首页 > 分享 > 中国设施农业的减碳增汇效应分析 基于1828个县域面板数据的实证研究

中国设施农业的减碳增汇效应分析 基于1828个县域面板数据的实证研究

摘要: 设施农业作为中国现代农业的重要标志, 揭示其时空格局演变及减碳增汇效应对实现“双碳”目标、促进绿色转型发展具有重要意义。本文应用空间经济计量方法, 采用2013—2017年中国1828个县域面板数据, 分析中国县域碳排放、固碳量及设施农业的时空演变特征, 在此基础上实证分析了设施农业的减碳增汇效应, 并从区域和粮食产区角度进行了异质性分析。结果表明: 1)中国县域碳排放总体呈东高西低的空间格局, 固碳量则显示出西高东低的特点, 设施农业面积空间格局也为东高西低, 三者均具有显著的空间正相关性及高-高空间集聚特征。2)设施农业面积对碳排放的直接和间接效应都呈“U”型, 存在显著减碳效应, 但设施农业面积对固碳量的直接和间接效应都显著为负, 增汇效应不明显。3)设施农业面积对于减碳增汇的作用存在显著的异质性。就区域层面而言, 设施农业面积显著促进东部和东北部地区碳减排, 显著抑制中部和西部地区碳汇; 就粮食产区而言, 设施农业面积对粮食主产区和主销区存在显著的减碳效应, 对三大粮食产区的增汇效应均不明显。研究认为, 各县应当加快推进设施农业绿色发展, 因地制宜发展低碳农业, 加强区域间减碳增汇合作交流, 以此有力地推进设施农业绿色可持续发展, 实现减碳增汇的愿景。

关键词: 设施农业  /  碳排放  /  碳汇  /  粮食产区  

Abstract: Agriculture is not only a significant source of carbon emissions but also a massive carbon sink system. Reducing carbon emissions and increasing carbon sinks are essential directions and goals for achieving the green and high-quality development of modern agriculture. Protected agriculture is a crucial symbol of modern agriculture in China, revealing its spatiotemporal pattern evolution and the effect of reducing carbon emissions and increasing carbon sink is of great significance for achieving the “double carbon” goal and promoting green transformational development. However, there is limited research on reducing carbon emissions and increasing carbon sinks in protected agriculture, and the spatial correlation among protected agriculture, carbon emissions, and carbon sinks has not received enough attention. Research on reducing carbon emissions and increasing carbon sinks in protected agriculture should be conducted using a more microscopic county-level sample and should consider the heterogeneity of location and grain-production areas. Based on a comprehensive review of the existing literature, this study applies spatial econometric methods and utilizes panel data from 1828 counties in China from 2013 to 2017 for statistical analysis and empirical research. First, this study analyzed the temporal characteristics and spatial correlations of carbon emissions, carbon sinks, and protected agriculture at county level. Subsequently, it empirically analyzed the impact of protected agriculture on carbon emissions and sinks. Based on this, further analyses were conducted from the perspective of regional and grain-production area heterogeneity. The results showed that 1) carbon emissions in Chinese counties exhibited an overall pattern of higher levels in the east and lower levels in the west, while carbon sinks showed the opposite pattern. The spatial pattern of protected agriculture area followed the same trend as carbon emissions, and all three variables exhibited significant positive spatial correlations. A high-high agglomeration of carbon emissions was concentrated in the eastern region, with the center of gravity leaning towards the northwest. A high-high agglomeration of carbon sinks was concentrated in the western, northeastern and southwestern regions, whereas a high-high agglomeration of protected agriculture was concentrated in the Huang-Huai-Hai Region. 2) Protected agriculture area had a “U”-shaped direct and indirect effect on carbon emissions, indicating a significant carbon reduction effect. However, both the direct and indirect effects of protected agriculture area on carbon sinks were significantly negative, suggesting an insignificant sequestration effect. 3) The roles of protected agriculture in carbon reduction and sequestration exhibited significant heterogeneity. In terms of regional heterogeneity, protected agriculture significantly promoted carbon emission reduction in the eastern and northeastern regions, while significantly inhibiting carbon sinks in the central and western regions. Regarding the heterogeneity in grain-production areas, protected agriculture area had a significant carbon reduction effect in the major grain-production and sales areas, but its sequestration effect was not significant in the three grain-production areas. This study suggests that counties should accelerate the promotion of green development in protected agriculture, develop low-carbon agriculture according to local conditions, strengthen cooperation and communication on carbon reduction and sequestration between regions, effectively promote the green and sustainable development of protected agriculture, and achieve the goals of carbon reduction and sequestration.

