首页 > 分享 > Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality

Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality

[1]

Raymond P A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. Global carbon dioxide emissions from inland waters. Nature, 2013, 503(7476): 355-359. DOI:10.1038/nature12760

[2]

Lind O. Textbook of limnology. Limnology and Oceanography Bulletin, 2016, 25: 137-138. DOI:10.1002/lob.10142

[3]

Holgerson M A, Raymond P A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 2016, 9(3): 222-226. DOI:10.1038/ngeo2654

[4]

Tranvik L J, Downing J A, Cotner J B, Loiselle S A, Striegl R G, Ballatore T J, Dillon P, Finlay K, Fortino K, Knoll L B, Kortelainen P L, Kutser T, Larsen S, Laurion I, Leech D M, McCallister S L, McKnight D M, Melack J M, Overholt E, Porter J A, Prairie Y, Renwick W H, Roland F, Sherman B S, Schindler D W, Sobek S, Tremblay A, Vanni M J, Verschoor A M, von Wachenfeldt E, Weyhenmeyer G A. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology & Oceanography, 2009, 54(6): 2298-2314.

[5]

Finlay K, Leavitt P R, Wissel B, Prairie Y T. Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. Limnol Oceanogr. Limnology and Oceanography, 2009, 54(6_part_2): 2553-2564.

[6]

Valencia S, Marin J M, Rcstrepo G, Frimmel F H. Evaluations of the TiO2/simulated solar UV degradations of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography. Water Research, 2013, 47(14): 5130-5138. DOI:10.1016/j.watres.2013.05.053

[7]

Brinkmann T, Abbt-Braun G, Frimmel F H. Alkaline Degradation of Dissolved Organic Matter. Acta hydrochimica et hydrobiologica, 2003, 31(3): 213-224. DOI:10.1002/aheh.200300491

[8]

Sobek S, Tranvik L J, Prairie Y T. Patterns and Regulation of Dissolved Organic Carbon: An Analysis of 7, 500 Widely Distributed Lakes. Limnology & Oceanography, 2007, 52(3): 1208-1219.

[9] [10]

Balmer M B, Downing J A. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters, 2011, 1(2): 125-132. DOI:10.5268/IW-1.2.366

[11]

Zagarese H E, de los Ángeles González Sagrario M, Wolf-Gladrow D, Nõges P, Nõges T, Kangur K, Matsuzaki S I S, Kohzu A, Vanni M J, Özkundakci D, Echaniz S A, Vignatti A, Grosman F, Sanzano P, Dam B V, Knoll L B. Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes. Water Research, 2021, 190: 116715. DOI:10.1016/j.watres.2020.116715

[12]

Lerman A, Stumm W. CO2 storage and alkalinity trends in lakes. Water Research, 1989, 23(2): 139-146. DOI:10.1016/0043-1354(89)90037-7

[13]

Xiao Q T, Xu X F, Duan H T, Qi T C, Qin B Q, Lee X H, Hu Z H, Wang W, Xiao W, Zhang M. Eutrophic Lake Taihu as a significant CO2 source during 2000-2015. Water Research, 2020, 170: 115331. DOI:10.1016/j.watres.2019.115331

[14] [15] [16] [17] [18] [19]

Abelmann A, Gersonde R, Knorr G, Zhang X, Chapligin B, Maier E, Esper O, Friedrichsen H, Lohmann G, Meyer H. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nature Communications, 2015, 6: 8136. DOI:10.1038/ncomms9136

[20] [21]

Fang JY, Chen AP, Peng CH, Zhao SQ. Changes in forest biomass carbon storage in China between 1949 and 1998. SCIENCE, 2001, 292(5525): 2320-2322. DOI:10.1126/science.1058629

[22]

Sarmiento J L, Sundquist E T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 1992, 356: 589-593. DOI:10.1038/356589a0

[23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]

Visser P M, Verspagen J M H, Sandrini G, Stal L J, Matthijs H C P, Davis T W, Paerl H W, Huisman J. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 2016, 54(apr.): 145-159.

