首页 > 分享 > 一氧化氮供体在抗肿瘤应用中的研究进展

一氧化氮供体在抗肿瘤应用中的研究进展

摘要: 一氧化氮(nitric oxide,NO)是首个被发现参与细胞信号传导的内源性气体分子,广泛存在于人体内,参与多种生理过程。对NO作为气体信号分子的相关机制研究证实了NO在促血管舒张、抗感染、刺激软组织再生、防止血小板粘附等方面都发挥重要生理作用。在肿瘤细胞中,NO具有抗癌还是促癌作用由NO的浓度高低决定,其抗肿瘤活性具有较高的浓度依赖性。高浓度的NO能够与细胞内的超氧阴离子等反应,生成过氧亚硝酸根离子等活性氮物质,通过损伤癌细胞的 DNA、抑制各种酶功能、破坏线粒体功能等途径诱导细胞凋亡。然而NO半衰期短且极易扩散,因此多使用NO供体提供NO气体分子以进行抗肿瘤治疗。NO供体可在金属离子、激光等外源性条件刺激下按需释放NO,将NO供体与其他纳米体系相结合形成NO递送系统,在特定部位释放NO,是发挥NO抗肿瘤疗效的有效策略。综述不同类型NO供体的作用机制,利用NO供体构建的NO递送系统用于抗肿瘤治疗的效果,并介绍NO介导的气体疗法联合化学动力学治疗、光动力治疗、放射治疗和化疗等在抗肿瘤治疗中的应用进展,以期为相关研究人员提供理论参考。

Abstract: Nitric oxide (NO), the first discovered endogenous gas molecule participating in signal transduction pathway, widely exists in the human body and is involved in various physiological processes. The research on the relevant mechanisms of NO as a gas signaling molecule has confirmed its important physiological role in promoting vasodilation, preventing infection, stimulating soft tissue regeneration, and preventing platelet adhesion. In tumor cells, the cancer-inhibiting or cancer-promoting effect of NO is determined by its concentration, and the antitumor activity of NO has a high concentration dependence. High concentration of NO can react with intracellular superoxide anions and generate reactive nitrogen species such as peroxynitrite ions to induce apoptosis by damaging the DNA of cancer cells, inhibiting various enzyme functions, and disrupting mitochondrial functions. However, NO has a short half-life and is highly diffusible, so NO donors are widely used to provide NO gas molecule for antitumor treatments. NO donors can release NO on demand when stimulated by exogenous conditions such as metal ions and laser. Combining NO donors with other nanosystems to form NO delivery systems for the release of NO at specific sites is an effective strategy to exploit the anti-tumor effect of NO. This review summarizes the action mechanisms of different types of NO donors and the effects of NO delivery systems constructed using NO donors for anti-tumor therapy, and introduces the progress of NO-mediated gas therapy combined with chemodynamic therapy, photodynamic therapy, radiotherapy and chemotherapy for effective antitumor treatment, aiming to provide some theoretical reference for relevant researchers.

[1]

Yang Y, Huang Z, Li L L. Advanced nitric oxide donors:chemical structure of NO drugs, NO nanomedicines and biomedical applications[J]. Nanoscale, 2021, 13(2):444-459.

[2]

biphenyl-extended-pillar

[2]

Li Y C, Yoon B, Dey A, et al. Recent progress in nitric oxidegenerating nanomedicine for cancer therapy[J/OL]. J Controlled Release, 2022, 352:179-198[2023-05-25]. https://doi.org/10.1016/j.jconrel.2022.10.012.

[3]

Gu G, Chen C, Zhang S, et al. Self-assembly dual-responsive NO donor nanoparticles for effective cancer therapy[J]. ACS Appl Mater Interfaces, 2021, 13(43):50682-50694.

[4]

Fan W, Yung B C, Chen X. Stimuli-responsive NO release for ondemand gas-sensitized synergistic cancer therapy[J]. Angew Chem Int Ed Engl, 2018, 57(28):8383-8394.

[5]

Huang Z, Fu J, Zhang Y. Nitric oxide donor-based cancer therapy:advances and prospects[J]. J Med Chem, 2017, 60(18):7617-7635.