图  1   中国县域碳排放量空间分布(2013—2017年)

CE: 碳排放量, ×104 t(CO2eq)。审图号: GS(2024)1028。CE: carbon emissions, ×104 t(CO2eq). Review number is GS(2024)1028.

Figure  1.   The spatial distribution of carbon emissions at county level in China from 2013 to 2017

图  2   中国县域固碳量空间分布(2013—2017年)

CS: 固碳量, ×104 t(CO2eq)。审图号: GS(2024)1028号。CS: carbon sink, ×104 t(CO2eq). Review number is GS(2024)1028.

Figure  2.   The spatial distribution of carbon sink at county level in China from 2013 to 2017

图  3   中国县域设施农业空间分布(2013—2017年)

PAA: 设施农业面积, hm2。审图号: GS(2024)1028。PAA: protected agriculture area, hm2. Review number is GS(2024)1028.

Figure  3.   The spatial distribution of protected agriculture at county level in China from 2013 to 2017

图  4   2013—2017年中国县域碳排放、固碳量和设施农业面积的全局Moran’s I值

CE: 碳排放量; CS: 固碳量; PAA: 设施农业面积。CE: carbon emissions; CS: carbon sink; PAA: protected agriculture area.

Figure  4.   The Global Moran’s I of carbon emissions, carbon sink and protected agriculture area at country level in China from 2013 to 2017

图  5   中国碳排放量(CE)、固碳量(CS)和设施农业(PAA) LISA图

H-H: 高-高集聚; H-L: 高-低集聚; L-H: 低-高集聚; L-L: 低-低集聚。审图号: GS(2024)1028号。H-H: high-high agglomeration; H-L: high-low agglomeration; L-H: low-high agglomeration; L-L: low-low agglomeration. Review number is GS(2024)1028.

Figure  5.   The LISA value maps of carbon emissions (CE), carbon sink (CS) and protected agriculture area (PAA) at county level in China

表  1   设施农业对碳排放和固碳量影响的估计结果

Table  1   Estimated results of the impact of protected agriculture on carbon emissions and carbon sink

变量
Variable 碳排放量 Carbon emissions 固碳量 Carbon sink OLS SLM SEM SDM SDM lnPAA −0.0075***
(−2.7485) −0.0071***
(−3.5578) −0.0066***
(−3.2849) −0.0063***
(−3.1703) −0.0032***
(−3.4563) (lnPAA)2 0.0006***
(2.6051) 0.0007***
(3.7690) 0.0006***
(3.4511) 0.0006***
(3.2495) lnGDP 0.0221***
(3.3408) 0.1783***
(3.6824) 0.0218***
(4.0978) 0.0183***
(3.2024) 0.0095
(1.4341) lnPIS 0.0537***
(9.0372) 0.0242***
(5.5616) 0.0217***
(4.6394) 0.0176***
(3.7848) lnPD 0.0420***
(3.0515) 0.0257**
(2.5579) 0.0193*
(1.8927) 0.0084
(0.8391) 0.0295**
(2.2060) lnGE −0.0247***
(−4.9563) 0.0138***
(3.7638) 0.0151***
(3.6823) 0.0146***
(3.5461) 0.0151***
(2.7988) lnGCP — −0.0001
(−0.0440) lnFC — −0.0815**
(−2.1893) W×lnPAA −0.1420***
(−4.2178) −0.0946***
(−7.7651) W×(lnPAA)2 0.0172***
(6.1496) W×lnGDP −0.3086***
(−7.4568) 0.0096
(0.2632) W×lnPIS 0.2514***
(5.6439) W×lnPD 2.7880***
(15.8044) 1.7539***
(8.2997) W×lnGE −0.0132
(−0.5151) −0.1355***
(−5.6721) W×lnGCP 0.2766***
(6.6997) W×lnFC 0.2578***
(4.2254) 常数项
Constant term 5.2022***
(45.3186) ρ、λ 0.9928***
(312.2870) 0.9928***
(313.9317) 0.9909***
(246.2671) 0.9970***
(753.6668) 豪斯曼检验
Hausman test 1746.6819*** LR检验
LR test 262.0914*** 279.5325*** 样本量
Sample size 9140 9140 9140 9140 9140   PAA: 设施农业面积; GDP: 经济发展水平; PIS: 产业结构; PD: 人口密度; GE: 政府财政支出; GCP: 粮食产量; FC: 森林覆盖面积; W: 空间权重矩阵; ρ: 空间自回归系数; λ: 误差项的空间自回归系数; OLS: 普通最小二乘法; SLM: 空间滞后模型; SEM: 空间误差模型; SDM: 空间杜宾模型; LR: 似然比。括号中为Z统计量; *, **和***分别代表在10%、5%和1%水平显著。PAA: protected agriculture area; GDP: level of economic development; PIS: production industrial structure; PD: population density; GE: government expenditure; GCP: grain production; FC: forest area; W: spatial weighting matrix; ρ: spatial autoregressive parameter; λ: spatial autoregressive parameter of the error term; OLS: Ordinary Least Square; SLM: Spatial Lag Model; SEM: Spatial Error Model; SDM: Spatial Durbin Model; LR: likelihood ratio. The value within parentheses represents the Z-statistic; *, ** and *** represent significant correlation at 10%, 5%, and 1% levels, respectively.

