首页 > 分享 > Research status of distribution and removal of typical antidepressants in the aquatic environment

Research status of distribution and removal of typical antidepressants in the aquatic environment

摘要:抗抑郁药物是一类具有生物毒性的新型环境污染物,近年来在水环境中频繁检出,已引起水处理界的广泛关注。介绍了典型抗抑郁药物的来源及分布现状,并以检出频率较高的西酞普兰和文拉法辛为例,综述了其在污水处理厂中的去除现状,以及高级氧化技术对其的降解效果。由于我国对水环境中的抗抑郁类药物的研究尚处于起步阶段,因此在今后的研究中有必要关注典型抗抑郁药物在污水处理过程中的降解机制,探究污水成分对降解过程的影响。

Research status of distribution and removal of typical antidepressants in the aquatic environment

Abstract: Antidepressant pharmaceuticals, as a group of new emerging contaminants with biological toxicity, have been frequently detected in the aqueous environment, which caused wide concerns. The sources and distribution of the typical antidepressants were introduced in this paper. The frequently-detected citalopram and venlafaxine were selected as representatives. Their removal in wastewater treatment plants was summarized. The degradation efficiencies by advanced oxidation technology were also discussed. Since the research of antidepressant pharmaceuticals in the aquatic environment is still at the early stage in China, it is necessary to study the degradation mechanism of typical antidepressant pharmaceuticals in the sewage treatment process and explore the impact of wastewater composition on the degradation process.

抑郁症已成为现代社会的常见精神疾病。据世界卫生组织统计,全球抑郁症发病率约为11%,抑郁症患病人数多达1.2亿。抗抑郁药物多用于治疗抑郁症、恐慌症、睡眠失调等精神类疾病[1]。抑郁症服药周期相对其他疾病而言较长,更加剧了抗抑郁类药物消耗量的逐年增多[2-3]。2013年全球抗抑郁症用药销售量总额达95亿美元[4]。2012年,国内22个城市样本医院抗抑郁药销售额已达10亿元,比上一年增长22.54%[4]。抗抑郁药物被人体摄入后,仅有部分被吸收利用,大部分经代谢后仍以其母体或具有药物活性的代谢产物(活性代谢产物)形式排出体外,随污水排放进入污水处理厂和水环境[5-6]。抗抑郁类药物不但会导致鱼类、软体动物等的胚胎异常发育[2],还具有干扰人类内分泌系统等毒理效应,并可能诱发环境菌群产生抗药性而破坏生态平衡[7-8]。可见,抗抑郁类药物对于环境和人类健康产生的危害不容忽视。因此,有必要研究典型抗抑郁药物在水环境中的分布现状及去除情况。

1 抗抑郁药物简介

抗抑郁药物按照结构和功能可分为不同种类,其中5−羟色胺再摄取抑制剂(SSRI)和5−羟色胺和去甲肾上腺素再吸收抑制剂(SNRIS)由于具有疗效好、安全性高等优点而占据临床应用的主导地位[9-11]。2002年SSRI在美国地表水中初次检出[12],随后的调查证实SSRI和SNRIS及其活性代谢产物在水环境中的检出频次、浓度都明显高于其他抗抑郁药物[13-14]。据统计,西酞普兰、文拉法辛分别是SSRI和SNRIS中使用最为普遍的[11-15]。而且无论是在地表水还是污水处理厂中,西酞普兰和文拉法辛的检测浓度都高于其他抗抑郁药物。以西酞普兰为例,印度地表水和井水中的西酞普兰的质量浓度分别高达2 000~8 000 ng·L−1、76~1 400 ng·L−1[16]。Schwabe等[15]调查美国明尼苏达24座污水处理厂时发现,西酞普兰的检出率均为100%,其质量浓度为(200 ± 140) ng·L−1。而文拉法辛的质量浓度则高达(1 900 ± 1 400) ng·L−1。本文以西酞普兰和文拉法辛为例进行探究。

1.1 理化性质

西酞普兰(C20H21FN2O)、文拉法辛(C17H27NO2)的化学结构式如图1所示。

图 1 西酞普兰、文拉法辛分子式Fig.1 Molecular formula of citalopram and venlafaxine

西酞普兰和文拉法辛具有较低的辛醇水分配系数(lg Kow分别为1.39和3.28),属于亲水性物质,同时具有较低的亨利系数,不易挥发也不易被生物富集和颗粒吸附,但易通过土壤进入地下水体[2,15]。此外,由于其性质稳定难以在水环境中发生水解和光解[17],因而稳定存在于水体中。

