shouchanghe Mangrove National Wetland Park. Central South Forest Inventory and Planning, 2020, 39(3): 42-46. ]He H L, Luo J L, Lu L, et al. Study on plant diversity of Guangdong Yangdong Shouchanghe Mangrove National Wetland Park. Central South Forest Inventory and Planning, 2020, 39(3): 42-46.
[10] 王震, 陈卫军, 管伟, 等. 珠海市淇澳岛主要红树林群落特征研究 [J]. 中南林业科技大学学报, 2017, 37(4): 86-91. [Wang Z, Chen W J, Guan W, et al. Study on Zhuhai Qi'ao island main mangrove community characteristics. Journal of Central South University of Forestry & Technology, 2017, 37(4): 86-91. ]Wang Z, Chen W J, Guan W, et al. Study on Zhuhai Qi'ao island main mangrove community characteristics. Journal of Central South University of Forestry & Technology, 2017, 37(4): 86-91.
[11] 朱利, 李云梅, 赵少华, 等. 基于GF-1号卫星WFV数据的太湖水质遥感监测 [J]. 国土资源遥感, 2015, 27(1): 113-120. [Zhu L, Li Y M, Zhao S H, et al. Remote sensing monitoring of Taihu Lake water quality by using GF-1 satellite WFV data. Remote Sensing for Land and Resources, 2015, 27(1): 113-120. ]Zhu L, Li Y M, Zhao S H, et al. Remote sensing monitoring of Taihu Lake water quality by using GF-1 satellite WFV data. Remote Sensing for Land and Resources, 2015, 27(1): 113-120.
[12] 韩启金, 张学文, 乔志远, 等. 高分一号卫星PMS相机多场地宽动态辐射定标 [J]. 红外与激光工程, 2015, 44(1): 127-133. [Han Q J, Zhang X W, Qiao Z Y, et al. Wide dynamic radiometric calibration of GF-1 PMS sensors using multi-test sites. Infrared and Laser Engineering, 2015, 44(1): 127-133. ]Han Q J, Zhang X W, Qiao Z Y, et al. Wide dynamic radiometric calibration of GF-1 PMS sensors using multi-test sites. Infrared and Laser Engineering, 2015, 44(1): 127-133.
[13] 蒋乔灵, 徐涵秋. GF-1 PMS2与GF-2 PMS2传感器数据的交互对比 [J]. 遥感技术与应用, 2018, 33(6): 1084-1094. [Jiang Q K, Xu H Q. Cross-comparison between GF-1 PMS2 and GF-2 PMS2 sensor data. Remote Sensing Technology and Application, 2018, 33(6): 1084-1094. ]Jiang Q K, Xu H Q. Cross-comparison between GF-1 PMS2 and GF-2 PMS2 sensor data. Remote Sensing Technology and Application, 2018, 33(6): 1084-1094.
[14] 赵生兵, 饶君, 徐兆鹏, 等. GF-6卫星PMS相机在轨辐射特性自动化变化监测 [J]. 测绘通报, 2021(12): 94-98. [Zhao S B, Rao J, Xu Z P, et al. Radiometric performance change monitoring of GF-6 pan multi-spectral sensor based on automated technology. Bulletin of Surveying and Mapping, 2021(12): 94-98. ]Zhao S B, Rao J, Xu Z P, et al. Radiometric performance change monitoring of GF-6 pan multi-spectral sensor based on automated technology. Bulletin of Surveying and Mapping, 2021(12): 94-98.
[15] 李德仁. 我国第一颗民用三线阵立体测图卫星: 资源三号测绘卫星 [J]. 测绘学报, 2012, 41(3): 317-322. [Li D R. China's first civilian three-line-array stereo mapping satellite: ZY-3. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317-322. ]Li D R. China's first civilian three-line-array stereo mapping satellite: ZY-3. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317-322.
[16] 郑雅兰, 王雷光, 陆翔. 高分二号全色-多光谱影像融合方法对比研究 [J]. 西南林业大学学报(自然科学), 2018, 38(2): 103-110. [Zheng Y L, Wang L G, Lu X. Comparison of image fusion methods for Gaofen-2 panchromatic-multispectral. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(2): 103-110. ]Zheng Y L, Wang L G, Lu X. Comparison of image fusion methods for Gaofen-2 panchromatic-multispectral. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(2): 103-110.
