首页 > 分享 > 蔗糖代谢及信号转导在植物发育和逆境响应中的作用

蔗糖代谢及信号转导在植物发育和逆境响应中的作用

高等植物能够利用太阳能,通过光合作用将空气中的CO2转化为有机碳。在大多数植物中,蔗糖是光合作用的最终产物,可通过韧皮部的筛管/伴侣细胞复合物进行运输[1]。蔗糖从源器官向库器官中的运输依赖于其渗透效应所产生的膨压差[2]。在细胞水平上,蔗糖是植物生长、发育和防御的关键碳源[3]。蔗糖代谢能够产生己糖,这是产生能量并合成纤维素、淀粉、果聚糖、蛋白质和抗氧化物所必需的。蔗糖代谢通过产生糖信号分子[例如蔗糖本身、葡萄糖、果糖和海藻糖-6-磷酸(trehalose-6-phosphate, T6P)],或通过代谢过程本身发挥的信号作用与糖信号紧密结合[2,4]。糖信号通过与其他信号途径的直接或间接作用来调节植物的发育和胁迫响应,包括激素和氧化还原介导的过程[4]。

来源于蔗糖的碳水化合物约占植物生物量的90%,是决定农业生产产量的关键因素。运输到库器官后,蔗糖被酶降解为己糖,供应库器官的生长,例如发育中的种子、果实、根和块茎[3]。研究表明,蔗糖代谢是调控非生物胁迫耐受性的关键途径之一[3,4,5]。此外,植物合成的可溶性糖可以发酵成乙醇,因而蔗糖代谢已成为研究生物燃料的核心工作[6]。蔗糖的代谢对于现代农业和能源的可持续发展至关重要。

鉴于蔗糖代谢在植物生长发育和农业生产中的重要作用,本文综述了蔗糖代谢关键酶和互作蛋白在发育和应激响应中的作用,蔗糖代谢与糖信号在细胞内外的耦合,以及蔗糖代谢酶发挥其信号转导作用的不同机制,最后讨论了未来研究蔗糖代谢和信号转导的新方向。

1 蔗糖代谢

1.1 蔗糖合成

蔗糖的合成速率会影响叶片碳输出的有效性以及光合速率,可以通过两种酶在细胞质中合成,即蔗糖-磷酸合酶(sucrose-phosphate synthase, SPS)和蔗糖-磷酸磷酸酶(sucrose-phosphate phosphatase, SPP)[7]。SPS利用二磷酸尿苷葡萄糖(uridine diphosphate-glucose, UDP-Glc)和果糖-6-磷酸盐作为底物来合成蔗糖-6-磷酸盐,而SPP从蔗糖-6-磷酸盐中释放正磷酸盐(Pi),生成蔗糖[8](图1)。

SPS是蔗糖合成的关键酶及限速酶。蛋白质磷酸化可以分别在渗透胁迫和光照下使SPS活化和失活[9]。SPS活性受葡萄糖-6-磷酸盐诱导,而被Pi抑制。在拟南芥(Arabidopsis thalian)叶片中,SPS与质膜单向转运蛋白AtSWEET11和AtSWEET12共表达,可将蔗糖从叶肉细胞运输到韧皮部薄壁组织中,以结合到筛管/伴侣细胞复合物中[10],这一过程证明了蔗糖的生物合成和运输之间的耦合(图1)。Maloney等[11]证实了SPS与SPP的相互作用,并表明该酶复合物会影响转基因拟南芥碳水化合物的存储,并促进植物生长。SPS在光合和非光合组织中的作用已经得到了证实,其中大多数研究集中在蔗糖转运异源表达植物中的碳代谢和库强度[12]。例如,过量表达ZmSPS的玉米(Zea mays L.)和马铃薯(Solanum tuberosum L.)植株促进了生物量的增加[13,14]。黄瓜(Cucumis sativus L.)CsSPS4基因在烟草中过表达后,转基因植株的蔗糖含量和蔗糖/淀粉比显著增加,并提高了叶片产量[15]。尽管蔗糖主要在成熟的叶子中产生,但它可以在库器官中重新合成。蔗糖在细胞外被分解为葡萄糖和果糖,在这种情况下,必须重新合成蔗糖才能用于储存或进一步进行细胞间运输。库器官的SPS活性与淀粉积累、蛋白质存储和纤维素生物合成相关[16]。高蔗糖水平始终与淀粉生物合成的关键酶ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase, AGPase)的活性密切相关[17]。

