首页 > 分享 > Research Progress on Response of Hemerocallis to Abiotic Stresses

Research Progress on Response of Hemerocallis to Abiotic Stresses

[1]

ZHANG S J, ZHANG Z Z. Origin, distribution, classification and application of Hemerocallis[J]. Landscape Archit, 2018(5): 5-9.
张世杰, 张志国. 萱草属植物的起源、分布、分类及应用[J]. 园林, 2018(5): 5-9.

[2]

ZHENG Y, LI J L, CHEN H M, et al. The complete chloroplast genome sequence of Hemerocallis fulva[J]. Mitochondrial DNA Part B, 2020, 5(3): 3543-3544. DOI:10.1080/23802359.2020.1829126

[3]

LIN Y L, LU C K, HUANG Y J, et al. Antioxidative caffeoylquinic acids and flavonoids from Hemerocallis fulva flowers[J]. J Agric Food Chem, 2011, 59(16): 8789-8795. DOI:10.1021/jf201166b

[4]

SARG T M, SALEM S A, FARRAG N M, et al. Phytochemical and antimicrobial investigation of Hemerocallis fulva L. grown in Egypt+[J]. Int J Crude Drug Res, 1990, 28(2): 153-156. DOI:10.3109/13880209009082803

[5]

CICHEWICZ R H, ZHANG Y J, SEERAM N P, et al. Inhibition of human tumor cell proliferation by novel anthraquinones from daylilies[J]. Life Sci, 2004, 74(14): 1791-1799. DOI:10.1016/j.lfs.2003.08.034

[6] [7]

GUO L Q, ZHANG Y, ZHANG B, et al. Chemical constituents and pharmacological research progress of Hemerocallis fulva roots and flowers[J]. Chin Arch Trad Chin Med, 2013, 31(1): 74-76.
郭冷秋, 张颖, 张博, 等. 萱草根及萱草花的化学成分和药理作用研究进展[J]. 中华中医药学刊, 2013, 31(1): 74-76. DOI:10.13193/j.archtcm.2013.01.78.guolq.044

[8]

ZHENG M Z, LIU C M, PAN F G, et al. Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: Possible cellular mechanisms[J]. Phytomedicine, 2012, 19(2): 145-149. DOI:10.1016/j.phymed.2011.06.029

[9]

FEDOROFF N V, BATTISTI D S, BEACHY R N, et al. Radically rethinking agriculture for the 21st century[J]. Science, 2010, 327(5967): 833-834. DOI:10.1126/science.1186834

[10]

ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. DOI:10.1016/j.cell.2016.08.029

[11]

XU C B. Research progress on molecular mechanism of plant response to stress[J]. Seed Sci Technol, 2018, 36(9): 44-46.
许存宾. 植物应答逆境胁迫分子机制的研究进展[J]. 种子科技, 2018, 36(9): 44-46. DOI:10.3969/j.issn.1005-2690.2018.09.034

[12]

LU J X, WANG H G, WANG Z, et al. Advances on effects of different abiotic stresses on Paeonia lactiflora in China[J]. J Chin Med Mat, 2022, 45(1): 248-254.
陆佳欣, 王洪刚, 王震, 等. 不同非生物胁迫对药用植物芍药影响的国内研究进展[J]. 中药材, 2022, 45(1): 248-254. DOI:10.13863/j.issn1001-4454.2022.01.044

[13]

THORPE G W, REODICA M, DAVIES M J, et al. Superoxide radicals have a protective role during H2O2 stress[J]. Mol Biol Cell, 2013, 24(18): 2876-2884. DOI:10.1091/mbc.E13-01-0052

[14]

DUAN J Z, ZHANG M H, ZHANG H L, et al. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L. )[J]. Plant Sci, 2012, 196: 143-151. DOI:10.1016/j.plantsci.2012.08.003

[15]

DAS K, ROYCHOUDHURY A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Front Environ Sci, 2014, 2: 53. DOI:10.3389/fenvs.2014.00053

[16]

YIN X M, HUANG L F, ZHANG X, et al. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice[J]. J Plant Biol, 2015, 58(1): 68-73. DOI:10.1007/s12374-014-0349-x

