首页 > 分享 > 三苯基磷修饰花菁 H

三苯基磷修饰花菁 H

摘要:

光热治疗(PTT)通过光热剂(PTAs)吸收近红外光,将光激发产生的非辐射能量耗散到病灶部位,实现局部组织的热消融,为治疗肿瘤及细菌感染提供新途径。但开发兼具高效光热转换与精准靶向功能的有机 PTAs 面临挑战。本文聚焦七甲川花菁染料分子工程优化,提出聚集态调控与功能基团协同强化策略,在中性花菁骨架引入三苯基磷阳离子(TPP+),构建新型阳离子衍生物 Cy7T-TPP。其具三重优势:TPP+赋予细菌膜锚定与线粒体靶向能力;诱导 H-聚集体增强分子间紧密堆叠,光热转换效率达 51.65%;TPP+屏蔽活性氧攻击,提升稳定性。实验证实其抗肿瘤及抗菌效能优异,为高稳定、靶向性有机光热材料的开发提供分子工程新范式。

Abstract:

Photothermal therapy (PTT) uses photothermal agents (PTAs) to absorb near-infrared light and dissipate the non radiative energy generated by light excitation to the lesion site, achieving local tissue thermal ablation and providing a new approach for treating tumors and bacterial infections. However, developing organic PTAs that combine efficient photothermal conversion and precise targeting functions faces challenges. This article focuses on the molecular engineering optimization of heptamethylene cyanine dye, proposing a strategy of aggregation state regulation and synergistic strengthening of functional groups. A novel cationic derivative Cy7T-TPP is constructed by introducing triphenylphosphine cation (TPP+) into the neutral cyanine skeleton. It has three advantages: TPP + endows bacteria with membrane anchoring and mitochondrial targeting abilities; Inducing H-aggregates to enhance tight intermolecular stacking, achieving a photothermal conversion efficiency of 51.65%; TPP shields against reactive oxygen species attacks and enhances stability. Experimental results have confirmed its excellent anti-tumor and antibacterial efficacy, providing a new paradigm of molecular engineering for the development of highly stable and targeted organic photothermal materials.

图  1   Cy7T-TPP和Cy7T-Pr的合成路线

Figure  1.   The synthetic routes of Cy7T-TPP and Cy7T-Pr

图  2   (a) 化合物Cy7T-Pr的核磁共振氢谱; (b)化合物Cy7T-TPP的核磁共振氢谱

Figure  2.   (a) 1H NMR spectrum of compound Cy7T-TPP; (b)1H NMR spectrum of compound Cy7T-Pr

图  3   (a) Cy7T-TPP 和 (d) Cy7T-Pr 在水中的流体动力学粒径分布,(b) Cy7T-TPP和 (e) Cy7T-Pr自组装纳米粒子的TEM图像, (c) Cy7T-TPP和 (f) Cy7T-Pr自组装纳米粒子的AFM图像(化合物浓度10 μmol/L)

Figure  3.   (a) Fluid dynamic particle size distribution of Cy7T TPP and (d) Cy7T Pr in water, (b) TEM images of Cy7T TPP and (e) Cy7T Pr self-assembled nanoparticles, (c) AFM images of Cy7T TPP and (f) Cy7T Pr self-assembled nanoparticles. (The concentration of both compounds is 10 μmol/L)

图  4   Cy7T-TPP和Cy7T-Pr自组装纳米粒子在水中的Zeta电位(化合物浓度10 μmol/L)

Figure  4.   Zeta potentials of 10 μmol/L Cy7T-TPP and Cy7T-Pr self-assembled nanoparticles in water in water

图  5   (a) 5 μmol/L Cy7T-TPP和(b) Cy7T-Pr在不同溶剂中的紫外吸收光谱; 不同浓度的(c) Cy7T-TPP和(d) Cy7T-Pr在DMSO中的紫外-可见吸收光谱;(e) Cy7T-TPP和Cy7T-Pr在DMSO中浓度-吸光度的线性关系;不同浓度的(f) Cy7T-TPP和(g) Cy7T-Pr在水中的紫外-可见吸收光谱;(h) Cy7T-TPP和Cy7T-Pr在水中浓度-吸光度的线性关系

Figure  5.   (a) UV absorption spectra of 5 μmol/L Cy7T-TPP and (b) Cy7T-Pr in different solvents; UV-vis absorption spectra of (c) Cy7T-TPP and (d) Cy7T-Pr at different concentrations in DMSO; (e) The linear relationship between concentration and absorbance of Cy7T-TPP and Cy7T-Pr in DMSO; UV-vis absorption spectra of (f) Cy7T-TPP and (g) Cy7T-Pr at different concentrations in water; (h) The linear relationship between concentration and absorbance of Cy7T-TPP and Cy7T-Pr in water

图  6   (a) Cy7T-TPP和 (b) Cy7T-Pr在水中不同浓度下的光热升温曲线; (c) Cy7T-TPP和 (d) Cy7T-Pr在水中不同功率下的光热升温曲线( 808 nm, 20 μmol/L )