[6]

Xu W, Liu L Z, Loizidou M, et al. The role of nitric oxide in cancer[J]. Cell Res, 2002, 12(5/6):311-320.

[6]

arenes for drug resistance reversal[J]. J Mater Chem B, 2022, 10(32):6181-6186.

[7]

Khan F H, Dervan E, Bhattacharyya D D, et al. The role of nitric oxide in cancer:master regulator or not?[J/OL]. Int J Mol Sci, 2020, 21(24):9393[2023-05-25]. https://doi.org/10.3390/ijms21249393.

[8]

Hidmi A, Alzahayqa M, Erikat S, et al. Nitric oxide-releasing NO-curcumin hybrid inhibits colon cancer cell proliferation and induces cell death in vitro[J]. Processes, 2022, 10(5):800-811.

[9]

Sun M, Sang Y, Deng Q, et al. Specific generation of nitric oxide in mitochondria of cancer cell for selective oncotherapy[J]. Nano Res, 2022, 15(6):5273-5278.

[10]

Hu Y, Lv T, Ma Y, et al. Nanoscale coordination polymers for synergistic NO and chemodynamic therapy of liver cancer[J]. Nano Lett, 2019, 19(4):2731-2738.

[11]

Lundberg J O, Weitzberg E. Nitric oxide signaling in health and disease[J]. Cell, 2022, 185(16):2853-2878.

[12]

Theivendran S, Yu C. Nanochemistry modulates intracellular decomposition routes of snitrosothiol modified silica-based nanoparticles[J]. Small, 2021, 17(21):2007671-2007677.

[13]

Lin Y J, Chen C C, Chi N W, et al. In situ self-assembling micellar depots that can actively trap and passively release NO with longlasting activity to reverse osteoporosis[J/OL]. Adv Mater, 2018, 30(22):143[2023-05-25] https://doi.org/10.1002/adma.201705605.

[14]

Li W W, Wang D Y, Lao K U, et al. Buffer concentration dramatically affects the stability of S-nitrosothiols in aqueous solutions[J]. Nitric Oxide-Biol Ch, 2022, 118:59-65[2023-05-25]. https://doi.org/10.1016/j.niox.2021.11.002.

[15]

Liu S, Li W, Dong S, et al. An all-in-one theranostic nanoplatform based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/gas therapy[J]. Nanoscale, 2020, 12(47):24146-24161.

[16] 费越,张奕华,黄张建.选择性/靶向性一氧化氮释放策略的研究进展[J].药学进展, 2019, 43(11):804-816. [17]

Wang D C, Clark J R, Lee R, et al. Development of antimicrobial nitric oxide-releasing fibers[J]. Pharmaceutics, 2021, 13(9):1445-1458.

[18]

Jia X, Zhang Y, Zou Y, et al. Dual intratumoral redox/enzymeresponsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy[J]. Adv Mater, 2018, 30(30):1704490-1704499.

[19]

Lv T, Wu J, Kang F, et al. Synthesis and evaluation of O2-derived diazeniumdiolates activatable via bioorthogonal chemistry reactions in living cells[J]. Org Lett, 2018, 20(8):2164-2167.

[20]

Ciccone V, Filippelli A, Bacchella C, et al. The nitric oxide donor[Zn (PipNONO) Cl] exhibits antitumor activity through inhibition of epithelial and endothelial mesenchymal transitions[J]. Cancers, 2022, 14(17):4240[2023-05-25]. https://pubmed.ncbi.nlm.nih.gov/36077778/. DOI: 10.3390/cancers14174240.

[21]

Hasan N, Lee J, Kwak D, et al. Diethylenetriamine/NONOatedoped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds[J/OL]. Carbohydr Polym, 2021, 270:118387[2023-05-25]. https://doi.org/10.1016/j.carbpol.2021.118387.

[22]

Wu W W, Yang Y, Liang Z Y, et al. Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer[J]. Nanoscale, 2021, 13(25):11169-11187.

[23]

Liu W, Semcheddine F, Guo Z, et al. Near-infrared light-triggered nitric oxide nanogenerators for NO-photothermal synergistic cancer therapy[J/OL]. Nanomaterials, 2022, 12(8):1348[2023-05-25]. https://doi.org/10.3390/nano12081348. DOI: 10.3390/cancers14174240.