表  2   区域异质性和粮食产区异质性下设施农业对碳排放影响的估计结果

Table  2   Estimated results of the impact of protected agriculture on carbon emissions due to regional and grain production regional heterogeneity

变量
Variable 区域异质性
Regional heterogeneity 粮食产区异质性
Grain production regional heterogeneity 东部地区
Eastern
area 中部地区
Central
area 西部地区
Western
area 东北地区
Northeast
area 粮食主产区
Major grain-production
area 粮食主销区
Major grain-sales
area 产销平衡区
Production and sales balance
area lnPAA −0.0127***
(−3.32) −0.0004
(−0.11) −0.0042
(−1.43) −0.0150*
(−1.70) −0.0062**
(−2.46) −0.0083*
(−1.65) 0.0003
(0.09) (lnPAA)2 0.0011***
(3.39) 0.0001
(0.18) 0.0003
(1.07) 0.0013*
(1.89) 0.0006***
(2.89) −0.0007*
(1.69) −0.0001
(−0.29) lnGDP 0.0495***
(3.39) 0.0771***
(5.59) 0.0099
(1.25) 0.0170**
(2.03) 0.0510***
(6.92) −0.0713**
(−2.29) −0.0068
(−0.81) lnPIS −0.0066
(−0.48) 0.0083
(0.74) 0.0318***
(5.34) 0.0137*
(1.95) −0.0148**
(−2.18) 0.0065
(0.28) 0.0308***
(5.11) lnPD 0.0287*
(1.86) 0.0238
(1.37) −0.0666***
(−3.19) 0.0714***
(2.70) 0.0313**
(2.39) 0.0067
(0.37) −0.0592**
(−2.52) lnGE 0.0476***
(4.76) 0.0316***
(3.38) 0.0011
(0.1880) −0.0002
(−0.03) 0.0062
(1.25) 0.0777***
(4.92) 0.0043
(0.63) W×lnPAA −0.0651*
(−1.66) 0.0915**
(2.26) −0.1172***
(−2.99) −0.1186**
(−2.06) −0.1180***
(−3.59) −0.0428
(−0.90) −0.0023
(−0.04) W×(lnPAA)2 0.0052*
(1.76) −0.0065*
(−1.69) 0.0121***
(2.96) 0.0074
(1.59) 0.0106***
(4.03) 0.0028
(0.82) 0.0029
(0.51) W×lnGDP −0.0657
(−0.93) −0.0565
(−0.75) −0.1205***
(−3.10) −0.0438
(−1.09) -0.1971***
(−4.70) −0.0370
(−0.22) −0.2165***
(−4.99) W×lnPIS 0.2164**
(2.12) −0.1370**
(−2.03) 0.0699*
(1.92) −0.0222
(−0.55) 0.1430***
(3.16) 0.5332***
(3.61) 0.0882**
(2.54) W×lnPD 0.7186***
(4.22) 0.4052
(1.57) 0.4602***
(2.62) 0.3565*
(1.84) 1.9034***
(11.78) 0.4633**
(2.44) 0.6746***
(3.43) W×lnGE −0.0517
(−1.5398) −0.2299***
(−5.19) 0.1550***
(4.39) 0.0043
(0.15) −0.1177***
(−4.65) 0.0832*
(1.74) 0.0584
(1.57) ρ 0.9705***
(74.72) 0.9339***
(33.97) 0.9846***
(149.37) 0.9731***
(82.60) 0.9805***
(115.43) 0.9626***
(58.46) 0.9827***
(133.58) 样本量
Sample size 2385 2430 3605 720 5115 990 3035   PAA: 设施农业面积; GDP: 经济发展水平; PIS: 产业结构; PD: 人口密度; GE: 政府财政支出; W: 空间权重矩阵; ρ: 空间自回归系数; 括号中为 Z 统计量; *, **和***分别代表在10%、5%和1%水平显著。PAA: protected agriculture area; GDP: level of economic development; PIS: production industrial structure; PD: population density; GE: government expenditure; W: spatial weighting matrix; ρ: spatial autoregressive parameter. The value within parentheses represents the Z-statistic; *, ** and *** represent significant correlation at 10%, 5%, and 1% levels, respectively.