Figure  6.   (a) The photothermal heating curves of Cy7T-TPP and (b) Cy7T-Pr at different concentrations in water; (c) Photothermal heating curves of Cy7T-TPP and (d) Cy7T-Pr in water at different powers (808 nm, 20 μmol/L)

图  7   (a) Cy7T-TPP和 (b) Cy7T-Pr在水中的升温/冷却循环曲线( 808 nm, 0.5 W/cm2, 20 μmol/Lol/L)

Figure  7.   (a) Cy7T-TPP and (b)Cy7T-Pr heating/cooling cycle curves in water (808 nm, 0.5 W/cm2, 20 μmol/L)

图  8   (a) Cy7T-TPP和 (b) Cy7T-Pr在水中的紫外吸收光谱随光照时间的变化;(c) Cy7T-TPP和 Cy7T-Pr在水中归一化的吸光度随光照时间的变化 (808 nm, 0.5 W/cm2)

Figure  8.   (a) The UV absorption spectra of Cy7T-TPP and (b) Cy7T-Pr in water as a function of illumination time; (c) Normalized absorbance of Cy7T-TPP and Cy7T-Pr in water as a function of illumination time (808 nm, 0.5 W/cm2).

图  9   (a) Cy7T-TPP和 (b) Cy7T-Pr在水中的光热转换效率计算(808 nm, 0.5 W/cm2)

Figure  9.   (a) Calculation of photothermal conversion efficiency of Cy7T-TPP and (b) Cy7T-Pr in water (808 nm, 0.5 W/cm2)

图  10   含有(a) Cy7T-Pr,(b) Cy7T-TPP 的 DPBF 水溶液以及不含光敏剂的 (c) DPBF 水溶液经激光照射(808 nm,0.5 W/cm2)后的吸收光谱;(d) DPBF 在 410 nm 处的归一化吸光度随照射时间的变化

Figure  10.   The absorption spectra of DPBF aqueous solution containing (a) Cy7T-Pr, (b) Cy7T-TPP, and (c) DPBF aqueous solution without photosensitizer after laser irradiation (808 nm, 0.5 W/cm2); (d) Normalized absorbance of DPBF at 410 nm as a function of irradiation time

图  11   (a) Cy7T-TPP与(b)Cy7T-Pr的体外 PTT;(c) 活 / 死细胞双染成像(标尺 100 μm);(d) 细胞光热图像及升温曲线 (808 nm, 0.5 W/cm2)。使用单因素方差分析来检验统计显著性(*P<0.05,**P<0.01,***P<0.001,****P< [3]

WEI S, HOU H, WU Y, et al. Superimposed effect of intramolecular modular assembling and silver coordination to amplify superoxide anion radical for antitumor and antibacterial photodynamic therapy[J]. ACS Materials Letters, 2025, 7(5): 1887-1895. doi: 10.1021/acsmaterialslett.5c00381

[4]

WANG R, KIM K-H, YOO J, et al. A nanostructured phthalocyanine/albumin supramolecular assembly for fluorescence turn-on imaging and photodynamic immunotherapy[J]. ACS Nano, 2022, 16(2): 3045-3058. doi: 10.1021/acsnano.1c10565

[5] 张紫薇, 李高阳, 李梦丽, 等. 用于肿瘤靶向治疗的双药递送、多重环境响应型核交联胶束[J]. 华东理工大学学报(自然科学版), 2024, 50(4): 469-480. [6]

GENG B, HU J, HE X, et al. Single atom catalysts remodel tumor microenvironment for augmented sonodynamic immunotherapy[J]. Advanced Materials, 2024, 36(25): 2313670. doi: 10.1002/adma.202313670

[7]

CHEN W, WANG Z, TIAN M, et al. Integration of TADF photosensitizer as “electron pump” and BSA as “electron reservoir” for boosting type i photodynamic therapy[J]. J Am Chem Soc, 2023, 145(14): 8130-8140. doi: 10.1021/jacs.3c01042

[8]

LV X, JIANG J, REN J, et al. Nitric oxide-assisted photodynamic therapy for enhanced penetration and hypoxic bacterial biofilm elimination[J]. Advanced Healthcare Materials, 2023, 12(29): 2302031. doi: 10.1002/adhm.202302031

[9]

BAI Y, HU Y, GAO Y, et al. Oxygen self-supplying nanotherapeutic for mitigation of tissue hypoxia and enhanced photodynamic therapy of bacterial keratitis[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 33790-33801.

[10]

DING Z, GU Y, ZHENG C, et al. Organic small molecule-based photothermal agents for cancer therapy: Design strategies from single-molecule optimization to synergistic enhancement[J]. Coordination Chemistry Reviews, 2022, 464(1): 214564.