SPP催化蔗糖-6-磷酸盐不可逆水解为蔗糖,而编码SPP的基因数量则因物种不同而异,如拟南芥中存在4种亚型(AtSPP1、AtSPP2、AtSPP3a和AtSPP3b),小麦(Triticum aestivum L.)和水稻(Oryza sativa L.)中分别有3个(TaSPP1、TaSPP2和TaSPP3)和4个亚型(OsSPP1、OsSPP2、OsSPP3和OsSPP4)[18]。Albi等[8]对拟南芥中的4种亚型进行了克隆及表达分析,结果表明 SPP2活性最高,SPP1活性最低,且各亚型的表达具有组织特异性。然而,SPP并不是蔗糖合成的限速酶。用SPP RNAi转化的烟草中SPP活性降低了80%,但对蔗糖的合成几乎没有影响[19]。在用SPP RNAi转化的冷藏马铃薯块茎中也获得了类似的结论[20]。 此外,一些证据表明SPP可能与SPS形成复合物进而调控蔗糖的合成[11],这种相互作用可能预示了新的调节机制。

蔗糖分解和再合成看似是一个浪费能量的过程,但这种循环可能调控碳水化合物的分配。例如,在玉米胚乳基部重新合成的蔗糖,可能被运输到组织的上部用于淀粉生物合成[21],这可能是因为蔗糖在代谢上比己糖更稳定。蚕豆子叶中较高的SPS活性可能导致高的蔗糖/己糖比率,从而激活了存储过程[22]。此外,蔗糖还可以作为渗透保护剂和低温防护剂,以增强植物对非生物胁迫的耐受性。在低温胁迫下,耐冷型拟南芥幼叶的蔗糖含量较冷敏感型植株显著增加[23],表明耐冷型植株具有较高的蔗糖合成能力,以应对环境中的不利生长因素。

1.2 蔗糖降解

通过韧皮部转移到库器官后,蔗糖被转化酶(invertase, INV)或蔗糖合酶(sucrose synthase, Sus)降解为己糖或其衍生物,然后以多种形式参与植物体生长发育等进程 (图1)[24]。INV将蔗糖水解为葡萄糖和果糖,而Sus在尿苷二磷酸(uridine diphosphate, UDP)存在的情况下将蔗糖降解为UDP-Glc和果糖[25]。

1.2.1 INV的分类及功能 根据INV的亚细胞定位,可将其分为细胞壁INV (cell wall INV,CWIN)、液泡INV (vacuolar INV,VIN)和细胞质INV (cytoplasmic INV,CIN)[25]。

CWIN通常在库器官中表达并发挥关键作用。玉米ZmCWIN2的转录本在玉米幼苗的茎尖(shoot apical meristem, SAM)和根尖分生组织(root apical meristem, RAM)中丰度较高,而其突变体Incw2仅能形成微型种子[26]。同样,抑制或增强水稻中OsCWIN2的表达能够降低或提高其产量[27]。在番茄(Solanum lycopersicum L.)中,沉默SlCWIN1 (Lin5)的表达可抑制种子和果实的发育[28],提高其活性则具有相反的作用[29]。特异地提高拟南芥SAM中CWIN的表达和活性加速了开花并增强了花序分枝,从而产生了更多的角果和更高的种子产量[30]。这些结果证明了CWINs在植物发育中有重要的作用[2]。

长期以来,人们一直认为VIN是通过渗透作用在细胞扩增中行使功能,这一观点在许多快速生长的组织中得到了证实。VIN在这些组织中活性较高[4],但该观点仅在细胞中积累高浓度可溶性糖时才成立。例如在拟南芥根伸长的组织中,AtVIN2可能通过不依赖渗透的途径调节细胞的扩增[31]。这是因为蔗糖和己糖在植物体液渗透压中占比不到2%, 因此VIN活性的任何变化对调节植物体液渗透压的作用均不显著[32]。同样值得注意的是,某些VIN在进化过程中会突变为果糖基转移酶,从而在液泡中合成果聚糖[33](图1)。这种水溶性碳水化合物(通常在某些禾本科植物中发现)可以再活化以供应植物生长和提高非生物胁迫耐受性[34]。除了糖分积累和渗透调节以外,VIN通常在以积累己糖为主的器官中起关键作用。VIN转录本通常存在于积累己糖的番茄果实中,积累蔗糖的番茄果实中则并不存在[35]。转反义SlVIN1的番茄果实中蔗糖含量增加,己糖含量降低[36]。