表  3   区域异质性和产区异质性下设施农业对固碳量影响的估计结果

Table  3   Estimated results of the impact of protected agriculture on carbon sink due to regional and grain production regional heterogeneity

变量
Variable 区域异质性
Regional heterogeneity 产区异质性
Grain production regional heterogeneity 东部地区
Eastern
area 中部地区
Central
area 西部地区
Western
area 东北地区
Northeast
area 粮食主产区
Major grain-production
area 粮食主销区
Major grain-sales
area 产销平衡区
Production and sales balance
area lnPAA −0.0009
(−0.60) −0.0025*
(−1.72) −0.0043***
(−3.06) −0.0048
(−1.30) −0.0031***
(−2.55) −0.0007
(−0.69) −0.0018
(−1.20) lnGDP −0.0488***
(−3.23) 0.0793***
(4.59) −0.0128
(−1.45) 0.0002
(0.02) 0.0224**
(2.37) −0.0262
(−1.56) −0.0177**
(−2.07) lnPD 0.0331*
(1.94) 0.0371*
(1.65) −0.0107
(−0.40) −0.0319
(−0.75) 0.0397**
(2.00) 0.0081
(0.77) −0.0002
(−0.01) lnGE 0.0424***
(3.85) 0.0021
(0.17) 0.0009
(0.13) −0.0266**
(−2.49) 0.0146**
(1.97) 0.0257***
(2.86) 0.0059
(0.77) lnGCP 0.0029
(0.38) 0.0341**
(2.30) 0.0041
(1.25) 0.0205*
(1.70) −0.0010
(−0.15) 0.0014
(0.25) −0.0011
(−0.34) lnFC −0.1164*
(−1.71) −0.6921***
(−5.98) 0.1439*
(1.93) 2.9391***
(2.85) 0.1930***
(−3.38) −0.2176***
(−3.08) −0.1347**
(−2.06) W×lnPAA −0.0342**
(−2.53) 0.0029
(0.17) −0.0577***
(−5.12) 0.0313
(1.12) −0.0263*
(−1.82) −0.0552***
(−8.22) −0.0571***
(−4.97) W×lnGDP 0.0490
(0.62) −0.2617***
(−3.90) 0.1992***
(4.72) 0.0114
(0.30) 0.0253
(0.65) −0.3503***
(−3.86) −0.0469
(−1.35) W×lnPD 1.0941***
(5.87) 0.0392
(0.13) −0.7192***
(−3.02) −0.2691
(−0.65) 2.2437***
(9.33) 0.3679***
(3.39) −0.6769***
(−3.05) W×lnGE −0.0582**
(−2.36) −0.0004
(−0.01) 0.1549***
(3.96) −0.0451
(−0.91) −0.2069***
(−7.06) 0.1078***
(5.21) 0.1944***
(4.86) W×lnGCP 0.2181***
(5.02) 0.8207***
(10.02) −0.0505*
(−1.76) 0.0510
(1.06) 0.7604***
(11.06) 0.1537***
(7.20) 0.1168***
(4.50) W×lnFC −0.0015
(−0.02) 1.0852***
(7.33) −0.0531
(−0.51) −2.9562**
(−2.56) 0.3583***
(4.77) 0.6167***
(4.28) 0.3275***
(3.55) ρ 0.9935***
(339.69) 0.9911***
(250.66) 0.9920***
(277.33) 0.9671***
(67.16) 0.9953***
(477.15) 0.9889***
(199.40) 0.9918***
(272.71) 样本量
Sample size 2385 2430 3605 720 5115 990 3035   PAA: 设施农业面积; GDP: 经济发展水平; PD: 人口密度; GE: 政府财政支出; GCP: 粮食产量; FC: 森林覆盖面积; W: 空间权重矩阵; ρ: 空间自回归系数; 括号中为 Z 统计量; *, **和***分别代表在10%、5%和1%水平显著。PAA: protected agriculture area; GDP: level of economic development; PD: population density; GE: government expenditure; GCP: grain production; FC: forest area; W: spatial weighting matrix; ρ: spatial autoregressive parameter. The value within parentheses represents the Z-statistic; *, ** and *** represent significant correlations at 10%, 5%, and 1% levels, respectively. [1] 吴贤荣, 张俊飚, 田云, 等. 中国省域农业碳排放: 测算、效率变动及影响因素研究−基于DEA-Malmquist指数分解方法与Tobit模型运用[J]. 资源科学, 2014, 36(1): 129−138