[17]

MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9(10): 490-498. DOI:10.1016/j.tplants.2004.08.009

[18]

ABBASI A R, HAJIREZAEI M, HOFIUS D, et al. Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco[J]. Plant Physiol, 2007, 143(4): 1720-1738. DOI:10.1104/pp.106.094771

[19]

HUSSAIN H A, HUSSAIN S, KHALIQ A, et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities[J]. Front Plant Sci, 2018, 9: 393. DOI:10.3389/fpls.2018.00393

[20]

NOUMAN W, BASRA S M A, YASMEEN A, et al. Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions[J]. Plant Growth Regul, 2014, 73(3): 267-278. DOI:10.1007/s10725-014-9887-y

[21]

GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930. DOI:10.1016/j.plaphy.2010.08.016

[22]

WANG G J, TANG L, FAN S X, et al. Role of antioxidant machinery on crop plants in abiotic stress tolerance[J]. J Shenyang Agric Univ, 2012, 43(6): 719-724.
王国骄, 唐亮, 范淑秀, 等. 抗氧化机制在作物对非生物胁迫耐性中的作用[J]. 沈阳农业大学学报, 2012, 43(6): 719-724. DOI:10.3969/j.issn.1000-1700.2012.06.012

[23]

WANG G X, CHEN L P, KOU L X, et al. Effects of high temperature stress on osmotic adjustment substances of 25 varieties of Camellia oleifera[J]. J Henan Agric Sci, 2012, 41(4): 59-62.
王国霞, 陈丽培, 寇刘秀, 等. 高温胁迫对25个油茶品种渗透调节物质的影响[J]. 河南农业科学, 2012, 41(4): 59-62. DOI:10.3969/j.issn.1004-3268.2012.04.013

[24]

DUAN N, WANG J, LIU F, et al. Research progress on drought resistance of plant[J]. Mol Plant Breed, 2018, 16(15): 5093-5099.
段娜, 王佳, 刘芳, 等. 植物抗旱性研究进展[J]. 分子植物育种, 2018, 16(15): 5093-5099. DOI:10.13271/j.mpb.016.005093

[25]

ZHU T T, WANG Y X, PEI L L, et al. Research progress of plant protein kinase and abiotic stress resistance[J]. J Plant Genet Resour, 2017, 18(4): 763-770.
朱婷婷, 王彦霞, 裴丽丽, 等. 植物蛋白激酶与作物非生物胁迫抗性的研究[J]. 植物遗传资源学报, 2017, 18(4): 763-770. DOI:10.13430/j.cnki.jpgr.2017.04.020

[26]

DHANDA S S, SETHI G S, BEHL R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth[J]. J Agron Crop Sci, 2004, 190(1): 6-12. DOI:10.1111/j.1439-037X.2004.00592.x

[27]

BAI L P, SUN F G, GE T D, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16(3): 326-332. DOI:10.1016/S1002-0160(06)60059-3

[28]

SHUKLA N, AWASTHI R P, RAWAT L, et al. Biochemical and physiological responses of rice (Oryza sativa L. ) as influenced by Trichoderma harzianum under drought stress[J]. Plant Physiol Biochem, 2012, 54: 78-88. DOI:10.1016/j.plaphy.2012.02.001

[29]

DING X D, ZHANG J H, MEI Y R, et al. Effects of drought stress on morphology of five flower borders[J]. J CS Univ For Technol, 2019, 39(2): 53-58.
丁雪丹, 张继红, 梅雅茹, 等. 干旱胁迫对5种花境植物形态的影响[J]. 中南林业科技大学学报, 2019, 39(2): 53-58. DOI:10.14067/j.cnki.1673-923x.2019.02.009

[30]

HE X S, XU L C, PAN C, et al. Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics[J]. PLoS One, 2020, 15(7): e0235795. DOI:10.1371/journal.pone.0235795

[31]