图1 蔗糖的合成、运输及代谢[24]注:ADP-Glc:二磷酸腺苷-葡萄糖;CO2:二氧化碳;CIN:胞质转化酶;CWIN:细胞壁转化酶;Fru:果糖;Fru-6-P:果糖-6-磷酸;Glc:葡萄糖;HEX:己糖;PD:胞间连丝;RGS:G蛋白信号传导调节子;SE/CC:筛管/伴侣细胞复合物;SPP:蔗糖磷酸磷酸酶;SPS:蔗糖磷酸合酶; Suc:蔗糖;Suc-P:蔗糖磷酸盐;Sus:蔗糖合酶;Triose-P:磷酸丙糖;UDP-Glc:二磷酸尿苷葡萄糖;VIN:液泡转化酶。

Fig.1 Sucrose synthesis, transportation and metabolism[24]

Note:ADP-Glc:Adenosine diphosphate-glucose. CO2:Carbon dioxide. CIN:Cytoplasmic invertase. CWIN:Cell wall invertase. Fru:Fructose. Fru-6-P:Fructose-6-phosphate. Glc:Glucose. HEX:Hexose. PD:Plasmodesmata. RGS:Regulator of G-protein signaling. SE/CC:Sieve element/companion cell complex. SPP:Sucrose phosphate phosphatase. SPS:Sucrose phosphate synthase. Suc:2ucrose. Suc-P:Sucrose phosphate. Sus: Sucrose synthase. Triose-P:Triose-phosphate. UDP-Glc:Uridine diphosphate-glucose. VIN:Vacuolar invertase.

Full size|PPT slide

与CWIN和VIN的定位不同,CIN存在于多个亚细胞区域:α分支的CIN被预测靶向胞内细胞器,而β分支的CIN被预测靶向胞质酶,但也可能靶向细胞核[37](图2)。CIN的作用方式也不同于CWIN和VIN。CIN不被糖基化,因此稳定性较差[38]。与CWIN和VIN活性相比,CIN的不稳定性可能导致其活性较低[38]。虽然CIN的具体作用不如CWIN和VIN的明确[4],但有研究表明CIN在根和生殖发育中有重要作用。在拟南芥9个编码CIN的基因中,AtCIN7和AtCIN9 (cINV1/cINV2)的双重突变导致CIN活性降低了40%,并造成根部生长减缓且细胞异常增大[39]。同样,CIN活性在百脉根(Lotus japonicus)和水稻的CIN突变体LjCIN1和OsCIN8中的降低,也抑制了根的生长,并损害了花粉的发育和开花[40,41]。这4个CIN基因彼此密切相关,均属于β分支且定位于细胞质中[42](图2)。CIN似乎具有比CWIN和VIN更多的亚型,如拟南芥中CIN、CWIN和VIN分别有2、4和9种亚型[31,43-44],番茄中分别有7、4和2种亚型[29]。CIN亚型可以减轻序列保守性的选择性压力。这反映出CIN在维持胞质葡萄糖稳态和糖信号传递中可能有重要作用。

图2 转化酶蛋白序列系统发生树注:CIN:胞质转化酶;CWIN:细胞壁转化酶;VIN:液泡转化酶。At:拟南芥;Dc:胡萝卜;Lj:百脉根;Os:水稻;Sl:番茄;Vf:蚕豆;Zm:玉米;Sc:酵母。系统发生树利用MEGA5.05 ( http://www.mega-software.net/)构建,bootstrap值设定为1 000。*表示正常发育所 需亚型。下同。

Fig.2 Phylogenetic tree of invertase protein sequences

Note:CIN:Cytoplasmic invertase. CWIN:Cell wall invertase. VIN:Vacuolar invertase. At:Arabidopsis thaliana. Dc:Daucus carota. Lj:Lotus japonicus. Os:Oryza sativa. Sl:Solanum lycopersicum. Vf:Vicia faba. Zm:Zea mays. Sc:Saccharomyces cerevisiae. The phylogenetic tree is constructed via MEGA5.05 (http://www.mega-software.net/) and the bootstrap value is set to 1000. * indicates the subtype required for normal development. The same as following.