WU X R, ZHANG J B, TIAN Y, et al. Agricultural carbon emissions in China Province: calculation, efficiency change and influencing factors — Based on DEA-Malmquist index decomposition method and Tobit model application[J]. Resources Science, 2014, 36(1): 129−138

[2] 张震, 刘学瑜. 我国设施农业发展现状与对策[J]. 农业经济问题, 2015, 36(5): 64−70, 111

ZHANG Z, LIU X Y. Present situation and countermeasures of facility agriculture development in China[J]. Issues in Agricultural Economy, 2015, 36(5): 64−70, 111

[3] 曾大林, 纪凡荣, 李山峰. 中国省际低碳农业发展的实证分析[J]. 中国人口·资源与环境, 2013, 23(11): 30−35

ZENG D L, JI F R, LI S F. An empirical analysis of Chinese provincial low carbon agriculture development[J]. China Population, Resources and Environment, 2013, 23(11): 30−35

[4] 尹岩, 郗凤明, 邴龙飞, 等. 我国设施农业碳排放核算及碳减排路径[J]. 应用生态学报, 2021, 32(11): 3856−3864

YIN Y, XI F M, BING L F, et al. Accounting and reduction path of carbon emission from facility agriculture in China[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3856−3864

[5] 陶宝先. 北方典型设施菜地土壤CO2排放特征[J]. 环境科学研究, 2017, 30(12): 1927−1933

TAO B X. CO2 emissions from typical greenhouse soils in Northern China[J]. Research of Environmental Sciences, 2017, 30(12): 1927−1933

[6]

YIN Y, LIANG C H, PEI Z J. Effect of greenhouse soil management on soil aggregation and organic matter in Northeast China[J]. CATENA, 2015, 133: 412−419 doi: 10.1016/j.catena.2015.06.013

[7] 陶宝先, 张保华, 董杰, 等. 设施耕作促进农田土壤有机碳矿化[J]. 农业环境科学学报, 2017, 36(12): 2486−2492

TAO B X, ZHANG B H, DONG J, et al. Effect of greenhouse cultivation on the decomposition of organic carbon in agricultural soils[J]. Journal of Agro-Environment Science, 2017, 36(12): 2486−2492

[8] 李波, 张俊飚. 基于投入视角的我国农业碳排放与经济发展脱钩研究[J]. 经济经纬, 2012, 29(4): 27−31

LI B, ZHANG J B. Decoupling of China’s agriculture carbon emissions and economic development based on the input perspective[J]. Economic Survey, 2012, 29(4): 27−31