WANG R, LI X G, LI S P, et al. Changes of drought stress on main osmotic adjustment substance in leaves and roots of two banana plantlets[J]. Genom Appl Biol, 2010, 29(3): 518-522.
王蕊, 李新国, 李绍鹏, 等. 干旱胁迫下2种香蕉幼苗叶片和根的主要渗透调节物质的变化[J]. 基因组学与应用生物学, 2010, 29(3): 518-522. DOI:10.3969/gab.029.000518

[32]

GUO Y Y, YU H Y, YANG M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russ J Plant Physiol, 2018, 65(2): 244-250. DOI:10.1134/S1021443718020127

[33]

JIA M L, ZHANG X G, LIANG Z, et al. Screening and evaluation of drought tolerance of 20 different Hemerocallis lines[J]. Seed, 2021, 40(6): 90-95.
贾民隆, 张晓纲, 梁峥, 等. 20个不同品系萱草的耐旱性筛选与评价[J]. 种子, 2021, 40(6): 90-95. DOI:10.16590/j.cnki.1001-4705.2021.06.090

[34]

LI H, JI D Y, JI Z Y, et al. Establishment of drought-tolerant daylily varieties based on leaf surface temperature and drought resistance evaluation grade[J]. Mol Plant Breed, 2021, 19(11): 3744-3755.
李昊, 季顶宇, 吉子宜, 等. 基于叶面温度和抗旱性评价等级的耐干旱萱草品种筛选方法的建立[J]. 分子植物育种, 2021, 19(11): 3744-3755. DOI:10.13271/j.mpb.019.003744

[35]

YANG X R, LIU C. Effects of soil natural drought on physiological characteristics of Hemerocallis middendorffii seedlings[J]. Chin Hort Abstr, 2015, 31(1): 33-34.
杨絮茹, 刘程. 土壤自然干旱对大花萱草幼苗生理特性的影响[J]. 中国园艺文摘, 2015, 31(1): 33-34. DOI:10.3969/j.issn.1672-0873.2015.01.010

[36]

OU M Z, JIN L M, LI C T, et al. Growth and physiological response to drought stress of six species of Hemerocallis hybridus[J]. Tianjin Agric Sci, 2018, 24(12): 11-13.
欧敏哲, 金立敏, 李楚彤, 等. 6种大花萱草对干旱胁迫的生长和生理响应[J]. 天津农业科学, 2018, 24(12): 11-13. DOI:10.3969/j.issn.1006-6500.2018.12.004

[37]

ZHANG M D, CHEN Q, SHEN S H. Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol[J]. Acta Physiol Plant, 2011, 33(2): 313-318. DOI:10.1007/s11738-010-0549-z

[38]

DE SOUZA T C, MAGALHÃES P C, DE CASTRO E M, et al. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance[J]. Acta Physiol Plant, 2013, 35(2): 515-527. DOI:10.1007/s11738-012-1093-9

[39]

CAO D M, JIA M L, DUAN J J, et al. Effects of exogenous methyl jasmonate on photosynthetic characteristics of Hemerocallis under drought stress[J]. N Hort, 2021(13): 78-84.
曹冬梅, 贾民隆, 段九菊, 等. 外源茉莉酸甲酯对干旱胁迫下萱草光合生理的缓解效应[J]. 北方园艺, 2021(13): 78-84. DOI:10.11937/bfyy.20205016

[40]

LIAO W B, ZHANG M L. Effects of exogenous abscisic acid and hydrogen peroxide on drought resistance of 3 Hemerocallis cultivars[J]. Agric Res Arid Areas, 2013, 31(3): 173-177.
廖伟彪, 张美玲. 外源过氧化氢和脱落酸对3种萱草抗旱性的影响[J]. 干旱地区农业研究, 2013, 31(3): 173-177. DOI:10.3969/j.issn.1000-7601.2013.03.028

[41]

WANG J. Evaluation on waterlogging tolerance and its mechanisms in Hemerocallis [D]. Shanghai: Shanghai Institute of Technology, 2019.
王婧. 萱草耐涝性评价及生理生化机理研究 [D]. 上海: 上海应用技术大学, 2019.