[35]

Pacheco F, Landim P, Szocs T. Anthropogenic impacts on mineral weathering: A statistical perspective. Applied Geochemistry, 2013, 36(Complete): 34-48.

[36]

Michelle B, John D. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters, 2011, 1(2): 125-132. DOI:10.5268/IW-1.2.366

[37]

Hesslein R H, Rudd J W M, Kelly C, Ramlal P, Hallard K. Carbon Dioxide Pressure in Surface Waters of Canadian Lakes. 1991.

[38]

Kratz T K, Schindler J, Hope D, Riera J L, Bowser C J. Average annual carbon dioxide concentrations in eight neighboring lakes in northern Wisconsin, USA. SIL Proceedings, 1922-2010, 1997, 26(2): 335-338.

[39]

Hein M. Inorganic carbon limitation of photosynthesis in lake phytoplankton. Freshwater Biology, 2010, 37(3): 545-552.

[40]

Williamson T J, Vanni M J, Renwick W H. Spatial and Temporal Variability of Nutrient Dynamics and Ecosystem Metabolism in a Hyper-eutrophic Reservoir Differ Between a Wet and Dry Year. Ecosystems, 2021, 24(1): 68-88. DOI:10.1007/s10021-020-00505-8

[41]

Knoll L B, Vanni M J, Renwick W H, Dittman E K, Gephart J A. Temperate reservoirs are large carbon sinks and small CO2 sources: Results from high-resolution carbon budgets. Global Biogeochemical Cycles, 2013, 27(1): 52-64. DOI:10.1002/gbc.20020

[42]

Matsuzaki S I S, Suzuki K, Kadoya T, Nakagawa M, Takamura N. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake. Ecology, 2018, 99(9): 2025-2036. DOI:10.1002/ecy.2414

[43]

Tomioka N, Imai A, Komatsu K. Effect of light availability on Microcystis aeruginosa blooms in shallow hypereutrophic Lake Kasumigaura. Journal of Plankton Research, 2011, 33(8): 1263-1273. DOI:10.1093/plankt/fbr020

[44]

Verspagen J M H, van de Waal D B, Finke J F, Visser P M, van Donk E, Huisman J. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS One, 2014, 9(8): e104325. DOI:10.1371/journal.pone.0104325

[45]

Tonetta D, Fontes M L S, Petrucio M M. Linking summer conditions to CO2 undersaturation and CO2 influx in a subtropical coastal lake. Limnology, 2015, 16(3): 193-201. DOI:10.1007/s10201-015-0460-9

[46]

Downing J A. Global limnology: up-scaling aquatic services and processes to planet Earth. SIL Proceedings, 1922-2010, 2009, 30(8): 1149-1166.

[47]

Abril G, Bouillon S, Darchambeau F, Teodoru C R, Marwick T R, Tamooh F, Ochieng Omengo F, Geeraert N, Deirmendjian L, Polsenaere P, Borges A V. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 2015, 12(1): 67-78. DOI:10.5194/bg-12-67-2015

[48]

Sutcliffe D W. Acid precipitation and its effects on aquatic systems in the English Lake District. 1983.

[49]

Kilham P. Acid precipitation: Its role in the alkalization of a lake in Michiganl. Limnology and Oceanography, 1982, 27(5): 856-867. DOI:10.4319/lo.1982.27.5.0856

[50]

Kelly C A, Rudd J W M, Cook R B, Schindler D W. The potential importance of bacterial processes in regulating rate of lake acidification1, 2. Limnology and Oceanography, 1982, 27(5): 868-882. DOI:10.4319/lo.1982.27.5.0868

[51]

Niessen F, Sturm M. Die sedimente des baldeggersees (schweiz) u2015 ablagerungsraum und eutrophierungsentwicklung während der letzten 100 jahre. Archiv Fur Hydrobiologie, 1987, 108: 365-383. DOI:10.1127/archiv-hydrobiol/108/1987/365

[52]

Reeder B C. Primary productivity limitations in relatively low alkalinity, high phosphorus, oligotrophic Kentucky reservoirs. Ecological Engineering, 2017, 108: 477-481. DOI:10.1016/j.ecoleng.2017.06.009

[53]

Narver, David W. Primary Productivity in the Babine Lake System, British Columbia. Journal of the Fisheries Board of Canada, 2011, 24(10): 2045-2052.