[9] 谢会强, 吴晓迪. 城乡融合对中国农业碳排放效率的影响及其机制[J]. 资源科学, 2023, 45(1): 48−61

XIE H Q, WU X D. Impact and its mechanism of urban-rural integration on the efficiency of agricultural carbon emissions in China[J]. Resources Science, 2023, 45(1): 48−61

[10] 田云, 张俊飚, 尹朝静, 等. 中国农业碳排放分布动态与趋势演进−基于31个省(市、区) 2002-2011年的面板数据分析[J]. 中国人口·资源与环境, 2014, 24(7): 91−98

TIAN Y, ZHANG J B, YIN C J, et al. Distributional dynamics and trend evolution of China’s agricultural carbon emissions — An analysis on panel data of 31 provinces from 2002 to 2011[J]. China Population, Resources and Environment, 2014, 24(7): 91−98

[11] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104−127

TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104−127

[12] 薛彩霞, 李园园, 胡超, 等. 中国保护性耕作净碳汇的时空格局[J]. 自然资源学报, 2022, 37(5): 1164−1182 doi: 10.31497/zrzyxb.20220505

XUE C X, LI Y Y, HU C, et al. Study on spatio-temporal pattern of conservation tillage on net carbon sink in China[J]. Journal of Natural Resources, 2022, 37(5): 1164−1182 doi: 10.31497/zrzyxb.20220505

[13] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86

LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86

[14]

WANG H N, YANG Y S, ZHANG X Y, et al. Carbon footprint analysis for mechanization of maize production based on life cycle assessment: a case study in Jilin Province, China[J]. Sustainability, 2015, 7(11): 15772−15784 doi: 10.3390/su71115772

[15] 王惠, 卞艺杰. 农业生产效率、农业碳排放的动态演进与门槛特征[J]. 农业技术经济, 2015(6): 36−47

WANG H, BIAN Y J. Dynamic evolution and threshold characteristics of agricultural production efficiency and agricultural carbon emission[J]. Journal of Agrotechnical Economics, 2015(6): 36−47

[16] 徐清华, 张广胜. 农业机械化对农业碳排放强度影响的空间溢出效应−基于282个城市面板数据的实证[J]. 中国人口·资源与环境, 2022, 32(4): 23−33 doi: 10.12062/cpre.20220411

XU Q H, ZHANG G S. Spatial spillover effect of agricultural mechanization on agricultural carbon emission intensity: an empirical analysis of panel data from 282 cities[J]. China Population, Resources and Environment, 2022, 32(4): 23−33 doi: 10.12062/cpre.20220411

[17] 李波, 张俊飚, 李海鹏. 中国农业碳排放与经济发展的实证研究[J]. 干旱区资源与环境, 2011, 25(12): 8−13

LI B, ZHANG J B, LI H P. Empirical study on China’s agriculture carbon emissions and economic development[J]. Journal of Arid Land Resources and Environment, 2011, 25(12): 8−13

[18] 杨晨, 胡珮琪, 刁贝娣, 等. 粮食主产区政策的环境绩效: 基于农业碳排放视角[J]. 中国人口·资源与环境, 2021, 31(12): 35−44

YANG C, HU P Q, DIAO B D, et al. Environmental performance evaluation of policies in main grain producing areas: from the perspective of agricultural carbon emissions[J]. China Population, Resources and Environment, 2021, 31(12): 35−44

[19] 王小彬, 武雪萍, 赵全胜, 等. 中国农业土地利用管理对土壤固碳减排潜力的影响[J]. 中国农业科学, 2011, 44(11): 2284−2293

WANG X B, WU X P, ZHAO Q S, et al. Effects of cropland-use management on potentials of soil carbon sequestration and carbon emission mitigation in China[J]. Scientia Agricultura Sinica, 2011, 44(11): 2284−2293

[20]

WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217–232

[21] 徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文), 2022, 30(4): 658−670

XU Y D. Conservation agriculture-mediated soil carbon sequestration: a review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670