[42]

HERZOG M, STRIKER G G, COLMER T D, et al. Mechanisms of waterlogging tolerance in wheat: A review of root and shoot physiology[J]. Plant Cell Environ, 2016, 39(5): 1068-1086. DOI:10.1111/pce.12676

[43]

KUAI J, LIU Z W, WANG Y H, et al. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight[J]. Plant Sci, 2014, 223: 79-98. DOI:10.1016/j.plantsci.2014.03.010

[44]

YAN K, ZHAO S J, CUI M X, et al. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L. ) exposed to waterlogging[J]. Plant Physiol Biochem, 2018, 125: 239-246. DOI:10.1016/j.plaphy.2018.02.017

[45]

QU Q Q. Study on the adaption of two cultivars of Hemerocallis to high temperature and water stresses [D]. Beijing: Beijing Forestry University, 2019.
屈琦琦. 两个萱草品种对高温和水分胁迫的适应性研究 [D]. 北京: 北京林业大学, 2019.

[46]

ZHAO T R, XU Z H, ZHANG C H, et al. Evaluation on waterlogging tolerance of Hemerocallis fulva in field[J]. Acta Agric Jiangxi, 2021, 33(4): 46-51.
赵天荣, 徐志豪, 张晨辉, 等. 大花萱草的耐涝性田间鉴定评价[J]. 江西农业学报, 2021, 33(4): 46-51. DOI:10.19386/j.cnki.jxnyxb.2021.04.08

[47]

VAN VEEN H, AKMAN M, JAMAR D C L, et al. Group VII ethylene response factor diversification and regulation in four species from flood-prone environments[J]. Plant Cell Environ, 2014, 37(10): 2421-2432. DOI:10.1111/pce.12302

[48]

YIN D M, CHEN S M, CHEN F D, et al. Morpho-anatomical and physiological responses of two Dendranthema species to waterlogging[J]. Environ Exp Bot, 2010, 68(2): 122-130. DOI:10.1016/j.envexpbot.2009.11.008

[49]

CHEN F D, CHEN S M, SONG A P, et al. Progress in mechanisms of ethylene mediated tolerance of plant to waterlogging[J]. J Nanjing Agric Univ, 2018, 41(2): 203-208.
陈发棣, 陈素梅, 宋爱萍, 等. 乙烯调控植物耐涝机制的研究进展[J]. 南京农业大学学报, 2018, 41(2): 203-208.

[50]

GAO Q, SHEN G S, YANG T, et al. Comparison study on physiological responses to water logging stress of six common herbaceous plants[J]. Acta Sci Nat Univ Nankai, 2018, 51(2): 1-8.
高琦, 沈广爽, 杨彤, 等. 6种园林草本植物对水淹胁迫的生理响应的比较研究[J]. 南开大学学报(自然科学版), 2018, 51(2): 1-8.

[51]

XU X W, WANG H H, QI X H, et al. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L. )[J]. Sci Hort, 2014, 179: 388-395. DOI:10.1016/j.scienta.2014.10.001

[52]

ZHANG P, LYU D G, JIA L T, et al. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging[J]. BMC Genom, 2017, 18(1): 649. DOI:10.1186/s12864-017-4055-1

[53]

XIANG Y. Ornamental evaluation and drought and flooding tolerance of perennial flowers in Chongqing area [D]. Chongqing: Southwest University, 2020.
向越. 重庆地区宿根花卉观赏性评价及耐旱、耐涝研究 [D]. 重庆: 西南大学, 2020.

[54]

DONG T T, ZHANG D J, YANG Z Q, et al. Advances of AP2/ERF transcription factor response to waterlogging stress in plants[J]. Mol Plant Breed, 2022, 20(14): 4665-4676.
董婷婷, 张冬菊, 杨再强, 等. AP2/ERF转录因子响应植物涝渍胁迫的研究进展[J]. 分子植物育种, 2022, 20(14): 4665-4676. DOI:10.13271/j.mpb.020.004665

[55]

LIN C C, CHAO Y T, CHEN W C, et al. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence[J]. Proc Natl Acad Sci USA, 2019, 116(8): 3300-3309. DOI:10.1073/pnas.1818507116

