首页 > 分享 > 基于深度学习的行为识别方法

基于深度学习的行为识别方法

摘要:

基于深度学习行为识别算法的关键在于提高关键点提取的准确性和稳定性,以此来更准确地识别目标动作。然而,较多算法在目标特征提取阶段仅加入看似具有较好功能的注意力机制,忽略了不同注意力机制对不同模型和任务的影响。因此,文中提出了一种基于不同注意力机制的姿态估计算法模型。该方法通过比较不同注意力机制对模型的影响,进一步说明了选择注意力机制的重要性。同时,考虑到关键点提取的稳定性,对模型的初始化进行微调,通过增加权重判断网络层类别,选择更合适的初始化方法以提高性能。相较于基准网络模型,该模型在多尺度和无多尺度CrowdPose数据集上所有的评价指标均有所提升。其中,平均精度在两种情况下的提升均超过了1%。

关键词: 行为识别, 姿态估计, 计算机视觉, 图卷积神经网络, 关键点, HRNet, 注意力机制, 平均精度

Abstract:

The key of current research on behavior recognition algorithms based on deep learning lies in enhancing the accuracy and stability of key point extraction, in order to achieve more accurate action recognition of targets. However, many current algorithms tend to just add attention mechanisms that appear to perform better in the feature extraction stage of the target, without considering the impact of different attention mechanisms on different models and tasks. Therefore, this study proposes an algorithmic model for pose estimation based on various attention mechanisms, which further highlights the importance of selecting an appropriate attention mechanism by comparing the impact of different attention mechanisms on the model. In addition, considering the stability of key point extraction, the initialization of the model is fine-tuned to select a more suitable initialization method that improves the performance by increasing the category of weights on network layer judgments. Compared with the performance of the benchmark network model, the model enhances all evaluation metrics on both multiscale and no-multiscale CrowdPose datasets, where the average accuracy improvement in both cases is more than 1%.

Key words: behavior recognition, pose estimation, computer vision, graph convolution network, key points, HRNet, attention mechanism, average precision

中图分类号: 

TP391

相关知识

基于深度学习的植物病虫害识别方法与流程
基于深度学习的病虫害智能化识别系统
基于深度学习的花卉识别系统开发
基于卷积神经网络的花卉识别方法
基于深度迁移学习模型的花卉种类识别
基于深度学习的花卉识别研究
基于深度学习的农作物病害图像识别技术进展
基于深度学习的花卉图像分类识别模型研究
基于深度学习的花卉识别APP设计
基于深度学习的百合花种类识别研究

网址: 基于深度学习的行为识别方法 https://m.huajiangbk.com/newsview377335.html

所属分类:花卉
上一篇: Excel中如何高效识别和管理重
下一篇: C# For循环找出100