[54]

Lerman A, Stumm W. CO2 storage and alkalinity trends in lakes. Water Research, 1989, 23(2): 139-146. DOI:10.1016/0043-1354(89)90037-7

[55]

The encyclopedia of sedimentology. Geological Magazine, 1979, 116(4): 330.

[56] [57]

唐伟. 外源水对碳酸盐岩溶蚀速率与碳汇效应影响研究——以毛村地下河流域为例[D]. 重庆: 西南大学, 2011.

[58]

Liu Z H. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 sink. Acta Geologica Sinica-English Edition, 2001, 75(3): 275-278.

[59]

谢腾祥. 微藻对碳酸盐矿物的生物溶蚀和沉淀作用及其碳汇效应[D]. 中国科学院大学, 2014.

[60]

Marotta H, Pinho L, Gudasz C, Bastviken D, Tranvik L J, Enrich-Prast A. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change, 2014, 4(6): 467-470. DOI:10.1038/nclimate2222

[61] [62]

Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 2007, 10(1): 172-185. DOI:10.1007/s10021-006-9013-8

[63]

Tranvik L J, Downing J A, Cotner J B, Loiselle S A, Striegl R G, Ballatore T J, Dillon P, Finlay K, Fortino K, Knoll L B, Kortelainen P L, Kutser T, Larsen S, Laurion I, Leech D M, McCallister S L, McKnight D M, Melack J M, Overholt E, Porter J A, Prairie Y, Renwick W H, Roland F, Sherman B S, Schindler D W, Sobek S, Tremblay A, Vanni M J, Verschoor A M, von Wachenfeldt E, Weyhenmeyer G A. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 2009, 54(6part2): 2298-2314. DOI:10.4319/lo.2009.54.6_part_2.2298

[64]

Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440(7081): 165-173.

[65]

Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 1998, 26(6): 535.

[66]

Anderson N J, Engstrom D R, Leavitt P R, Flood S M, Heathcote A J. Changes in coupled carbon nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming. Communications Earth & Environment, 2020, 1: 38.

[67]

Wang S R, Zhuang Q L, Lähteenoja O, Draper F C, Cadillo-Quiroz H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. PNAS, 2018, 115(49): 12407-12412.

[68]

Dietz R D, Engstrom D R, Anderson N J. Patterns and drivers of change in organic carbon burial across a diverse landscape: Insights from 116 Minnesota lakes. Global Biogeochemical Cycles, 2015, 29(5): 708-727.

[69]

Mulholland P J, Elwood J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus, 1982, 34(5): 490-499.

[70]

Ostrovsky I, Yacobi Y Z. Sedimentation flux in a large subtropical lake: Spatiotemporal variations and relation to primary productivity. Limnology and Oceanography, 2010, 55(5): 1918-1931.

[71]

Lin Q, Liu E F, Zhang E L, Nath B, Bindler R, Liu J, Shen J. Organic carbon burial in a large, deep alpine lake (southwest China) in response to changes in climate, land use and nutrient supply over the past -100 years. CATENA, 2021, 202: 105240.

[72]

Huang C C, Yao L, Zhang Y L, Huang T, Zhang M L, Zhu A X, Yang H. Spatial and temporal variation in autochthonous and allochthonous contributors to increased organic carbon and nitrogen burial in a plateau lake. Science of the Total Environment, 2017, 603/604: 390-400.

[73]

Dong X H, Anderson N J, Yang X D, chen X, Shen J. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Global Change Biology, 2012, 18(7): 2205-2217.

[74]

Heathcote A J, Downing J A. Impacts of Landscape Change on Carbon Burial in Freshwater Lakes. 2010.

[75]

刘培. 腾冲青海湖近1700a来沉积物有机碳、氮同位素特征及古环境重建[D]. 昆明: 云南师范大学, 2018.