[56]

YAO Y, CHEN X Y, WU A M. ERF-VII members exhibit synergistic and separate roles in Arabidopsis[J]. Plant Signal Behav, 2017, 12(6): e1329073. DOI:10.1080/15592324.2017.1329073

[57]

LIANG W J, CUI W N, MA X L, et al. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice[J]. Biochem Biophys Res Commun, 2014, 450(1): 794-801. DOI:10.1016/j.bbrc.2014.06.055

[58]

HORIE T, KANEKO T, SUGIMOTO G, et al. Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots[J]. Plant Cell Physiol, 2011, 52(4): 663-675. DOI:10.1093/pcp/pcr027

[59] [60] [61]

FLOWERS T J. Improving crop salt tolerance[J]. J Exp Bot, 2004, 55(396): 307-319. DOI:10.1093/jxb/erh003

[62]

LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: A review[J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291. DOI:10.1016/j.bbrc.2017.11.043

[63]

QIU S. Study on salt resistance of some daylily [D]. Changsha: Hunan Agricultural University, 2008.
邱收. 几个萱草属植物的耐盐性研究 [D]. 长沙: 湖南农业大学, 2008.

[64]

BAO Y, WANG J X, CHEN C, et al. Effects of NaCl and NaHCO3 stress on photosynthesis and chlorophyll fluorescence characteristics of Hemerocallis golden baby[J]. Jiangsu Agric Sci, 2020, 48(3): 133-140.
包颖, 王嘉欣, 陈超, 等. NaCl和NaHCO3胁迫对萱草金娃娃光合作用及叶绿素荧光特性的影响[J]. 江苏农业科学, 2020, 48(3): 133-140. DOI:10.15889/j.issn.1002-1302.2020.03.023

[65]

QIU S, YU X Y, XIE M H, et al. Effects of salt stress on osmotic adjustment substance in Hemerocallis fulva[J]. J Xinyang Agric Coll, 2008, 18(2): 115-117.
邱收, 于晓英, 谢明亨, 等. 盐胁迫对萱草细胞膜透性和渗透调节物质的影响[J]. 信阳农业高等专科学校学报, 2008, 18(2): 115-117. DOI:10.3969/j.issn.1008-4916.2008.02.041

[66]

TAN X, GAO X B. Salt resistance of Hemerocallis hybrida[J]. Hubei Agric Sci, 2016, 55(12): 3122-3127.
谭笑, 高祥斌. 大花萱草耐盐性研究[J]. 湖北农业科学, 2016, 55(12): 3122-3127. DOI:10.14088/j.cnki.issn0439-8114.2016.12.030

[67]

CAO H, YU X Y, QIU S, et al. Effects of salt stress on growth and related physiological characteristic in Hemerocallis fulva[J]. J Hunan Agric Univ (Nat Sci), 2007, 33(6): 690-693.
曹辉, 于晓英, 邱收, 等. 盐胁迫对萱草生长及其相关生理特性的影响[J]. 湖南农业大学学报(自然科学版), 2007, 33(6): 690-693. DOI:10.13331/j.cnki.jhau.2007.06.021

[68] [69] [70]

LIANG J. Study on glyoxalase-based breeding to increase the salt tolerance of daylily (H. fulva) [D]. Shanghai: Shanghai Institute of Technology, 2020.
梁锦. 基于乙二醛酶的耐盐萱草育种研究 [D]. 上海: 上海应用技术大学, 2020.

