贾建楠,吉海彦,基于病斑形状和神经网络的黄瓜病害识别[J]. 农业工程学报,2013,29(25):115-121. Jia Jiannan, Ji Haiyan. Recognition for cucumber disease based on leaf spot shape and neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(25): 115-121. (in Chinese with English abstract)
[2]孙俊,谭文军,毛罕平. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215. Sun Jun, Tan Wenjun, Mao Hanping. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 209-215. (in Chinese with English abstract)
[3]魏丽冉,岳峻,李振波,等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报,2017,48(S1):166-171. Wei Liran, Yue Jun, Li Zhenbo, et al. Multi-classification detection method of plant leaf disease based on kernel function SVM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 167-171. (in Chinese with English abstract)
[4]龙满生,欧阳春娟,刘欢,等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报,2018,34(18):194-201. Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 194-201. (in Chinese with English abstract)
[5]张建华,祁力钧,冀荣华. 基于粗糙集和BP神经网络的棉花病害识别[J]. 农业工程学报,2012,28(7):161-167. Zhang Jianhua, Qi Lijun, Ji Ronghua. Cotton diseases identification based on rough setsand BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 161-167. (in Chinese with English abstract)
[6]许良凤,徐小兵,胡敏. 基于多分类器融合的玉米叶部病害识别[J]. 农业工程学报,2015,31(14):194-201. Xu Liangfeng, Xu Xiaobing, Hu Min. Corn leaf disease identification based on multiple classifiers fusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 194-201. (in Chinese with English abstract)
[7]马浚诚,杜克明,郑飞翔,等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报,2018,34(12):186-192. Ma Juncheng, Du Keming, Zheng Feixiang, et al. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 186-192. (in Chinese with English abstract)
[8]杨林楠,郜鲁涛,林尔升. 基于Android系统手机的甜玉米病虫害智能诊断系统[J]. 农业工程学报,2012,28(18):163-168. Yang Linnan, Gao Lutao, Lin Ersheng. Intelligent diagnose system of diseases and insect pests in sweet corn based on mobile terminal with Android system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 161-167. (in Chinese with English abstract)
[9]Prasad S, Peddoju S K, Ghosh D. Multi-resolution mobile vision system for plant leaf disease diagnosis[J]. Signal, Image and Video Processing, 2016, 10(2): 379-388.
[10]焦计晗,张帆,张良. 基于改进AlexNet模型的油菜种植面积遥感估测[J]. 计算机测量与控制,2018,26(2):186-189. Jiao Jihao, Zhang Fan, Zhang Liang. Remote sensing estimation of rape planting area based on improved AlexNet model[J]. Computer Measurement & Control, 2018, 26(2): 186-189. (in Chinese with English abstract)
[11]Simonyan K, Zisserman A. Very deep convolutional networks for large?scale image recognition[EB/OL]. [2017-09-04]. https://arxiv.org/abs/1409.1556v6.
[12]Ballester P L, Araujo R M. On the performance of GoogLeNet and AlexNet applied to sketches[C]// AAAI. AAAI Press, 2016.
[13]尼加提·卡斯木,师庆东,刘素红,等. 基于卷积网络的沙漠腹地绿洲植物群落自动分类方法[J]. 农业机械学报,2019,50(1):217-225. Nijiat Kasim, Shi Qingdong, Liu Suhong, et al. Automatic classification method of oasis plant community in desert hinterland based on VggNet and ResNet models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 217-225. (in Chinese with English abstract)
[14]赵志衡,宋欢,朱江波,等. 基于卷积神经网络的花生籽粒完整性识别算法及应用[J]. 农业工程学报,2018,34(21):195-201. Zhao Zhiheng, Song Huan, Zhu Jiangbo, et al. Peanut grain integrity recognition algorithm based on convolution neural network and its application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 195-201. (in Chinese with English abstract)
[15]王丹丹,何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报,2019,35(3):164-171. Wang Dandan, He Dongjian. Recognition of apple target before fruit thinning by robot based on R-FCN deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 164-171. (in Chinese with English abstract)
[16]李云伍,徐俊杰,刘得雄,等. 基于改进空洞卷积神经网络的丘陵山区田间道路场景识别[J]. 农业工程学报,2019,35(7):150-159. Li Yunwu, Xu Junjie, Liu Dexiong, et al. Field road scene recognition in Hilly and mountainous areas based on improved void convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 150-159. (in Chinese with English abstract)
[17]Lu Jiang, Hu Jie, Zhao Guannan, et al. An in-field automatic wheat disease diagnosis system[J]. Computers and Electronics in Agriculture, 2017, 142: 369-379.
[18]张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报,2018,23(11):167-177. Zhang Jianhua, Kong Fantao, Wu Jianzhai, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 167-177. (in Chinese with English abstract)
[19]郑一力,张露. 基于迁移学习的卷积神经网络植物叶片图像识别方法[J]. 农业机械学报,2018,49(S1):354-359. Zheng Yili, Zhang Lu. Plant leaf image recognition method based on transfer learning with convolutional neural networks[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 354-359. (in Chinese with English abstract)
[20]Grinblat G L, Uzal L C, Larese, et al. Deep learning for plant identification using vein morphological patterns[J]. Computers and Electronics in Agriculture, 2016, 127: 418-424.