[17] 田庆久, 闵祥军. 植被指数研究进展 [J]. 地球科学进展, 1998(4): 10-16. [Tian Q J, Min X J. Advances in study on vegetation indices. Advances In Earth Sciences, 1998(4): 10-16. ] DOI: 10.3321/j.issn:1001-8166.1998.04.002Tian Q J, Min X J. Advances in study on vegetation indices. Advances In Earth Sciences, 1998(4): 10-16. DOI: 10.3321/j.issn:1001-8166.1998.04.002
[18] 吴露露, 袁伟志, 罗旭, 等. 基于高分辨率卫星影像绿色信息提取的最佳假彩色合成方法及评价研究 [J]. 北京林业大学学报, 2008, 30(S1): 62-67. [Wu L L, Yuan W Z, Luo X, et al. Optimal false color composite methods and evaluation for extracting green information based on high-resolution satellite imagery. Journal of Beijing Forestry University, 2008, 30(S1): 62-67. ]Wu L L, Yuan W Z, Luo X, et al. Optimal false color composite methods and evaluation for extracting green information based on high-resolution satellite imagery. Journal of Beijing Forestry University, 2008, 30(S1): 62-67.
[19] 袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化 [J]. 生态学报, 2013, 33(24): 7798-7806. [Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River basin from 2000 to 2010. Acta Ecologica Sinica, 2013, 33(24): 7798-7806. ]Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River basin from 2000 to 2010. Acta Ecologica Sinica, 2013, 33(24): 7798-7806.
[20] 吕金霞, 蒋卫国, 王文杰, 等. 湿地受损遥感识别方法及其在天津滨海新区的应用 [J]. 环境工程技术学报, 2020, 10(1): 1-8. [Lyu J X, Jiang W G, Wang W J, et al. Wetland loss identification based on remote sensing technology and its application in Binhai New Area, Tianjin City. Journal of Environmental Engineering Technology, 2020, 10(1): 1-8. ] DOI: 10.12153/j.issn.1674-991X.20190092Lyu J X, Jiang W G, Wang W J, et al. Wetland loss identification based on remote sensing technology and its application in Binhai New Area, Tianjin City. Journal of Environmental Engineering Technology, 2020, 10(1): 1-8. DOI: 10.12153/j.issn.1674-991X.20190092
[21] 韩磊, 火红, 刘钊, 等. 基于地形梯度的黄河流域中段植被覆盖时空分异特征: 以延安市为例 [J]. 应用生态学报, 2021, 32(5): 1581-1592. [Han L, Huo H, Liu Z, et al. Spatial and temporal variations of vegetation coverage in the middle section of Yellow River basin based on terrain gradient: taking Yan’an City as an example. Chinese Journal of Applied Ecology, 2021, 32(5): 1581-1592. ]Han L, Huo H, Liu Z, et al. Spatial and temporal variations of vegetation coverage in the middle section of Yellow River basin based on terrain gradient: taking Yan’an City as an example. Chinese Journal of Applied Ecology, 2021, 32(5): 1581-1592.
[22] 中国科学院中国植物志编辑委员会. 中国植物志: 第40卷 [M]. 北京: 科学出版社, 1994. [Editorial Committee of the Flora of China, Chinese Academy of Sciences. Flora of China: volume 40[M]. Beijing: Science Press, 1994. ]Editorial Committee of the Flora of China, Chinese Academy of Sciences. Flora of China: volume 40[M]. Beijing: Science Press, 1994.
[23]Stefan S A, Walter P C. Lianas suppress tree regeneration and diversity in treefall gaps[J]. Ecology Letters, 2010, 13(7): 849-857. DOI: 10.1111/j.1461-0248.2010.01480.x
[24]Addo-Fordjour P, Obeng S, Addo M G, et al. Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo Forest Reserve, Ghana[J]. Forest Ecology and Management, 2009, 258(5): 728-734. DOI: 10.1016/j.foreco.2009.05.010
[25]Mohan J E, Ziska L H, Schlesinger W H, et al. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2006, 103: 9086-9089. DOI: 10.1073/pnas.0602392103
[26]Rice K, Brokaw N, Thomapson J. Liana abundance in a Puerto Rican forest[J]. Forest Ecology and Management, 2004, 190(1): 33-41. DOI: 10.1016/j.foreco.2003.10.004
相关知识
基于高分数据的广西廉州湾鱼藤对红树林退化的影响研究
广西北部湾三叶鱼藤与桐花树、白骨壤潜在适生区及其生态位重叠研究
对红树林的生态功能和生物多样性的全面认识及维护
桐花树种群遗传多样性研究:纬度影响分析
北部湾沿海5种红树林群落生物量的遥感估算
人工老化处理时间对红花种子活力的影响
冬季修剪对红地球葡萄成花的影响
KO!T红客联盟——KOT策略下的花场湾红树林网络修复计划
有机肥施用量对红花大金元生长发育及产质量的影响
泉州湾河口湿地植物环境适应性研究及其应用
网址: 基于高分数据的广西廉州湾鱼藤对红树林退化的影响研究 https://m.huajiangbk.com/newsview2376975.html
上一篇: 突发!斯里兰卡一缆车脱轨撞上树, |
下一篇: 死亡深度 3法师技能 20FCR |