[71]

GAAFAR R M, SEYAM M M. Ascorbate-glutathione cycle confers salt tolerance in Egyptian lentil cultivars[J]. Physiol Mol Biol Plants, 2018, 24(6): 1083-1092. DOI:10.1007/s12298-018-0594-4

[72]

YI S Y, KU S S, SIM H J, et al. An alcohol dehydrogenase gene from Synechocystis sp. confers salt tolerance in transgenic tobacco[J]. Front Plant Sci, 2017, 8: 1965. DOI:10.3389/fpls.2017.01965

[73]

LIANG Y, YAN J P, TAN X L. Effects of salt-stress on expression of ADH3 and ALDH in radicle of rice (Oryza sativa)[J]. Hubei Agric Sci, 2012, 51(13): 2870-2872.
梁燕, 严建萍, 谭湘陵. 盐胁迫对水稻幼根乙醇脱氢酶和乙醛脱氢酶基因表达的影响[J]. 湖北农业科学, 2012, 51(13): 2870-2872. DOI:10.3969/j.issn.0439-8114.2012.13.064

[74]

GORAYA G K, KAUR B, ASTHIR B, et al. Rapid injuries of high temperature in plants[J]. J Plant Biol, 2017, 60(4): 298-305. DOI:10.1007/s12374-016-0365-0

[75]

SANGHERA G S, WANI S H, HUSSAIN W, et al. Engineering cold stress tolerance in crop plants[J]. Curr Genom, 2011, 12(1): 30-43. DOI:10.2174/138920211794520178

[76]

ZHAO T R, XU Z H, ZHANG C H, et al. Effects of continuous extreme hot and drought weather on Hemerocallis hybridus growth[J]. Pratac Sci, 2015, 32(2): 196-202.
赵天荣, 徐志豪, 张晨辉, 等. 持续极端高温干旱天气对大花萱草生长的影响[J]. 草业科学, 2015, 32(2): 196-202. DOI:10.11829/j.issn.1001-0629.2014-0195

[77]

ZHU H F, HU Y H, JIANG C H. The effects of the high temperature on varieties of daylily[J]. Chin Agric Sci Bull, 2007, 23(6): 422-427.
朱华芳, 胡永红, 蒋昌华. 高温对萱草园艺品种部分生理指标的影响[J]. 中国农学通报, 2007, 23(6): 422-427. DOI:10.3969/j.issn.1000-6850.2007.06.092

[78]

SHARKEY T D, ZHANG R. High temperature effects on electron and proton circuits of photosynthesis[J]. J Integr Plant Biol, 2010, 52(8): 712-722. DOI:10.1111/j.1744-7909.2010.00975.x

[79]

SOENGAS P, RODRÍGUEZ V M, VELASCO P, et al. Effect of temperature stress on antioxidant defenses in Brassica oleracea[J]. ACS Omega, 2018, 3(5): 5237-5243. DOI:10.1021/acsomega.8b00242

[80]

DI S X, SU D S, HUMU JILETU, et al. Cold resistance comparison of 11 varieties of Hemerocallis fulva[J]. J W China For Sci, 2019, 48(4): 137-141.
底姝霞, 苏东升, 呼木吉勒图, 等. 11个品种萱草的抗寒性比较研究[J]. 西部林业科学, 2019, 48(4): 137-141. DOI:10.16473/j.cnki.xblykx1972.2019.04.022

[81]

CHEN X, LIU Z Y. Comparison on cold resistance of six Hemerocallis under low temperature stress[J]. Heilongjiang Agric Sci, 2020(5): 7-11.
陈曦, 刘志洋. 低温胁迫下六种萱草的抗寒性比较[J]. 黑龙江农业科学, 2020(5): 7-11. DOI:10.11942/j.issn1002-2767.2020.05.0007

[82]

HUANG D M, CHEN Y, BAI L, et al. Transcriptome analysis of Hemerocallis fulva leaves respond to low temperature stress[J]. Bull Bot Res, 2022, 42(3): 424-436.
黄东梅, 陈颖, 白露, 等. 萱草叶片响应低温胁迫的转录组分析[J]. 植物研究, 2022, 42(3): 424-436. DOI:10.7525/j.issn.1673-5102.2022.03.012

[83]

XUAN C Q, LAN G P, SI F F, et al. Systematic genome-wide study and expression analysis of SWEET gene family: Sugar transporter family contributes to biotic and abiotic stimuli in watermelon[J]. Int J Mol Sci, 2021, 22(16): 8407. DOI:10.3390/IJMS22168407

[84]

WEN Z Y, LI M Y, MENG J, et al. Genome-wide identification of the SWEET gene family mediating the cold stress response in Prunus mume[J]. PeerJ, 2022, 10: e13273. DOI:10.7717/peerj.13273

[85]

HUANG C B, CHENG P L, YANG S Z, et al. Transcriptome analysis of Hemerocallis fulva under low temperature stress[J]. Acta Agric Zhejiang, 2021, 33(8): 1445-1460.
黄长兵, 程培蕾, 杨绍宗, 等. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460.