[21]Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2017-04-17]. https: //arxiv. org/abs/1704. 04861.
[22]Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [EB/OL]. [2015-12-02]. https://arxiv.org/abs/1512.00567
[23]Loffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate Shift[EB/OL]. [2015-02-11]. https: //arxiv. org/abs/1502. 03167.
[24]宋小倩,周东升. 基于Android平台的应用开发研究[J]. 软件导刊,2011,10(2):104-106. Song Xiaoqian, Zhou Dongsheng. Development and research of application based on android platform[J]. Software Tribune, 2011, 10(2): 104-106. (in Chinese with English abstract)
[25]尚明华,秦磊磊,王风云,等. 基于Android智能手机的小麦生产风险信息采集系统[J]. 农业工程学报,2011,27(5):178-182. Shang Minghua, Qin Leilei, Wang Fengyun, et al. Information collection system of wheat production risk based on Android smartphone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 178-182. (in Chinese with English abstract)
[26]杨莉. 基于Android的移动学习平台的设计[J]. 计算机光盘软件与应用,2014(6):79-80. Yang Li. Design on mobile learning platform based on Android[J]. Computer CD Software and Application, 2014(6): 79-80. (in Chinese with English abstract)
[27]戴建国,王守会,赖军臣,等. 基于智能手机的棉花苗情调查与决策支持系统[J]. 农业工程学报,2017,33(21):200-206. Dai Jianguo, Wang Shouhui, Lai Junchen, et al. Cotton growth statuses investigation and decision support system based on smart phone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 200-206. (in Chinese with English abstract)
[28]路文超,赵勇,罗斌,等. 基于android手机的水稻剑叶角测量系统[J]. 农业机械学报,2015,46(11):296-301. Lu Wenchao, Zhao Yong, Luo Bin, et al. Measurement system of rice flag leaf angle based on android smart phone[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 296-301. (in Chinese with English abstract)
[29]马艳娜,唐华,柯红军. 基于移动终端的遥感监测数据采集系统设计与实现[J]. 测绘与空间地理信息,2017,40(4):120-122. Ma Yanna, Tang Hua, Ke Hongjun. The System design and implementation of remote sensing data acquisition based on mobile terminal[J]. Geometrics & Spatial Information Technology, 2017, 40(4): 120-122. (in Chinese with English abstract)
[30]戴建国,赖军臣. 基于图像规则与Android手机的棉花病虫害诊断系统[J]. 农业机械学报,2015,46(1):35-44. Dai Jianguo, Lai Junchen. Image-rule-based diagnostic expert system for cotton diseases and pests based on mobile terminal with android system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46 (1): 35-44. (in Chinese with English abstract)
[31]Prasad S, Peddoju S K, Ghosh D. Multi-resolution mobile vision system for plant leaf disease diagnosis[J]. Signal, Image and Video Processing, 2016, 10(2): 379-388.
[32]He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 27-30
[33]Hughes D P, Salathe M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. [2015-11-25]. https: //arxiv. org/abs/1511. 08060.
[34]Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[35]杨国国,鲍一丹,刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报,2017,33(6):156-162. Yang Guoguo, Bao Yidan, Liu Ziyi. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 156-162. (in Chinese with English abstract)
[36]叶海建, 郎睿. 基于Android的自然背景下黄瓜霜霉病定量诊断系统[J]. 农业机械学报,2017,48(3):24-29. Ye Haijian, Lang Rui. Cucumber downy mildew severity quantifying diagnosis system suitable for natural backgrounds based on Android[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 24-29. (in Chinese with English abstract)
[37]葛芸,江顺亮,叶发茂,等. 基于ImageNet预训练卷积神经网络的遥感图像检索[J]. 武汉大学学报:信息科学版,2018,43(1):67-73. Ge Yun, Jiang Shunliang, Ye Famao, et al. Remote sensing image retrieval using pre-trained convolutional neural networks based on ImageNet[J]. Geometrics and Information Science of Wuhan University, 2018, 43(1): 67-73. (in Chinese with English abstract)
[38]Mohanty S P, Hughes D P, Marcel S. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 14-19
相关知识
基于神经结构搜索的多种植物叶片病害识别
基于轻量级CNN的植物病害识别方法及移动端应用
Research Progress in Detection and Identification of Crop Diseases and Insect Pests Based on Deep Learning
面向大规模多类别的病虫害识别模型
基于改进YOLOv8的轻量化荷叶病虫害检测模型
电子鼻技术在棉花早期棉铃虫虫害检测中的应用
基于自适应判别深度置信网络的棉花病虫害预测
基于SK
基于卷积神经网络的菊花花型和品种识别
基于视觉加强注意力模型的植物病虫害检测
网址: Plant disease identification method based on lightweight CNN and mobile application https://m.huajiangbk.com/newsview343951.html
上一篇: 用于植物病虫害诊断的多光谱成像系 |
下一篇: 花卉租赁的方法专业花卉租摆哪家好 |