Full size|PPT slide

1.2.2 Sus的功能 除INV外,Sus是植物中另一种蔗糖降解酶(图1),被认为是库强度的生化指标,特别是在内部氧气水平较低的大型器官中[45]。这是由于Sus裂解产生的蔗糖在参与代谢过程中,比INV裂解产生的己糖磷酸盐更高效[39],且发育中的种子和果实中Sus活性通常高于叶片中[45]。因此,拟南芥[46]、玉米[47]和马铃薯[48]中某些Sus亚型的表达受到低氧或缺氧条件的诱导或增强。此外,抑制Sus相关基因的表达会导致玉米[47]和棉花[49]种子萎缩,并减少马铃薯块茎[48]中淀粉的积累。而棉花中编码Sus的相关基因在沉默和过表达后,则显示出Sus活性的变化与棉花种子和纤维生长之间存在密切的正相关性[45,49]。以上结果表明,作物库器官的发育很大程度依赖于Sus的活性,这可能是野生种经历自然选择和人工驯化后的结果。

植物体内Sus与INV的作用既有区别又相互联系。CWINs可能通过控制连续的胚乳和胚细胞增殖在早期种子发育中发挥调节作用,Sus似乎与种子发育后期的纤维素、淀粉、脂质和蛋白质的生物合成密切相关。例如,拟南芥AtCWIN2和AtCWIN4在球状阶段的幼小种子中高表达[44]。但6个Sus基因中有5个(AtSus2~6)直到发育中后期才在种子中表达,AtSus1则在所有检测的组织和阶段中组成性表达[46]。此外,尽管在早期种子发育过程中无法在子代组织中检测到Sus蛋白[49],但其主要定位在经历细胞化作用的胚乳中[50],以及在细胞壁内生的种皮转移细胞中[49]。基因沉默研究已经确定,GhSus1的表达是棉花(Gossypium herbaceum L.)种子中细胞壁完整性和功能正常所必需的[50],尤其在烟草中过表达杨树编码Sus的基因后,不仅使转基因植株的细胞壁增厚,还增加了株高[51]。对红豆下胚轴质膜部分的功能试验表明,Sus是纤维素合酶复合体的组成部分[52]。在蚕豆中,胚向贮藏期的转变伴随着Sus活性增加和CWIN活性降低,这也与AGPase的高活性相关,从而引起淀粉和蛋白质的生物合成[53]。

越来越多的证据表明,Sus可能在植物的发育过程中有重要作用。例如,编码Sus的基因是番茄SAM中仅表达的5个标记基因之一[54]。提高Sus的表达可以促进棉花叶片的萌发和伸展[45],这些结果表明Sus活性对于植物的分生组织的生物学功能至关重要。

值得注意的是,编码Sus的基因家族不同成员的作用不完全相同。例如,在玉米的3个成员中,ZmSus1有助于种子淀粉的生物合成,ZmSus2 (SH-1)负责胚乳细胞壁的完整性,而ZmSus3可能参与基部胚乳转移细胞的形成[47]。有趣的是,这3种Sus亚型与它们各自的水稻Sus直系同源物之间的关系更密切,而不是彼此相关(图3)。在拟南芥中的6个Sus基因中,Sus5和Sus6 (而不是Sus1~4)特异地参与筛板中胼胝质的形成[39]。这种不同成员之间功能差异反映在系统发育关系中,其中AtSus5和AtSus6的功能与AtSus1和AtSus4以及AtSus2和AtSus3的功能差异较大(图3)。总之,Sus在植物发育中的功能具有多样性和复杂性。

图3 蔗糖合酶蛋白序列系统发生树注: At:拟南芥;Dc:胡萝卜;Gh:棉花; Os:水稻;Sl:番茄;St:马铃 薯;Ta:小麦;Vf:蚕豆;Zm:玉米。

Fig.3 Phylogenetic tree of sucrose synthase protein sequences

Note:At:Arabidopsis thaliana. Dc:Daucus carota. Gh: Gossypium herbaceum. Os:Oryza sativa. Sl:Solanum lycopersicum. St: Solanum tuberosum. Ta: Triticum aestivum. Vf:Vicia faba. Zm:Zea mays.