[76]

Lammers J M, Schubert C J, Middelburg J J, Reichart G J. Microbial carbon processing in oligotrophic Lake Lucerne (Switzerland): results of in situ 13C-labelling studies. Biogeochemistry, 2017, 136(2): 131-149.

[77]

Forsius M, Kujala H, Minunno F, Holmberg M, Leikola N, Mikkonen N, Autio I, Paunu V V, Tanhuanpää T, Hurskainen P, Mäyraä J, Kivinen S, Keski-Saari S, Kosenius A K, Kuusela S, Virkkala R, Viinikka A, Vihervaara P, Heikkinen R K. Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: application in southern Finland. Science of the Total Environment, 2021, 775: 145847.

[78]

Stewart T J, Sprules W G. Carbon-based balanced trophic structure and flows in the offshore Lake Ontario food web before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. Ecological Modelling, 2011, 222(3): 692-708.

[79]

Jensen T C, Zawiska I, Oksman M, Słowiński M, Woszczyk M, Luoto T P, Tylmann W, Nevalainen L, Obremska M, Schartau A K, Walseng B. Historical human impact on productivity and biodiversity in a subalpine oligotrophic lake in Scandinavia. Journal of Paleolimnology, 2020, 63(1): 1-20.

[80]

Yang H, Xing Y P, Xie P, Ni L Y, Rong K W. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance. Environmental Pollution, 2008, 151(3): 559-568.

[81]

Smith, S. V. Marine macrophytes as a global carbon sink. Science, 1981, 211(4484): 838-840.

[82]

宋娜. 浅水湖泊沉积物中纤维素降解的过程特征及强化研究[D]. 中国科学院大学, 2013.

[83] [84]

Guo X H, Xiao D R, Tian K, Yu H Z. Biomass production and litter decomposition of lakeshore plants in Napahai wetland, Northwestern Yunnan Plateau, China. Acta Ecologica Sinica, 2013, 33(5): 1425-1432.

[85]

Einola E, Rantakari M, Kankaala P, Kortelainen P, Ojala A, Pajunen H, Mäkelä S, Arvola L. Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. Journal of Geophysical Research Atmospheres, 2011, 116(G3): G03009.

[86]

Titus J E, Pagano A M. Carbon dioxide and submersed macrophytes in lakes: Linking functional ecology to community composition. Ecology, 2017, 98(12): 3096-3105.

[87]

Tao F X. Air-water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36(4): 658-666.

[88] [89]

Valle J, Gonsior M, Harir M, Enrich-Prast A, Schmitt-Kopplin P, Bastviken D, Conrad R, Hertkorn N. Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS). Water Research, 2018, 129: 252-263.

[90]

Raymond J E, Fernandez I J, Ohno T, Simon K. Soil drainage class influences on soil carbon in a new England forested watershed. Soil Science Society of America Journal, 2013, 77(1): 307-317.

[91]

Sobek A, Olli K, Gustafsson O. On the relative significance of bacteria for the distribution of polychlorinated biphenyls in Arctic Ocean surface waters. Environmental Science & Technology, 2006, 40(8): 2586-2593.

[92]

Hessen D O, Nygaard K. Bacterial transfer of methane and detritus: implications for the pelagic carbon budget and gaseous release. Archiv fur Hydrobiologie, 1992(37): 139-148.

[93]

Pace, Carpenter S R, Cole J J. Terrestrial subsidies of aquatic food webs: Results of 13C additions to lakes contrasting in dissolved organic matter and nutrients. 2005.

[94]

Kritzberg E S, Cole J J, Pace M L, Granéli W, Bade D L. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnology and Oceanography, 2004, 49(2): 588-596.

[95]

Wilkinson G M, Buelo C D, Cole J J, Pace M L. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes. Geophysical Research Letters, 2016, 43(5): 1996-2003.

[96]

Kortelainen P, Rantakari M, Huttunen J T, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen P J. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology, 2006, 12(8): 1554-1567.

[97]

Wang Y H, Huang Y, Tian J M, Li C H, Yu K K, Zhang M L, Lang X L, Sun T. A sediment record of terrestrial organic matter inputs to Dongting Lake and its environmental significance from 1855 to 2019. Ecological Indicators, 2021, 130: 108090.