1.2 来源及分布现状

和其他药物一样,生活污水是水体中抗抑郁药物的主要来源[5]。医院、护理中心等医疗机构排放的污水也含有较高浓度的抗抑郁药物[18]。此外,制药厂排出的废水也是潜在的高浓度抗抑郁类药物的来源[19]。此类药物及其活性代谢产物通过污水处理厂的出水或者污泥的处理、处置进入环境中,并且会影响水生及陆生动物的新陈代谢[20]。表1为水环境中典型的抗抑郁类药物的质量浓度,其中ND表示未检出。

多个国家的研究显示,无论是在地表水还是在污水处理厂,甚至在自来水中均已检出抗抑郁药物及其活性代谢产物,其检出浓度最高可达μg·L−1,而污水处理厂则是水环境中抗抑郁药物及其活动代谢产物的主要来源之一[15,21-22]。例如,Hailing-Sørensen等[16]在欧洲表层水体中检测到西酞普兰和文拉法辛。此外,在河流沉积物、鱼体内也检测出常见的抗抑郁药物[5,23]。研究[11,24]表明,抗抑郁类药物对水生生物具有生物毒性,尤其对贝类等无脊椎动物的胚胎发育和繁殖具有抑制作用。

不难看出,无论是地表水还是污水处理厂进、出水,西酞普兰和文拉法辛的浓度都明显高于其他抗抑郁类药物。此外,Fernández等[25]还检测出某些抑郁类药物的浓度不会随着季节的更替而变化,这也验证了抗抑郁类药物可以在环境中持续存在。因此,研究抗抑郁药物的去除现状及其降解情况具有重要的意义。

表 1 水环境中典型的抗抑郁类药物质量浓度Table 1 Concentrations of typical antidepressant pharmaceuticals in the aquatic environment

2 抗抑郁类药物的去除现状2.1 抗抑郁药物在污水处理厂的去除

通过对污水处理厂西酞普兰、文拉法辛的去除情况的调查研究发现,抗抑郁药物在污水处理厂的去除主要依靠生物降解,活性污泥和颗粒的吸附作用。其中生物降解主要包括氧化、水解、去甲基作用。蒸发所造成的损失可以忽略不计[2]。Lester等[28]采用活性污泥法处理医药废水,结果表明西酞普兰、文拉法辛的去除率均低于5%。Yuan等[29]考察了北京3座污水处理厂对精神药物的去除情况,发现出水中的西酞普兰甚至高于进水浓度。经调查发现,这是因为不同污水处理厂进行生物处理时,由于微生物酶的作用发生了酶降解,从而导致药物出现负迁移。Lajeunesse等[30]则指出西酞普兰、文拉法辛在污水处理厂的去除率分别为3.5%~48%、7.8%~39%。同时发现一级处理对抗抑郁药物的去除率比二级处理的低。一级处理主要是基于化学吸附作用,二级处理是基于生物降解与活性污泥的吸附作用。而抗抑郁药物由于吸附系数小,因此不易被生物吸附[30]。由此可知,尽管不同污水处理厂抗抑郁药物的去除效果有所不同,但可以肯定的是,西酞普兰、文拉法辛难以被传统的污水生物处理工艺有效去除,其将继续存在于后续的污水消毒过程中。