[24]

Shi S W, Li Y H, Zhang Q L, et al. Targeted and NIR light-controlled delivery of nitric oxide combined with a platinum (IV) prodrug for enhanced anticancer therapy[J]. J Mater Chem B, 2019, 7(11):1867-1874.

[25]

Yu Y T, Shi S W, Wang Y, et al. A ruthenium nitrosyl-functionalized magnetic nanoplatform with near-infrared light-controlled nitric oxide delivery and photothermal effect for enhanced antitumor and antibacterial therapy[J]. ACS Appl Mater Inter, 2020, 12(1):312-321.

[26]

Fan W, Lu N, Huang P, et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy[J]. Angew Chem Int Ed, 2017, 56(5):1229-1233.

[27]

Wang K S, Jiang L P, Qiu L Y. Near infrared light triggered ternary synergistic cancer therapy via larginine-loaded nanovesicles with modification of pegylated indocyanine green[J/OL]. Acta Biomater, 2022, 140:506-517[2023-05-25]. https://doi.org/10.1016/j.actbio.2021.12.012.

[28]

Wang P G, Xian M, Tang X, et al. Nitric oxide donors:chemical activities and biological applications[J]. Chem Rev, 2002, 102(4):1091-1134.

[29]

Gao L, Dong B, Zhang J, et al. Functional biodegradable nitric oxide donor-containing polycarbonate-based micelles for reductiontriggered drug release and overcoming multidrug resistance[J]. ACS Macro Lett, 2019, 8(12):1552-1558.

[30]

Bai R R, Zhu J L, Bai Z Q, et al. Second generation beta-elemene nitric oxide derivatives with reasonable linkers:potential hybrids against malignant brain glioma[J]. J Enzym Inhib Med Ch, 2022, 37(1):379-385.

[31]

Fei Y, Wu J, An H W, et al. Identification of new ntric oxide-donating peptides with dual bofilm eradication and antibacterial activities for intervention of device-related infections[J]. J Med Chem, 2020, 63(17):9127-9135.

[32]

Cosby K, Partovi K S, Crawford J H, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation[J]. Nat Med, 2003, 9(12):1498-1505.

[33]

Chakrapani H, Gorczynski M J, King S B. Allylic nitro compounds as nitrite donors[J]. J Am Chem Soc, 2006, 128(50):16332-16337.

[34]

Wu J, Yin W, Huang Z, et al. Design, synthesis, and biological evaluation of organic nitrite (NO2-) donors as potential anticerebral ischemia agents[J]. J Med Chem, 2021, 64(15):10919-10933.

[35]

Sun J, Zhang X, Wang X, et al. Dithiol-activated bioorthogonal chemistry for endoplasmic reticulum-targeted synergistic chemophototherapy[J/OL]. Angew Chem Int Ed, 2022, 61(52):e202213765[2023-05-25]. https://doi.org/10.1002/anie.202213765.

[36]

Boyd C S, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis[J]. Biol Chem, 2002, 383(3/4):411-423.

[37]

Wang Y, Yang X, Chen X, et al. Sustained release of nitric oxide and cascade generation of reactive nitrogen/oxygen species via an injectable hydrogel for tumor synergistic therapy[J/OL]. Adv Funct Mater, 2022, 32(36):2206554[2023-05-25]. https://doi.org/10.1002/adfm.202206554.

[38] 顾瑞,张婷,司伟丽,等.肿瘤光治疗联合气体治疗纳米体系研究进展[J].药学进展, 2021, 45(4):263-272. [39]

Jia F, Yu W, Li X, et al. Microneedles loaded with glutathionescavenging composites for nitric oxide enhanced photodynamic therapy of melanoma[J]. Bioeng Transl Med, 2023, 8(1):e10352-e10365.

[40]

Negri L B, Martins T J, da Silva R S, et al. Photobiomodulation combined with photodynamic therapy using ruthenium phthalocyanine complexes in A375 melanoma cells:effects of nitric oxide generation and ATP production[J/OL]. J Photochem Photobiol B, 2019, 198:111564[2023-05-25]. https://doi.org/10.1016/j.jphotobiol.2019.111564.