[86]

ZHANG Z L, ZHU J H, ZHANG Q Q, et al. Molecular characterrization of an ethephon-induced Hsp70 involved in high and lowtemperature responses in Hevea brasiliensis[J]. Plant Physiol Biochem, 2009, 47(10): 954-959. DOI:10.1016/j.plaphy.2009.06.003

[87]

BAI L, ZHANG Z G, ZHANG S J, et al. Isolation of three types of invertase genes from Hemerocallis fulva and their responses to low temperature and osmotic stress[J]. Acta Hort Sin, 2021, 48(2): 300-312.
白露, 张志国, 张世杰, 等. 萱草3种蔗糖转化酶基因的分离及对低温和渗透胁迫响应的分析[J]. 园艺学报, 2021, 48(2): 300-312. DOI:10.16420/j.issn.0513-353x.2020-0346

[88]

HUANG D M, CHEN Y, LIU X, et al. Genome-wide identification and expression analysis of the SWEET gene family in daylily (Hemerocallis fulva) and functional analysis of HfSWEET17 in response to cold stress[J]. BMC Plant Biol, 2022, 22(1): 211. DOI:10.1186/s12870-022-03609-6

[89]

AN F X, LU B W, LIANG M, et al. Bioinformatics, expression and functional analysis of microRNAs in response to low temperature in Hemerocallis fulva (L. ) L.[J]. J Plant Physiol, 2014, 50(4): 483-487.
安凤霞, 卢宝伟, 梁鸣, 等. 萱草microRNAs生物信息学及与冷冻相关microRNAs的分析[J]. 植物生理学报, 2014, 50(4): 483-487. DOI:10.13592/j.cnki.ppj.2013.0460

[90]

QIN J, XU K F. Research summary and prospect of urban green space soil quality in China[J]. Ecol Sci, 2018, 37(1): 200-210.
秦娟, 许克福. 我国城市绿地土壤质量研究综述与展望[J]. 生态科学, 2018, 37(1): 200-210. DOI:10.14108/j.cnki.1008-8873.2018.01.027

[91]

DUBEY S, SHRI M, MISRA P, et al. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root[J]. Funct Integr Genomics, 2014, 14(2): 401-417. DOI:10.1007/s10142-014-0361-8

[92]

TIWARI S, LATA C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview[J]. Front Plant Sci, 2018, 9: 452.

[93]

TAN L T, QU M M, ZHU Y X, et al. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake[J]. Plant Physiol, 2020, 183(3): 1235-1249. DOI:10.1104/pp.19.01569

[94]

LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biol, 2019, 19(1): 283. DOI:10.1186/s12870-019-1899-3

[95]

SRIVASTAVA D, VERMA G, CHAUHAN A S, et al. Rice (Oryza sativa L. ) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance[J]. Metallomics, 2019, 11(2): 375-389. DOI:10.1039/c8mt00204e

[96]

CUI Y C, WANG M L, YIN X M, et al. OsMSR3, a small heat shock protein, confers enhanced tolerance to copper stress in Arabidopsis thaliana[J]. Int J Mol Sci, 2019, 20(23): 6096. DOI:10.3390/ijms20236096

[97]

ULHASSAN Z, BHAT J A, ZHOU W J, et al. Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review[J]. Environ Pollut, 2022, 302: 119038. DOI:10.1016/J.ENVPOL.2022.119038

[98]

EDELSTEIN M, BEN-HUR M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops[J]. Sci Hort, 2018, 234: 431-444. DOI:10.1016/j.scienta.2017.12.039

[99]

DONG J, WU F B, ZHANG G P. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum)[J]. Chemosphere, 2006, 64(10): 1659-1666. DOI:10.1016/j.chemosphere.2006.01.030