[98]

Radbourne A D, Ryves D B, Anderson N J, Scott D R. The historical dependency of organic carbon burial efficiency. Limnology and Oceanography, 2017, 62(4): 1480-1497.

[99]

Marotta H, Pinho L, Gudasz C, Bastviken D, Tranvik L J, Enrich-Prast A. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change, 2014, 4(6): 467-470.

[100]

Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik L J. Temperature-controlled organic carbon mineralization in lake sediments. Nature, 2010, 466(7305): 478-481.

[101]

Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography, 2009, 54(6): 2243-2254. DOI:10.4319/lo.2009.54.6.2243

[102]

Wang H X, Jiao R Y, Wang F, Zhang L, Yan W J. Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang Basin. Environmental Pollution, 2016, 219: 714-723. DOI:10.1016/j.envpol.2016.07.012

[103]

Perga M E, Maberly S C, Jenny J P, Alric B, Pignol C, Naffrechoux E. A century of human-driven changes in the carbon dioxide concentration of lakes. Global Biogeochemical Cycles, 2016, 30(2): 93-104. DOI:10.1002/2015GB005286

[104]

Yvon-Durocher G, Caffrey J M, Cescatti A, Dossena M, Giorgio P D, Gasol J M, Montoya J M, Pumpanen J, Staehr P A, Trimmer M, Woodward G, Allen A P. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 2012, 487(7408): 472-476. DOI:10.1038/nature11205

[105]

Maberly S C, Barker P A, Stott A W, de Ville M M. Catchment productivity controls CO2 emissions from lakes. Nature Climate Change, 2013, 3(4): 391-394. DOI:10.1038/nclimate1748

[106]

Reed D E, Dugan H A, Flannery A L, Desai A R. Carbon sink and source dynamics of a eutrophic deep lake using multiple flux observations over multiple years. Limnology and Oceanography Letters, 2018, 3(3): 285-292. DOI:10.1002/lol2.10075

[107]

Dugan H A, Woolway R I, Santoso A B, Corman J R, Jaimes A, Nodine E R, Patil V P, Zwart J A, Brentrup J A, Hetherington A L, Oliver S K, Read J S, Winters K M, Hanson P C, Read E K, Winslow L A, Weathers K C. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes. Inland Waters, 2016, 6(4): 581-592. DOI:10.1080/IW-6.4.836

[108]

Solomon C T, Bruesewitz D A, Richardson D C, Rose K C, van de Bogert M C, Hanson P C, Kratz T K, Larget B, Adrian R, Babin B L, Chiu C Y, Hamilton D P, Gaiser E E, Hendricks S, Istvànovics V, Laas A, O' Donnell D M, Pace M L, Ryder E, Staehr P A, Torgersen T, Vanni M J, Weathers K C, Zhu G W. Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnology and Oceanography, 2013, 58(3): 849-866. DOI:10.4319/lo.2013.58.3.0849

[109]

Shao C L, Chen J Q, Stepien C A, Chu H S, Ouyang Z T, Bridgeman T B, Czajkowski K P, Becker R H, John R. Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: a case study in Western Lake Erie. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1587-1604. DOI:10.1002/2015JG003025

[110]

Grace J B, Anderson T M, Seabloom E W, Borer E T, Adler P B, Harpole W S, Hautier Y, Hillebrand H, Lind E M, Pärtel M, Bakker J D, Buckley Y M, Crawley M J, Damschen E I, Davies K F, Fay P A, Firn J, Gruner D S, Hector A, Knops J M H, MacDougall A S, Melbourne B A, Morgan J W, Orrock J L, Prober S M, Smith M D. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529(7586): 390-393. DOI:10.1038/nature16524

[111]

Waide R B, Willig M R, Steiner C F, Mittelbach G, Gough L, Dodson S I, Juday G P, Parmenter R. The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 1999, 30: 257-300. DOI:10.1146/annurev.ecolsys.30.1.257

[112]

Huston M A. A General Hypothesis of Species Diversity. The American Naturalist, 1979, 113(1): 81-101. DOI:10.1086/283366