Full size|PPT slide

2 糖代谢在应对非生物胁迫中的作用

蔗糖代谢不仅参与了植物的生长发育,还响应多种非生物胁迫,了解潜在的应答机制对于提高植物对干旱、高温和寒冷等胁迫的耐受性至关重要[2,55]。

2.1 糖介导的不同组织在非生物胁迫下的应激响应

植物在不同组织和不同发育阶段对胁迫的响应不同。研究糖在非生物胁迫下对生殖发育的调控显得尤为重要,因为包括种子和果实在内的生殖器官约占全球农作物粮食产量的75%[4]。因此,了解它们对非生物胁迫的响应应答机制将直接有利于改善粮食生产。

与营养阶段相比,生殖发育对非生物胁迫更为敏感,特别是在受精前后的种子和坐果阶段[2,55]。非生物胁迫通常以可逆的方式抑制叶片的伸展,但会导致花朵、幼小种子和小果的大量败育,从而导致不可逆的产量损失[56]。研究表明,生殖发育的高敏感性与蔗糖代谢的破坏和己糖利用率的降低有关,从而触发下游应激反应(图4)。

图4 非生物胁迫下蔗糖代谢和信号转导受阻导致的生殖失败[25]注:↑:促进;⊥:抑制;↓:活性/含量降低。ABA:脱落酸;ATP:腺嘌呤核苷三磷酸;Fru:果糖;Glc:葡萄糖;HXK:己糖激酶;INV:转化酶;PCD:程序性细胞死亡;ROS:活性氧;SnRK1:蔗糖非发酵相关激酶1; Suc:蔗糖; Sus:蔗糖合酶;UDP-Glc:二磷酸尿苷葡萄糖。

Fig.4 Reproductive failure caused by blocked sucrose metabolism and signal transduction under abiotic stress[25]

Note:↑:Promote. ⊥:Inhibit. ↓:Activity/content reduction. ABA:Abscisic acid. ATP:Adenosine triphosphate. Fru:Fructose. Glc:Glucose. HXK:Hexokinase. INV:Invertase. PCD:Programmed cell death. ROS:Reactive oxygen species. SnRK1:Sucrose non-fermentingrelated kinase 1. Suc:Sucrose. Sus:Sucrose synthase. UDP-Glc:Uridine diphosphate- glucose.

Full size|PPT slide

RNA测序分析表明,开花前对玉米植株进行干旱处理可降低编码CWIN、VIN和CIN的基因,以及己糖激酶(hexokinase, HXK)基因和催化淀粉生物合成的基因在子房中的表达水平,但降解淀粉的α-和β-淀粉酶的转录水平却有所提高[55]。Poór等[57]认为,改变基因表达谱可降低子房中的己糖库,这可能会降低线粒体HXK的代谢活性,从而导致氧化损伤并最终导致程序性细胞死亡(programmed cell death, PCD)和籽粒败育。

脱落酸(abscisic acid,ABA)和INV介导的途径如何互作以调节应激响应值得进一步深入研究(图4)。一方面,ABA的生物合成基因在水分胁迫的玉米子房中表达上调[55],但玉米子房中VIN编码基因ZmIvr2的下调表达早于ABA对干旱胁迫的响应[58],而ABA诱导的衰老取决于叶片中低的CWIN活性[29],表明胁迫下的INV抑制可能发生在ABA响应之前。另一方面,ABA可以直接调节INV编码基因。例如,外源施用ABA上调了水稻小穗INV基因的表达水平,进而降低了热胁迫引起的花粉不育[59]。此外,ABA还可以增强干旱胁迫下小麦根中INV的活性,提高小麦的耐旱性[60]。

与子房中相反,相同干旱胁迫的玉米幼叶分生区不仅未表现出INV抑制,3个INV和一些活性氧(reactive oxygen species, ROS)清除基因反而被上调[55]。这种相反的响应情况表明,幼叶比子房更能耐受逆境胁迫。在冷胁迫下,蔗糖在拟南芥幼苗中持续积累,这与T6P激活基因高水平的表达相关,以缓解胁迫造成的损伤并促进植株恢复生长[61]。蔗糖对生长的促进作用是通过T6P抑制蔗糖非发酵相关激酶1 (sucrose non-fermenting-related kinase 1, SnRK1)信号转导来实现的,这种情况不会发生在败育的生殖器官中。有趣的是,在子房中表达的干旱响应基因比叶片中多4~6倍[55]。总体而言,与营养组织相比,生殖器官对非生物胁迫表现出较高的敏感性和复杂性。

