本文使用的数据集是网络开源的鲜花数据集,并且基于VGG19的预训练模型通过迁移学习重新训练鲜花数据由此构建一个鲜花识别分类器
可以在此处找到有关花朵数据集的信息。数据集为102个花类的每一个都包含一个单独的文件夹。每朵花都标记为一个数字,每个编号的目录都包含许多.jpg文件。
prtorch库
PIL库
如果想使用GPU训练的话请使用英伟达的显卡并安装好CUDA
如果用GPU的话我在自己电脑上使用GPU只使用了91分钟(我的GPU是1050)
##倒入库并检测是否有可用GPU
%matplotlib inline %config InlineBackend.figure_format = 'retina' import time import json import copy import matplotlib.pyplot as plt import seaborn as sns import numpy as np import PIL from PIL import Image from collections import OrderedDict import torch from torch import nn, optim from torch.optim import lr_scheduler from torch.autograd import Variable import torchvision from torchvision import datasets, models, transforms from torch.utils.data.sampler import SubsetRandomSampler import torch.nn as nn import torch.nn.functional as F import os # check if GPU is available train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('Bummer! Training on CPU ...') else: print('You are good to go! Training on GPU ...') ##有GPU就启用 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
123456789101112131415161718192021222324252627282930313233343536data_dir = 'F:资料项目image_classifier_pytorch-master\flower_data' train_dir = 'flower_data/train' valid_dir = 'flower_data/valid' 123'
# Define your transforms for the training and testing sets data_transforms = { 'train': transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'valid': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } # Load the datasets with ImageFolder image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']} # Using the image datasets and the trainforms, define the dataloaders batch_size = 64 dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'valid']} class_names = image_datasets['train'].classes dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']} class_names = image_datasets['train'].classes # Label mapping with open('F:资料项目image_classifier_pytorch-mastercat_to_name.json', 'r') as f: cat_to_name = json.load(f)
1234567891011121314151617181920212223242526272829303132333435363738# Run this to test the data loader images, labels = next(iter(dataloaders['train'])) images.size() # # Run this to test your data loader images, labels = next(iter(dataloaders['train'])) rand_idx = np.random.randint(len(images)) # print(rand_idx) print("label: {}, class: {}, name: {}".format(labels[rand_idx].item(), class_names[labels[rand_idx].item()], cat_to_name[class_names[labels[rand_idx].item()]])) 12345678910
model_name = 'densenet' #vgg if model_name == 'densenet': model = models.densenet161(pretrained=True) num_in_features = 2208 print(model) elif model_name == 'vgg': model = models.vgg19(pretrained=True) num_in_features = 25088 print(model.classifier) else: print("Unknown model, please choose 'densenet' or 'vgg'") # Create classifier for param in model.parameters(): param.requires_grad = False def build_classifier(num_in_features, hidden_layers, num_out_features): classifier = nn.Sequential() if hidden_layers == None: classifier.add_module('fc0', nn.Linear(num_in_features, 102)) else: layer_sizes = zip(hidden_layers[:-1], hidden_layers[1:]) classifier.add_module('fc0', nn.Linear(num_in_features, hidden_layers[0])) classifier.add_module('relu0', nn.ReLU()) classifier.add_module('drop0', nn.Dropout(.6)) classifier.add_module('relu1', nn.ReLU()) classifier.add_module('drop1', nn.Dropout(.5)) for i, (h1, h2) in enumerate(layer_sizes): classifier.add_module('fc'+str(i+1), nn.Linear(h1, h2)) classifier.add_module('relu'+str(i+1), nn.ReLU()) classifier.add_module('drop'+str(i+1), nn.Dropout(.5)) classifier.add_module('output', nn.Linear(hidden_layers[-1], num_out_features)) return classifier hidden_layers = None#[4096, 1024, 256][512, 256, 128] classifier = build_classifier(num_in_features, hidden_layers, 102) print(classifier) # Only train the classifier parameters, feature parameters are frozen if model_name == 'densenet': model.classifier = classifier criterion = nn.CrossEntropyLoss() optimizer = optim.Adadelta(model.parameters()) # Adadelta #weight optim.Adam(model.parameters(), lr=0.001, momentum=0.9) #optimizer_conv = optim.SGD(model.parameters(), lr=0.0001, weight_decay=0.001, momentum=0.9) sched = optim.lr_scheduler.StepLR(optimizer, step_size=4) elif model_name == 'vgg': model.classifier = classifier criterion = nn.NLLLoss() optimizer = optim.Adam(model.classifier.parameters(), lr=0.0001) sched = lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.1) else: pass def train_model(model, criterion, optimizer, sched, num_epochs=5): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch+1, num_epochs)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'valid']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': #sched.step() loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) #load best model weights model.load_state_dict(best_model_wts) return model
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123epochs = 30 model.to(device) model = train_model(model, criterion, optimizer, sched, epochs) 123
相关知识
使用pytorch实现基于VGG 19预训练模型的鲜花识别分类器,准确度达到97%
【基于PyTorch实现经典网络架构的花卉图像分类模型】
基于深度学习和迁移学习的识花实践
基于深度学习的花卉识别
深度学习简单网络VGG鲜花分类
卷积神经网络训练花卉识别分类器
基于pytorch搭建AlexNet神经网络用于花类识别
基于python编程的五种鲜花识别
基于深度学习的植物叶片病害识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
pytorch深度学习框架——实现病虫害图像分类
网址: 使用pytorch实现基于VGG 19预训练模型的鲜花识别分类器,准确度达到97% https://m.huajiangbk.com/newsview304802.html
上一篇: 民间俗语:“鲜花屋中放,花旺人不 |
下一篇: Keras花卉分类全流程(预处理 |