[113]

Hodáňová D. Plant strategies and vegetation processes. Biologia Plantarum, 1981, 23(4): 254. DOI:10.1007/BF02895358

[114]

Wu A P, Ye S Y, Yuan J R, Qi L Y, Cai Z W, Ye B B, Yuan J, Chu Z S, Xie Y H, Liu L, Zhong W, Wang Y H. The relationship between diversity and productivity from a three-dimensional space view in a natural mesotrophic lake. Ecological Indicators, 2021, 121: 107069. DOI:10.1016/j.ecolind.2020.107069

[115]

Cardinale B J, Matulich K L, Hooper D U, Byranes J E, Duffy E, Gamfeldt L, Balvanera P, O' Connor M I, Gonzalez A. The functional role of producer diversity in ecosystems. American Journal of Botany, 2011, 98(3): 572-592. DOI:10.3732/ajb.1000364

[116]

Barnett A, Beisner B E. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology, 2007, 88(7): 1675-1686. DOI:10.1890/06-1056.1

[117]

Gustafsson C, Norkko A. Quantifying the importance of functional traits for primary production in aquatic plant communities. Journal of Ecology, 2019, 107(1): 154-166. DOI:10.1111/1365-2745.13011

[118]

Naeem S, Thompson L J, Lawler S P, Lawton J H, Woodfin R M. Declining biodiversity can alter the performance of ecosystems. Nature, 1994, 368(6473): 734-737. DOI:10.1038/368734a0

[119]

Dimitrakopoulos P G, Schmid B. Biodiversity effects increase linearly with biotope space. Ecology Letters, 2004, 7(7): 574-583. DOI:10.1111/j.1461-0248.2004.00607.x

[120]

Evans M A, Fahnenstiel G, Scavia D. Incidental oligotrophication of North American great lakes. Environmental Science & Technology, 2011, 45(8): 3297-3303.

[121]

Cardinale B J, Matulich K L, Hooper D U, Byranes J E, Duffy E, Gamfeldt L, Balvanera P, O' Connor M I, Gonzalez A. The functional role of producer diversity in ecosystems. American Journal of Botany, 2011, 98(3): 572-592. DOI:10.3732/ajb.1000364

[122]

Stachowicz J J, Graham M, Bracken M E S, Szoboszlai A I. Diversity enhances cover and stability of seaweed assemblages: the role of heterogeneity and time. Ecology, 2008, 89(11): 3008-3019. DOI:10.1890/07-1873.1

[123]

Ansari A A, Gill S S, Khan F A. Eutrophication: Threat to Aquatic EcosystemsEutrophication: Causes. Consequences and Control, 2011, 89(11): 3008-3019.

[124] [125] [126]

秦伯强, 高光, 胡维平, 吴庆龙, 胡春华, 刘正文, 谷孝鸿, 朱广伟, 陈非洲. 浅水湖泊生态系统恢复的理论与实践思考. 湖泊科学, 2005, 17(1): 9-16. DOI:10.3321/j.issn:1003-5427.2005.01.002

[127]

Yuan X M, Liu Q, Cui B S, Xu X F, Liang L Q, Sun T, Yan S R, Wang X, Li C H, Li S Z, Li M. Effect of water-level fluctuations on methane and carbon dioxide dynamics in a shallow lake of Northern China: implications for wetland restoration. Journal of Hydrology, 2021, 597: 126169. DOI:10.1016/j.jhydrol.2021.126169

[128]

Chao C X, Wang L G, Li Y, Yan Z W, Liu H M, Yu D, Liu C H. Response of sediment and water microbial communities to submerged vegetations restoration in a shallow eutrophic lake. Science of the Total Environment, 2021, 801: 149701. DOI:10.1016/j.scitotenv.2021.149701

[129]

Fujibayashi M, Takakai F, Masuda S, Okano K, Miyata N. Effects of restoration of emergent macrophytes on the benthic environment of the littoral zone of a eutrophic lake. Ecological Engineering, 2020, 155: 105960. DOI:10.1016/j.ecoleng.2020.105960

[130] [131] [132]