2.2 非生物胁迫对蔗糖降解的抑制导致生殖失败

非生物胁迫改变了许多基因的表达。在鉴定胁迫诱导子房败育的基因过程中,Boyer[4]发现添加蔗糖可以使干旱处理下的玉米恢复约70%的结实率,但只有少数基因参与了对蔗糖的响应。添加蔗糖后,子房中ZmCWIN2 (ZmIncw2)和ZmVIN2 (ZmIvr2)的表达恢复,这与INV活性的恢复以及PCD基因ZmRIP2和ZmPLD1的抑制相关,二者分别编码核糖体失活蛋白和磷脂酶D,但蔗糖培养并不能改变干旱条件下ZmCWIN1和ZmVIN1或ZmSus1和ZmSus2的下调表达,进一步分析表明,子房败育与葡萄糖的联系较与蔗糖的联系更紧密:在子房中,添加蔗糖可以完全恢复蔗糖的水平,但葡萄糖的水平只能部分恢复[4]。因此,蔗糖转化为葡萄糖的不足可能是干旱条件下限制子房发育的关键步骤,而CWINs和VINs被鉴定为调控子房发育的关键因素,二者通过产生己糖(尤其是葡萄糖)作为HXK的潜在信号分子和底物发挥其作用。葡萄糖可以激活细胞分裂的细胞周期基因,有助于维持ROS稳态,并抑制PCD基因(如RIP和PLD),使籽粒得以发育[2,4](图4)。

种子和果实的形成和生长取决于成功的授粉和受精。导致花粉不育和子房败育的生化基础相似:两者均以INV活性降低[62]和受影响器官中淀粉含量减少[63]为特征。在玉米中,由于雌小花是开放授粉的,且花粉丰富,因此植株结实很大程度上受母体繁殖力的限制[64]。然而,在水稻、小麦和大麦中,籽粒的形成在很大程度上取决于花粉的生存能力[64,65,66]。在小孢子发生时,水分缺乏和温度胁迫会导致农作物中许多花粉不育[62,67]。大量证据表明,雄性不育导致的谷物败育,是由于干旱下小麦的CWINs和VINs基因在花药和花粉中的表达降低[62],以及高温破坏水稻花药中的蔗糖代谢[59]所造成的。这种花粉中CWIN表达水平的遗传变异和淀粉丰度与小麦的耐旱性相关[62]。这表明了一种以糖为基础的对胁迫的分子适应性,如果将该机制用于育种,可能会培育出耐旱抗旱的小麦新品种。

总之,非生物胁迫直接抑制蔗糖输入以及INV和Sus的活性,而非生物胁迫对ABA的诱导同样降低了INV和Sus的活性,导致生殖器官中的己糖尤其是葡萄糖大量减少、淀粉储备耗尽,并最终导致生殖败育。较低的葡萄糖含量可能直接抑制细胞周期基因表达、降低HXK的代谢活性,因此减少了腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)的消耗,这可能会破坏呼吸电子传输链的通电状态,从而导致ROS的过量生产,最终造成氧化损伤,甚至PCD。