2.2 高级氧化技术对抗抑郁药物的降解

鉴于常规的活性污泥法并不能彻底降解抗抑郁药物,学者们进一步研究了高级氧化技术对抗抑郁药物的降解。

臭氧由于具有强氧化性而被广泛用于污水深度处理以及水处理的消毒中。Lester等[28]研究了臭氧对文拉法辛的去除作用,结果表明,当臭氧与溶解性有机碳质量比率为0.87且pH为7时,去除率可达98%;pH减小到5时,去除率下降。Hörsing等[31]使用臭氧降解西酞普兰,在30 min内西酞普兰去除率可达80%,而使用臭氧和二氧化氯联合处理,当臭氧剂量为0.1 mg·L−1时,西酞普兰去除率可达90%以上。学者们通过质谱分析检测出臭氧降解西酞普兰的五种产物,其中去甲基−西酞普兰(C19H20N2OF)和西酞普兰−氮氧(C20H22N2O2F)在以前被认定为人类摄入后产生的活性代谢产物,其他三种产物分别是羟基二甲氨基侧链衍生物、丁内酯衍生物和脱氟的西酞普兰衍生物[28]。而这些产物与它们的母体化合物相比,毒性可能更大。Lester等[28]检测到一种臭氧氧化文拉法辛的产物文拉法辛−氮氧(C16H26NO2),他推测其是氧传输机制的产物。而由于丁醇的加入大大降低了产物的形成速率,因此另外一种产物未被检测到。Rúa-Gómez等[32]检测到文拉法辛的主要活性代谢产物为O−去甲基文拉法辛,它是母体化合物的去甲基形式。不难看出,臭氧对于抗抑郁药物具有较高的去除率,且降解效果受水质等多种因素的影响,降解机理也不明确。

而和臭氧相比,二氧化氯与抗抑郁药物的反应速率低于臭氧[33]。Hörsing等[31]研究了二氧化氯对西酞普兰的去除效果,结果表明:当二氧化氯质量浓度为21 μg·L−1时,去除率为40%;当二氧化氯质量浓度增加至0.11 mg·L−1时,去除率高达95%。同时指出二氧化氯氧化西酞普兰的产物和臭氧降解西酞普兰时相同。

Hörsing等[31]还考察了紫外线对西酞普兰的降解效果,结果发现:紫外辐射7 min后,西酞普兰的降解效率高达92%;辐射30 min后,西酞普兰可被完全去除。然而并未检测出其中的降解产物。Rúa-Gómez等[32]指出间接光解是地表水中抗抑郁药物降解的主要途径,直接光解和生物降解的速率很低,地表水中的NO3−会引发紫外线产生间接光解作用,从而促进文拉法辛的降解。安娜[34]发现西酞普兰和文拉法辛在腐殖酸和富里酸存在条件下均可发生间接光解,腐殖酸和富里酸均能促进文拉法辛的光解,而腐殖酸则会抑制西酞普兰的光解。Santoke等[35]也证实了河道水中的腐植酸可通过间接光解产生·OH,促进文拉法辛的分解。他认为在光解过程中·OH起主要作用,同时指出溶解性有机物的存在似乎不影响反应速率。综上,紫外光对于抗抑郁药物有较好的去除效果,但降解效果易受到水质影响,且降解产物尚未确定。

芬顿(Fenton)试剂对西酞普兰的去除效果与紫外氧化相似,其对西酞普兰的去除率可达90%,但同样未检测出降解产物。推测其原因为芬顿试剂和紫外线都是非选择性的氧化剂,产物有可能被快速地降解[31]。而类芬顿反应对西酞普兰、文拉法辛的去除率可分别达95%、98%以上[36]。可见,高级氧化对抗抑郁类药物有较高的去除率,降解过程中·OH起着主要的作用,但抗抑郁药物的降解机理尚不明确。

3 结论与展望

抗抑郁类药物由于难以在水环境中发生水解和光解,且难以被生物富集和吸附,因而稳定地存在于水体中。关于抗抑郁类药物的降解,可以肯定的是,传统的处理工艺难以将其有效地去除,高级氧化技术的去除效果较好,但降解机理不明确。

(1)开展及加强国内水环境中抗抑郁类药物的研究工作。我国对抗抑郁药物的研究尚处于起步阶段,关于国内水体中抗抑郁药物的调查研究也鲜有报道。建议针对我国水体中抗抑郁类药物及其活性代谢产物的分布情况进行调查研究,以明确其对水环境的影响。

(2)加强水体中抗抑郁类药物降解机理及主要影响降解因素的研究。

(3)关注抗抑郁药物降解的副产物。典型的抗抑郁药物多数属于脂肪胺,其在污水消毒过程中依然存在,是否会生成含氮消毒副产物尚未明确。因此,有必要辨识抗抑郁药物降解的副产物,保障水质安全。

参考文献

[1]

MEJO S. The use of antidepressant medication: a guide for the primary care nurse practitioner[J]. Journal of the American Academy of Nurse Practitioners, 1990, 2(4): 153-159. DOI:10.1111/j.1745-7599.1990.tb00799.x

[2]

SILVA L J G, LINO C M, MEISEL L M, et al. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment: an ecopharmacovigilance approach[J]. Science of the Total Environment, 2012, 437: 185-195. DOI:10.1016/j.scitotenv.2012.08.021

[3]

王欣, 柳海霞, 彭贤文. 抗抑郁药用量激增过度医疗? 大势所趋?[J]. 中国社区医师, 2009, 25(18): 1-3.