Gao H L, Qian X, Wu H F, Li H M, Pan H, Han C M. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body-A case study of Gonghu Bay, Lake Taihu. Ecological Engineering, 2017, 102: 15-23. DOI:10.1016/j.ecoleng.2017.01.013

[133] [134]

Bai G L, Zhang Y, Yan P, Yan W H, Kong L W, Wang L, Wang C, Liu Z S, Liu B Y, Ma J M, Zuo J C, Li J, Bao J, Xia S B, Zhou Q H, Xu D, He F, Wu Z B. Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: Submerged macrophyte distribution influenced by environmental variables. Water Research, 2020, 186: 116379. DOI:10.1016/j.watres.2020.116379

[135]

Ferretti A R, de Britez R M. Ecological restoration, carbon sequestration and biodiversity conservation: the experience of the Society for Wildlife Research and Environmental Education (SPVS) in the Atlantic Rain Forest of Southern Brazil. Journal for Nature Conservation, 2006, 14(3/4): 249-259.

[136]

Kareksela S, Haapalehto T, Juutinen R, Matilainen R, Tahvanainen T, Kotiaho J S. Fighting carbon loss of degraded peatlands by jump-starting ecosystem functioning with ecological restoration. Science of the Total Environment, 2015, 537: 268-276. DOI:10.1016/j.scitotenv.2015.07.094

[137]

Zhang X J, Wang G Q, Tan Z X, Wang Y T, Li Q. Effects of ecological protection and restoration on phytoplankton diversity in impounded lakes along the eastern route of China' s South-to-North Water Diversion Project. Science of the Total Environment, 2021, 795: 148870. DOI:10.1016/j.scitotenv.2021.148870

[138]

Wang Y T, Wang W C, Zhou Z Z, Xia W, Zhang Y X. Effect of fast restoration of aquatic vegetation on phytoplankton community after removal of purse seine culture in Huayanghe Lakes. Science of the Total Environment, 2021, 768: 144024. DOI:10.1016/j.scitotenv.2020.144024

[139]

Chen F Z, Ye J L, Shu T T, Sun Y, Li J. Zooplankton response to the lake restoration in the drinking-water source in Meiliang Bay of subtropical eutrophic Lake Taihu, China. Limnologica, 2012, 42(3): 189-196. DOI:10.1016/j.limno.2011.11.001

[140]

Burlakova L E, Karatayev A Y, Pennuto C, Mayer C. Changes in Lake Erie benthos over the last 50 years: historical perspectives, current status, and main drivers. Journal of Great Lakes Research, 2014, 40(3): 560-573. DOI:10.1016/j.jglr.2014.02.008

[141]

Molina-Moctezuma A, Godby N, Kapuscinski K L, Roseman E F, Skubik K, Moerke A. Response of fish assemblages to restoration of rapids habitat in a Great Lakes connecting channel. Journal of Great Lakes Research, 2021, 47(4): 1182-1191. DOI:10.1016/j.jglr.2021.05.009

[142]

Zhang S Q, Zhang P Y, Pan B H, Zou Y A, Xie Y H, Zhu F, Chen X S, Li F, Deng Z M, Zhang H, Yang S. Wetland restoration in the East Dongting Lake effectively increased waterbird diversity by improving habitat quality. Global Ecology and Conservation, 2021, 27: e01535. DOI:10.1016/j.gecco.2021.e01535

[143]

Zhang X X, Yi Y J, Yang Z F. The long-term changes in food web structure and ecosystem functioning of a shallow lake: implications for the lake management. Journal of Environmental Management, 2022, 301: 113804. DOI:10.1016/j.jenvman.2021.113804

[144] [145] [146] [147] [148]

闫兴成, 王明玥, 许晓光, 王国祥, 孙浩, 杨云皓, 石傲. 富营养化湖泊沉积物有机质矿化过程中碳, 氮, 磷的迁移特征. 湖泊科学, 2018, 30(2): 306-313.