[22] 李洁静, 潘根兴, 张旭辉, 等. 太湖地区长期施肥条件下水稻-油菜轮作生态系统净碳汇效应及收益评估[J]. 应用生态学报, 2009, 20(7): 1664−1670

LI J J, PAN G X, ZHANG X H, et al. An evaluation of net carbon sink effect and cost/benefits of a rice-rape rotation ecosystem under long-term fertilization from Tai Lake Region of China[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1664−1670

[23] 蔡育蓉, 王立刚. 北方典型农业生态系统的固碳减排路径及模式[J]. 中国生态农业学报(中英文), 2022, 30(4): 641−650

CAI Y R, WANG L G. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in Northern China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 641−650

[24] 丁雪丽, 韩晓增, 乔云发, 等. 农田土壤有机碳固存的主要影响因子及其稳定机制[J]. 土壤通报, 2012, 43(3): 737−744

DING X L, HAN X Z, QIAO Y F, et al. Sequestration of organic carbon in cultivated soils: main factors and their stabilization mechanisms[J]. Chinese Journal of Soil Science, 2012, 43(3): 737−744

[25] 杜之利, 苏彤, 葛佳敏, 等. 碳中和背景下的森林碳汇及其空间溢出效应[J]. 经济研究, 2021, 56(12): 187−202

DU Z L, SU T, GE J M, et al. Towards the carbon neutrality: the role of carbon sink and its spatial spillover effects[J]. Economic Research Journal, 2021, 56(12): 187−202

[26] 李治国, 王杰, 王叶薇. 经济集聚扩大绿色经济效率差距了吗? −来自黄河流域城市群的经验证据[J]. 产业经济研究, 2022(1): 29−42

LI Z G, WANG J, WANG Y W. Does economic agglomeration widen the efficiency gap in green economic efficiency? Evidence from urban agglomerations in the Yellow River Basin[J]. Industrial Economics Research, 2022(1): 29−42

[27] 刘华军, 邵明吉, 吉元梦. 中国碳排放的空间格局及分布动态演进−基于县域碳排放数据的实证研究[J]. 地理科学, 2021, 41(11): 1917−1924

LIU H J, SHAO M J, JI Y M. The spatial pattern and distribution dynamic evolution of carbon emissions in China: empirical study based on county carbon emission data[J]. Scientia Geographica Sinica, 2021, 41(11): 1917−1924

[28] 王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报, 2021, 76(12): 3103−3118

WANG S J, XIE Z H, WANG Z H. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China[J]. Acta Geographica Sinica, 2021, 76(12): 3103−3118

[29] 何丽虹, 商稳奇, 宋英, 等. 2022年设施农业机械化进展情况[J]. 农机科技推广, 2023(2): 9−11

HE L H, SHANG W Q, SONG Y, et al. Progress of facility agriculture mechanization in 2022[J]. Agriculture Machinery Technology Extension, 2023(2): 9−11

[30] 谭智心, 张云华. 设施农业用地供需状况、政策执行困境与优化策略[J]. 改革, 2020(11): 109−118

TAN Z X, ZHANG Y H. Supply and demand situation, policy implementation dilemma and optimization strategy of protected agricultural land[J]. Reform, 2020(11): 109−118

[31]

AREVALO C B M, BHATTI J S, CHANG S X, et al. Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 342–349

相关知识

中国设施农业的减碳增汇效应分析 基于1828个县域面板数据的实证研究
中国科技类个股收益横截面的季节性研究——基于面板数据的实证分析
碳交易对农业绿色全要素生产率的影响——基于碳汇和碳排放双重视角
低碳国土空间开发的实现主要有碳减排和碳增汇两个途径
中国生态系统碳汇功能提升的技术途径:基于自然解决方案
森林碳汇对经济增长影响的溢出效应研究
“双碳”目标下的农业低碳发展研究:现状、误区与前瞻
碳中和背景下的森林碳汇及其空间溢出效应
中国农业净碳汇效率动态演进与空间溢出效应
岩溶碳循环及碳汇效应研究与展望

网址: 中国设施农业的减碳增汇效应分析 基于1828个县域面板数据的实证研究 https://m.huajiangbk.com/newsview341622.html

所属分类:花卉
上一篇: 干旱区流域绿洲化过程对土壤碳汇促
下一篇: 尹家波