[100]

GUAN M Q, DONG R. Effects of Cd stress on growth and physiological characteristics of Hemerocallis hybridus ‘Stella de Oro’[J]. J NW Agric For Univ (Nat Sci), 2015, 43(12): 174-180.
关梦茜, 董然. Cd胁迫对金娃娃萱草生长及生理指标的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(12): 174-180. DOI:10.13207/j.cnki.jnwafu.2015.12.025

[101]

GUAN M Q, ZHOU X D, DONG R. Effects of Cu-Cd combined pollution on growth and antioxidant enzyme activity of 2 Hemerocallis fulva varieties[J]. J NW Agric For Univ (Nat Sci), 2015, 43(4): 128-134.
关梦茜, 周旭丹, 董然. Cu-Cd复合胁迫对2种萱草生长与抗氧化酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(4): 128-134. DOI:10.13207/j.cnki.jnwafu.2015.04.004

[102]

WANG S, LI D H, WANG J, et al. Repairing effect of Hemerocallis fulva on Cd, Pb, Zn single pollution in soil[J]. Hubei Agric Sci, 2018, 57(6): 35-38.
王硕, 李德生, 王静, 等. 萱草对土壤中镉、铅、锌单一污染的修复效果[J]. 湖北农业科学, 2018, 57(6): 35-38. DOI:10.14088/j.cnki.issn0439-8114.2018.06.008

[103]

WANG S, LI D H, YU Y, et al. Remediation potential of Hemerocallis fulva on Cd, Pb and Zn combined pollution soil[J]. Jiangsu Agric Sci, 2019, 47(24): 281-284.
王硕, 李德生, 俞洋, 等. 萱草对Cd、Pb、Zn复合污染土壤的修复潜力[J]. 江苏农业科学, 2019, 47(24): 281-284. DOI:10.15889/j.issn.1002-1302.2019.24.062

[104]

GUO H, ZHUANG J J. Effect of citric acid amendment on cadmium uptake and translocation by three ornamental plants[J]. J Anhui Agric Univ, 2021, 48(1): 121-127.
郭晖, 庄静静. 外源柠檬酸对3种观赏植物吸收和转运镉的影响[J]. 安徽农业大学学报, 2021, 48(1): 121-127. DOI:10.13610/j.cnki.1672-352x.20210319.024

[105]

ZHANG S N, HUANG Y Z, LI Y, et al. Effects of different exogenous plant hormones on the antioxidant system and Cd absorption and accumulation of rice seedlings under Cd stress[J]. Environ Sci, 2021, 42(4): 2040-2046.
张盛楠, 黄益宗, 李颜, 等. Cd胁迫下不同外源植物激素对水稻幼苗抗氧化系统及Cd吸收积累的影响[J]. 环境科学, 2021, 42(4): 2040-2046. DOI:10.13227/j.hjkx.202007290

[106]

LI H T, DONG R. Pb & Cd absorption and accumulation characteristics, subcellular distribution and chemical forms in two types of Hemerocallis plants[J]. J S China Agric Univ, 2015, 36(4): 59-64.
李红婷, 董然. 2种萱草对铅、镉的吸收累积及其在亚细胞的分布和化学形态特征[J]. 华南农业大学学报, 2015, 36(4): 59-64. DOI:10.7671/j.issn.1001-411X.2015.04.011

相关知识

Cloning and Expression Profile Analysis of NaERF1 Under Abiotic Stresses in Nicotiana alata
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Research progress on the response processes of vegetation activity to climate change
植物昼夜节律研究进展 Research Progress on Circadian Rhythms in Plants
Research progress on epigenetic regulation
华中农业大学教师主页平台管理系统 产祝龙
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
Progress of stress
Research progress on citrus canker disease and its microbial control
分子遗传学研究组

网址: Research Progress on Response of Hemerocallis to Abiotic Stresses https://m.huajiangbk.com/newsview355735.html

所属分类:花卉
上一篇: Cd
下一篇: 桂花滞尘效应及其生理生态响应研究