[4]

北京中信博研研究院. 2014—2019年中国抗抑郁药市场产量分析及发展前景预测报告[EB/OL]. [2014-07-02]. http://www.ynshangji.com/g3000000052224118/.

[5]

ARIAS L H M, LOBATO C T, ORTEGA S, et al. Trends in the consumption of antidepressants in Castilla y León (Spain). Association between suicide rates and antidepressant drug consumption[J]. Pharmacoepidemiology and Drug Safety, 2010, 19(9): 895-900. DOI:10.1002/pds.1944

[6]

GURKE R, RößLER M, MARX C, et al. Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant[J]. Science of the Total Environment, 2015, 532: 762-770. DOI:10.1016/j.scitotenv.2015.06.067

[7]

BEDNER M, MACCREHAN W A. Reactions of the amine-containing drugs fluoxetine and metoprolol during chlorination and dechlorination processes used in wastewater treatment[J]. Chemosphere, 2006, 65(11): 2130-2137. DOI:10.1016/j.chemosphere.2006.06.016

[8]

BRUCE G M, PLEUS R C, SNYDER S A. Toxicological relevance of pharmaceuticals in drinking water[J]. Environmental Science & Technology, 2010, 44(14): 5619-5626.

[9]

SILVA L J G, PEREIRA A M P T, MEISEL L M, et al. A one-year follow-up analysis of antidepressants in Portuguese wastewaters: occurrence and fate, seasonal influence, and risk assessment[J]. Science of the Total Environment, 2014, 490: 279-287. DOI:10.1016/j.scitotenv.2014.04.131

[10]

王星. SSRIs和SNRIs类抗抑郁药对初诊抑郁症患者认知功能、甲状腺激素和sTSH的影响研究[D]. 南昌: 南昌大学, 2010: 22-25.

[11]

NENTWIG G. Effects of pharmaceuticals on aquatic invertebrates. Part II: the antidepressant drug fluoxetine[J]. Archives of Environmental Contamination and Toxicology, 2007, 52(2): 163-170. DOI:10.1007/s00244-005-7190-7

[12]

DEMEESTERE K, PETROVIĆ M, GROS M, et al. Trace analysis of antidepressants in environmental waters by molecularly imprinted polymer-based solid-phase extraction followed by ultra-performance liquid chromatography coupled to triple quadrupole mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 825-837. DOI:10.1007/s00216-009-3270-2

[13]

KOSJEK T, HEATH E. Tools for evaluating selective serotonin re-uptake inhibitor residues as environmental contaminants[J]. TrAC Trends in Analytical Chemistry, 2010, 29(8): 832-847. DOI:10.1016/j.trac.2010.04.012

[14]

BARNES K K, KOLPIN D W, FURLONG E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States-I) Groundwater[J]. Science of the Total Environment, 2008, 402(2/3): 192-200. DOI:10.1016/j.scitotenv.2008.04.028

[15]

SCHWABE U, PAFFRATH D. Drug Prescription Report 2010(Arzneiverordnungs report 2010)[M]. Heidelberg: Springer, 2011

[16]

HALLING-SØRENSEN B, NIELSEN S N, LANZKY P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment- a review[J]. Chemosphere, 1998, 36(2): 357-393. DOI:10.1016/S0045-6535(97)00354-8

[17]

STYRISHAVE B, HALLING-SØRENSEN B, INGERSLEV F. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment: a case study including a cocktail scenario[J]. Environmental Toxicology and Chemistry, 2011, 30(1): 254-261. DOI:10.1002/etc.372

[18]

DAUGHTON C G, RUHOY I S. Green pharmacy and pharm ecovigilance: prescribing and the planet[J]. Expert Review of Clinical Pharmacology, 2011, 4(2): 211-232. DOI:10.1586/ecp.11.6

[19]

DÍAZ-CRUZ M S, BARCELÓ D. Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2006, 386(4): 973-985. DOI:10.1007/s00216-006-0444-z

[20]

DI POI C, EVARISTE L, SERPENTINI A, et al. Toxicity of five antidepressant drugs on embryo-larval development and metamorphosis success in the Pacific oyster, Crassostrea gigas[J]. Environmental Science and Pollution Research, 2014, 21(23): 13302-13314. DOI:10.1007/s11356-013-2211-y