[11]

PAN J, DU J, HU Q, et al. Photo-induced electron transfer-triggered structure deformation promoting near-infrared photothermal conversion for tumor therapy[J]. Advanced Healthcare Materials, 2023, 12(27): 2301091. doi: 10.1002/adhm.202301091

[12]

JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule-based photothermal agents: An expanding photothermal therapy universe[J]. Chemical Society Reviews, 2018, 47(7): 2280-97. doi: 10.1039/C7CS00522A

[13]

ZHAO L, ZHU H, DUO Y Y, et al. A Cyanine with 83.2% photothermal conversion efficiency and absorption wavelengths over 1200 nm for photothermal therapy[J]. Advanced Healthcare Materials, 2024, 13(20): 2304421. doi: 10.1002/adhm.202304421

[14]

YUAN J, YANG H, HUANG W, et al. Design strategies and applications of cyanine dyes in phototherapy[J]. Chemical Society Reviews, 2025, 54(1): 341-366. doi: 10.1039/D3CS00585B

[15]

LIANG M, MU X, LI Y, et al. Heptamethine cyanine-based nanotheranostics with catalase-like activity for synergistic phototherapy of cancer[J]. Advanced Functional Materials, 2023, 33(37): 2302112. doi: 10.1002/adfm.202302112

[16]

FENG E, LIU Y, LV S, et al. Fine-tuning Cu (II)-induced self-assembly of hydrophilic cyanine dyes for enhanced tumor photothermal therapy[J]. Advanced Functional Materials, 2022, 32(51): 2209258. doi: 10.1002/adfm.202209258

[17]

WEI K, WU Y, LI P, et al. Modulating planarity of cyanine dye to construct highly stable H-aggregates for enhanced photothermal therapy[J]. Nano Research, 2023, 16(1): 970-979. doi: 10.1007/s12274-022-4818-0

[18]

ZIELONKA J, JOSEPH J, SIKORA A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications[J]. Chemical Reviews, 2017, 117(15): 10043-10120. doi: 10.1021/acs.chemrev.7b00042

[19]

KABATC J, JUREK K. New two- and three-cationic polymethine dyes. Synthesis, properties and application [J]. Dyes and Pigments, 2015, 112: 24-33.

[20]

LIN B, FAN L, ZHOU Y, et al. A benzothiazolium-based fluorescent probe with ideal pKa for mitochondrial pH imaging and cancer cell differentiation[J]. Journal of Materials Chemistry B, 2020, 8(46): 10586-10592. doi: 10.1039/D0TB01253J

[21]

ZHANG T, PENG GUO K, QIU L, et al. Magnesium ethoxide as an effective catalyst in the synthesis of dicayanomethylendihydrofurans[J]. Synthetic Communications, 2006, 36(10): 1367-1372. doi: 10.1080/00397910500522066

[22] 梁明晨. 七甲基川菁衍生物纳米诊疗剂用于肿瘤的协同光疗 [D]. 山东青岛: 青岛科技大学, 2023. [23] 谭远航. 基于七甲川菁自组装材料构筑的多功能性光热诊疗体系 [D]. 山东青岛: 青岛科技大学, 2023. [24]

YAO D, WANG Y, ZOU R, et al. Wavelength-adjustable butterfly molecules in dynamic nanoassemblies for Extradomain-B fibronectin-modulating optical imaging and synchronous phototherapy of triple-negative breast cancer[J]. Chemical Engineering Journal, 2021, 420(2): 127658.

[25]

GUAN Q, ZHOU L L, LI Y A, et al. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy[J]. ACS Nano, 2019, 13(11): 13304-13316. doi: 10.1021/acsnano.9b06467

[26]

WANG Y, LIU X-H, KOVALENKO S A, et al. Atomically precise bimetallic nanoclusters as photosensitizers in photoelectrochemical cells[J]. Chemistry – A European Journal, 2019, 25(18): 4814-4820. doi: 10.1002/chem.201900008

[27]

JIANG Y, HUANG S, MA H, et al. RNA-activatable near-infrared photosensitizer for cancer therapy[J]. Journal of the American Chemical Society, 2024, 146(36): 25270-25281. doi: 10.1021/jacs.4c09470

[28]

NIU G, SONG G, KANG Y, et al. Quinoidal semiconductor nanoparticles for NIR-II photoacoustic imaging and photoimmunotherapy of cancer[J]. Advanced Materials, 2025, 37(6): 2415189. doi: 10.1002/adma.202415189

相关知识

双三苯基磷二氯化钯 CAS#: 13965
JACS:花菁染料的功能化设计提升生物分子示踪和细胞内成像性能
三(三苯基膦)二氯化钌
昊然蓝色半花菁染料近红外荧光探针mCy
近红外荧光花菁染料Cy7.5修饰秋水仙碱(Cy7.5
半花菁染料 Rh872的结构式
花果优主要成分:【二苯基脲磺酸钾】 促进细胞分裂、促进花芽分
CY7-rosmarinic acid 花菁染料CY7修饰迷迭香酸的物理化学性质
Cyanine 3,三甲川花菁染料
花菁染料类:CY染料修饰基团/蛋白/抗体/生物分子等

网址: 三苯基磷修饰花菁 H https://m.huajiangbk.com/newsview2487478.html

所属分类:花卉
上一篇: Mol Plant | 浙江省农
下一篇: 什么时候给花施钾肥 兰花什么时候