[1] 柴毅, 黄席樾, 何离庆, 等. 番茄栽培病虫害防治知识表示[J]. 重庆大学学报(自然科学版), 2000, 23(6): 56-58. DOI: 10.11835/j.issn.1000-582X.2000.06.018.
[2]贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(增刊): 313-317. DOI: 10.6041/j.issn.1000-1298.2019.S0.048.
[3]王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277. DOI: 10.6041/j.issn.1000-1298.2016.09.037.
[4]魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, 48(增刊): 166-171. DOI: 10.6041/j.issn.1000-1298.2017.S0.027.
[5]XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors, 2016, 16(5): 676. DOI: 10.3390/s16050676.
[6]柴阿丽, 李宝聚, 石延霞, 等. 基于计算机视觉技术的番茄叶部病害识别[J]. 园艺学报, 2010, 37(9): 1423-1430. DOI: 10.16420/j.issn.0513-353x.2010.09.030.
[7]刘君, 王学伟. 融合CNN多卷积特征与HOG的番茄叶部病害检测算法[J]. 北方园艺, 2020(4): 147-152. DOI: 10.11937/bfyy.20193405.
[8]唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32-39. DOI: 10.16088/j.issn.1001-6600.2020.06.004.
[9]THANGARAJ R, ANANDAMURUGAN S, PANDIYAN P, et al. Artificial intelligence in tomato leaf disease detection: a comprehensive review and discussion[J]. Journal of Plant Diseases and Protection, 2022, 129(3): 469-488. DOI:10.1007/s41348-021-00500-8.
[10]JIA S J, JIA P Y, HU S P,et al. Automatic detection of tomato diseases and pests based on leaf images[C]// 2017 Chinese Automation Congress (CAC). Piscataway NJ: IEEE Press,2017:3507-3510. DOI: 10.1109/CAC.2017.8243388.
[11]TM P, PRANATHI A, SAIASHRITHA K, et al. Tomato leaf disease detection using convolutional neural networks[C]// 2018 Eleventh International Conference on Contemporary Computing (IC3). Los Alamitos, CA: IEEE Computer Society, 2018: 314-318. DOI: 10.1109/IC3.2018.8530532.
[12]KAUR M, BHATIA R. Development of an improved tomato leaf disease detection and classification method[C]// 2019 IEEE Conference on Information and Communication Technology. Piscataway, NJ: IEEE Press, 2019: 1-5.DOI: 10.1109/ CICT48419.2019.9066230.
[13]GONZALEZ-HUITRON V, LEN-BORGES J A, RODRIGUEZ-MATA A E, et al. Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4[J]. Computers and Electronics in Agriculture, 2021, 181: 105951. DOI: 10.1016/j.compag.2020.105951.
[14]郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. DOI: 10.11975/j.issn.1002-6819.2019.13.018.
[15]汤文亮, 黄梓锋. 基于知识蒸馏的轻量级番茄叶部病害识别模型[J]. 江苏农业学报, 2021, 37(3): 570-578. DOI: 10.3969/j.issn.1000-4440.2021.03.004.
[16]张宁, 吴华瑞, 韩笑, 等. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报, 2021, 33(7): 1329-1338. DOI: 10.3969/j.issn.1004-1524.2021.07.19.
[17]王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. DOI: 10.6041/j.issn.1000-1298.2021.04.025.
[18]徐智,宁文昌,赵龙阳,等.基于注意力数据增广的细粒度图像分类方法[J]. 桂林电子科技大学学报,2021,41(6):496-503. DOI: 10.16725/j.cnki.cn45-1351/tn.2021.06.006.
[19]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
[20]LETARTE G, PARADIS F, GIGURE P, et al. Importance of self-attentionfor sentiment analysis[C]// Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Stroudsburg, PA: Association for Computational Linguistics, 2018: 267-275. DOI: 10.18653/v1/W18-5429.
[21]YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]// Computer Vision-ECCV 2018: Lecture Notes in Computer Science 11217. Cham: Springer Nature Switzerland AG, 2018: 334-349. DOI: 10.1007/978-3-030-01261-8_20.
[22]FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pat-tern Recognition (CVPR).Los Alamitos, CA: IEEE Computer Society, 2017: 4476-4484. DOI: 10.1109/CVPR.2017.476.
[23]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[24]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[25]TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. Long Beach, CA: PMLR, 2019: 6105-6114.
[26]LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 510-519. DOI: 10.1109/CVPR.2019.00060.
[27]唐浪, 李慧霞, 颜晨倩, 等. 深度神经网络结构搜索综述[J]. 中国图象图形学报, 2021, 26(2): 245-264. DOI: 10.11834/jig.200202.
[28]ZHANG T, QI G J, XIAO B, et al.Interleaved group convolutions[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 4383-4392. DOI: 10.1109/ICCV.2017.469.
[29]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386.
[30]CHEN L C, PAPANDREOU G, KOKKINOS l, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convoution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184.
相关知识
24年婚庆咖色系礼堂摄影造景花艺假花 酒店T台吊顶室外装饰仿真花
和谐健康高调亮相:举牌万达信息后 又花90亿买了个北京地标
基于 N
基于PEST
基于MSDB
基于Sentinel
基于NB
基于Globe
基于GIS的物流配送系统设计
基于ResNet对花朵分类研究
网址: 基于SK https://m.huajiangbk.com/newsview322058.html
上一篇: 花卉病虫害识别 |
下一篇: 园艺植物病虫害防治实验实训指导 |