[149] [150] [151] [152]

Zhang Y D, Su Y L, Liu Z W, Yu J L, Jin M. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecological Indicators, 2017, 77: 397-408. DOI:10.1016/j.ecolind.2017.02.031

[153]

Gudasz C, Sobek S, Bastviken D, Koehler B, Tranvik L J. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. Journal of Geophysical Research: Biogeosciences, 2015, 120(7): 1215-1225. DOI:10.1002/2015JG002928

[154] [155] [156] [157] [158]

Yang B J, Ljung K, Nielsen A B, Fahlgren E, Hammarlund D. Impacts of long-term land use on terrestrial organic matter input to lakes based on lignin phenols in sediment records from a Swedish forest lake. Science of the Total Environment, 2021, 774: 145517.

[159]

Xu L M, Li Y, Ye W T, Zhang X Z. Terrestrial organic carbon storage modes based on relationship between soil and lake carbon, China. Journal of Environmental Management, 2019, 250: 109483.

[160]

Fletcher S E M, Schaefer H. Rising methane: a new climate challenge. Science, 2019, 364(6444): 932-933.

[161]

Bastviken D, Tranvik L J, Downing J A, Crill P M, Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science, 2011, 331(6013): 50.

[162]

Eyerer S, Schifflechner C, Hofbauer S, Bauer W, Wieland C, Spliethoff H. Combined heat and power from hydrothermal geothermal resources in Germany: an assessment of the potential. Renewable and Sustainable Energy Reviews, 2020, 120: 109661.

[163]

Bastviken D, Cole J J, Pace M L, van de Bogert M C. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2): G02024.

[164]

Tofieldpasche N. Monitoring methane extraction in Lake Kivu. General Information, 2013.

[165]

Mason J A, Veenstra M, Long J R. Evaluating metal-organic frameworks for natural gas storage. Chem Sci, 2014, 5(1): 32-51.

[166]

Cookney J, Mcleod A, Mathioudakis V, Ncube P, Soares A, Jefferson B, McAdam E J. Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 2016, 502: 141-150.

[167]

Giménez J B, Martí N, Ferrer J, Seco A. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent. Bioresource Technology, 2012, 118: 67-72.

[168]

Rezaei J, Bouteh E, Torabian A, Ghulami H. Evaluation of membrane bioreactor-hollow fiber (MBR-HF) pilot performance in the treatment of wastewater facing with different concentrations of amoxicillin (AMX) as shock loads. Journal of Environmental Chemical Engineering, 2020, 8(4): 103944.

[169]

Sethunga G S M D P, Karahan H E, Wang R, Bae T H. Wetting- and fouling-resistant hollow fiber membranes for dissolved methane recovery from anaerobic wastewater treatment effluents. Journal of Membrane Science, 2021, 617: 118621.

[170]

Blanchette C D, Knipe J M, Stolaroff J K, DeOtte J R, Oakdale J S, Maiti A, Lenhardt J M, Sirajuddin S, Rosenzweig A C, Baker S E. Printable enzyme-embedded materials for methane to methanol conversion. Nature Communications, 2016, 7: 11900.

[171]

Bartosiewicz M, Rzepka P, Lehmann M F. Tapping freshwaters for methane and energy. Environmental Science & Technology, 2021, 55(8): 4183-4189.

相关知识

Blue Carbon Sink Function of Chinese Coastal Wetlands and Carbon Neutrality Strategy
Distribution and carbon, nitrogen and phosphorus stoichiometric characteristics of submersed macrophytes in Lake Fuxian
碳汇价值的形成和评价
Path of Digital Technology Promoting Realization of Carbon Neutrality Goal in China's Energy Industry
小倍聊双碳:什么是碳汇(Carbon sink)?
Effects of ecological restoration on soil organic carbon in post
双碳词汇:Carbon Sink 碳汇
植被空间类型对城市绿地碳中和绩效的影响
农田土壤固碳潜力的影响因素及其调控(综述)
中国岩溶碳汇通量估算与人工干预增汇途径

网址: Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality https://m.huajiangbk.com/newsview311508.html

所属分类:花卉
上一篇: 湿地碳汇功能探讨—以泥炭地和芦苇
下一篇: 渔业碳汇与碳汇渔业定义及其相关问