[21]

KASPRZYK-HORDERN B, BAKER D R. Enantiomeric profiling of chiral drugs in wastewater and receiving waters[J]. Environmental Science & Technology, 2012, 46(3): 1681-1691. DOI:10.1021/es203113y

[22]

WRITER J H, FERRER I, BARBER L B, et al. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters[J]. Science of the Total Environment, 2013, 461−462: 519-527. DOI:10.1016/j.scitotenv.2013.04.099

[23]

SCHULTZ M M, FURLONG E T, KOLPIN D W, et al. Antidepressant pharmaceuticals in two U. S. effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue[J]. Environmental Science & Technology, 2010, 44(6): 1918-1925. DOI:10.1021/es9022706

[24]

GÓMEZ M J, MALATO O, FERRER I, et al. Solid phase extraction followed by liquid chromatography-time-of-flight-mass spectrometry to evaluate pharmaceuticals in effluents. A pilot monitoring study[J]. Journal of Environmental Monitoring, 2007, 9(7): 718-729. DOI:10.1039/B702844J

[25]

FERNÁNDEZ C, GONZÁLEZ-DONCE M, PRO J, et al. Occurrence of pharmaceutically active compounds in surface waters of the Henares-Jarama-Tajo river system (madrid, spain) and a potential risk characterization[J]. Science of the Total Environment, 2010, 408(3): 543-551. DOI:10.1016/j.scitotenv.2009.10.009

[26]

GULKOWSKA A, LEUNG H W, SO M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1-2): 395-403. DOI:10.1016/j.watres.2007.07.031

[27]

KIM S D, CHO J, KIM I S, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters[J]. Water Research, 2007, 41(5): 1013-1021. DOI:10.1016/j.watres.2006.06.034

[28]

LESTER Y, MAMANE H, ZUCKER I, et al. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone[J]. Water Research, 2013, 47(13): 4349-4356. DOI:10.1016/j.watres.2013.04.059

[29]

YUAN S L, JIANG X M, XIA X H, et al. Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China[J]. Chemosphere, 2013, 90(10): 2520-2525. DOI:10.1016/j.chemosphere.2012.10.089

[30]

LAJEUNESSE A, SMYTH S A, BARCLAY K, et al. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada[J]. Water Research, 2012, 46(17): 5600-5612. DOI:10.1016/j.watres.2012.07.042

[31]

HÖRSING M, KOSJEK T, ANDERSEN H R, et al. Fate of citalopram during water treatment with O3, ClO2, UV and Fenton oxidation[J]. Chemosphere, 2012, 89(2): 129-135. DOI:10.1016/j.chemosphere.2012.05.024

[32]

RÚA-GÓMEZ P C, PÜTTMANN W. Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants[J]. Environmental Science and Pollution Research, 2012, 19(3): 689-699. DOI:10.1007/s11356-011-0614-1

[33]

SHARMA V K. Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): kinetics assessment[J]. Chemosphere, 2008, 73(9): 1379-1386. DOI:10.1016/j.chemosphere.2008.08.033

[34]

安娜. 水中溶解性有机质对四种典型抗抑郁药物光降解行为的影响[D]. 大连: 大连理工大学, 2012: 8-9.

[35]

SANTOKE H, SONG W H, COOPER W J, et al. Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid[J]. Journal of Hazardous Materials, 2012, 217−218: 382-390. DOI:10.1016/j.jhazmat.2012.03.049

[36]

MACKUĽAK T, MOSNÝ M, GRABIC R, et al. Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater[J]. Environmental Toxicology and Pharmacology, 2015, 39(2): 483-488. DOI:10.1016/j.etap.2014.12.016

相关知识

植物修复农田退水氮、磷污染研究进展
Soil conditioner application status and application of risk research
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Study on the purification ability of 29 aquatic plants to rural domestic sewage
我国黑土地农田土壤除草剂残留特征研究及展望
Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality
李志国
Distribution and carbon, nitrogen and phosphorus stoichiometric characteristics of submersed macrophytes in Lake Fuxian
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
互花米草入侵对鸟类的生态影响

网址: Research status of distribution and removal of typical antidepressants in the aquatic environment https://m.huajiangbk.com/newsview312682.html

所属分类:花卉
上一篇: 专利汇
下一篇: 抗抑郁症的六朵金花