[41]

Zhang Y, Zhao P, Chen X, et al. Near infrared-activatable methylene blue polypeptide codelivery of the NO prodrug via π-π stacking for cascade reactive oxygen species amplification-mediated photodynamic therapy[J]. ACS Appl Mater Interfaces, 2023, 15(10):12750-12765.

[42]

Hou Y, Kuang Y, Jiang Q, et al. Arginine-peptide complex-based assemblies to combat tumor hypoxia for enhanced photodynamic therapeutic effect[J]. Nano Res, 2022, 15(6):5183-5192.

[43]

Zuo S, Zhang Y, Wang Z, et al. Mitochondria-targeted mesoporous titanium dioxide nanoplatform for synergistic nitric oxide gassonodynamic therapy of breast cancer[J/OL]. Int J Nanomed, 2022, 17:989-1002[2023-05-25]. https://pubmed.ncbi.nlm.nih.gov/35280333/. DOI: 10.2147/IJN.S348618.

[44]

Reddy A V, Sehgal S, Hill C S, et al. Upfront chemotherapy followed by stereotactic body radiation therapy with or without surgery in older patients with localized pancreatic cancer:a single institution experience and review of the literature[J]. Curr Oncol, 2022, 29(1):308-320.

[45]

Scicinski J, Oronsky B, Ning S, et al. NO to cancer:the complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001[J/OL]. Redox Biol, 2015, 6:1-8[2023-05-25]. https://pubmed.ncbi.nlm.nih.gov/26164533/. DOI: 10.1016/j.redox.2015.07.002.

[46]

Liu S, Li W, Zhang Y, et al. Tailoring silica-based nanoscintillators for peroxynitrite-potentiated nitrosative stress in postoperative radiotherapy of colon cancer[J]. Nano Lett, 2022, 22(15):6409-6417.

[47]

Sun F, Wang Y, Luo X, et al. Anti-CD24 antibody-nitric oxide conjugate selectively and potently suppresses hepatic carcinoma[J]. Cancer Res, 2019, 79(13):3395-3405.

[48]

McGovern A, Mahony N, Mockler D, et al. Efficacy of resistance training during adjuvant chemotherapy and radiation therapy in cancer care:a systematic review and meta-analysis[J]. Support Care Cancer, 2022, 30(5):3701-3719.

[49]

Chen J, Zhao B, Zou J, et al. Macromolecular NO-donor micelles for targeted and augmented chemotherapy against prostate cancer[J/OL]. Adv Healthc Mater, 2022, 12(6):2202266[2023-05-25]. https://doi.org/10.1002/adhm.202202266.

[50]

Dallavalle S, Dobricic V, Lazzarato L, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors[J/OL]. Drug Resist Updat, 2020, 50:100682[2023-05-25]. https://doi.org/10.1016/j.drup.2020.100682.

[51]

Ding Y, Ma Y, Zhu L, et al. Nitric oxide-containing supramolecular polypeptide nanomedicine based on

[52]

Ji H B, Kim S-N, Kim C R, et al. Metal-organic framework for biomimetic nitric oxide generation and anticancer drug delivery[J/OL]. Biomater Adv, 2023, 145:213268[2023-05-25]. https://doi.org/10.1016/j.bioadv.2022.213268.

相关知识

外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响
植物激素在临床中的应用
花卉在基因工程育种中的研究进展
玫瑰花的保健功能及其应用研究进展
天然多糖作为树突状细胞免疫增强剂发挥抗肿瘤作用,Frontiers in Oncology
植物精油生理功能的研究进展
克隆技术在生物研究中的应用.pptx
十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展
植物精油药物作用研究进展
白及的化学成分、药理作用及其应用的研究进展 Research Progress on Chemical Composition, Pharmacological Action and Application of Bletilla striata

网址: 一氧化氮供体在抗肿瘤应用中的研究进展 https://m.huajiangbk.com/newsview340272.html

所属分类:花卉
上一篇: 葡萄籽提取物原花青素磷脂复合物抗
下一篇: 酵母源抗氧化活性肽干预DON对I