2.3 蔗糖介导的转录因子在非生物胁迫下的应激响应

蔗糖不仅以糖代谢的方式参与非生物响应,还可以通过调控不同转录因子参与植物的抗逆性。转录因子是调控基因表达的关键,蔗糖可诱导多个转录因子家族并参与抗逆响应。

ASR(ABA, stress, ripening-induced protein)是一类植物特有的转录因子,其在植物生长发育(花期和果实成熟)[68,69,70]和多种非生物胁迫响应(包括干旱、低温和重金属)[70,71,72]中具有重要作用。Chen等[73]指出高浓度的蔗糖和ABA可以显著诱导葡萄和草莓中ASR基因的表达。这一结论在Wei等[74]的研究中也得到了证实,红叶桃(Prunus persica L.)PpARS基因的表达同样受到蔗糖和ABA的诱导,且与处理时间成正相关,因此推测PpARS在蔗糖和ABA信号下游起作用。将PpARS在烟草中过量表达后,转基因植株在干旱、高温和H2O2胁迫下表现出强于对照的抗逆能力[74]。花青素是高等植物中重要的次生代谢产物,不仅有助于植物抵抗逆境[75],还可以作为抗氧化剂预防人类的部分疾病[76],而其生物合成则受到多种因素调节,包括光照[77]、温度[78]和蔗糖[79]。其中蔗糖可以调控花青素生物合成途径相关基因的表达,而该调控作用主要通过诱导相应的花青素调节转录因子来实现[80]。Zheng等[81]报道,蔗糖可以作为信号分子激活MYB75转录因子进而调控拟南芥中花青素的积累,不同的蔗糖浓度对花青素合成的调节效应不同[82]。例如,高浓度的蔗糖(7%或5%)对转录因子的诱导效应显著高于较低浓度(3%),可能是由于蔗糖浓度变化对花青素调节转录因子的转录有刺激作用[82]。此外,蔗糖通过上调和下调参与类黄酮途径的正向转录因子以及负向转录因子,诱导拟南芥中花青素的生物合成[83]。光敏色素互作因子(phytochrome-interacting factor, PIF)属于碱性螺旋-环-螺旋(basic helix-loop-helix,bHLH)转录因子家族,参与多条信号转导途径,包括光照、温度[84]和激素[85]响应、昼夜节律[86]以及蔗糖信号转导[84],是植物响应外部信号和内部信号的关键调节因子。Shor等[84]研究了蔗糖对PIF家族成员表达水平和活性的影响,结果表明部分PIF家族成员(PIF1、PIF3和PIF4)在蔗糖处理下显著上调表达,并直接参与生物钟的信号转导途径。植物体中,各种信号途径都不是孤立存在的,而是相互之间构成一些复杂的网络系统,因此连接不同途径的桥梁或核心因子则成为完善调控信号网络的关键。

3 蔗糖代谢的信号转导

如上所述,蔗糖代谢在传递碳水化合物以促进生长和发育中起着核心作用,同时它也是糖信号传递的途径(图5)。该过程主要通过产生糖信号分子来实现,但也有可能通过糖代谢酶与其他蛋白质或信号伴侣之间的相互作用来实现。

图5 蔗糖代谢在植物发育中的信号转导途径[25]注:→:促进;⊥:抑制。F6P:果糖-6-磷酸;Fru:果糖;G6P:葡萄糖-6-磷酸;Glc:葡萄糖;IAA:吲哚乙酸;INV:转化酶;ROS:活性氧;RGS:G蛋白信号传导调节子;SnRK1:蔗糖非发酵相关激酶1;SPL:Squamosa promoter binding protein-like;SPP:蔗糖磷酸磷酸酶;SPS:蔗糖磷酸合酶;Suc:蔗糖;Sus:蔗糖合酶;T6P:海藻糖-6- 磷酸;TOR:雷帕霉素靶标;TPS:海藻糖-6-磷酸合酶。

Fig.5 Signal transduction pathway of sucrose metabolism in plant development[25]

Note:→:Promote. ⊥:Inhibit. F6P:Fructose-6-phosphate. Fru:Fructose. G6P:Glucose-6-phosphate. IAA:Indole-3-acetic acid. INV:Invertase. ROS:Reactive oxygen species. RGS:Regulator of G-protein signaling. SnRK1:Sucrose non-fermentingrelated kinase 1. ABA:Abscisic acid. SPL:Squamosa promoter binding protein-like. SPP:Sucrose phosphate phosphatase. SPS:Sucrose phosphate synthase. Suc:Sucrose. Sus:Sucrose synthase. T6P:Trehalose-6-phosphate. TOR:Target of rapamycin. TPS:Trehalose-6-phosphate synthase.

Full size|PPT slide

3.1 蔗糖代谢控制糖信号分子的产生

蔗糖对SAM中开花的促进作用已得到公认[87],但潜在的分子基础仍然未知。有证据表明,糖(即蔗糖、葡萄糖和T6P)在拟南芥已知的开花调控途径的上游充当信号[88]。当植物在从营养生长向生殖生长转变时,光合作用叶片中蔗糖利用率的提高会通过两种相关机制促进SAM开花(图5)。首先,高水平的蔗糖和葡萄糖分别在转录和转录后水平上抑制miR156的表达,这使得SQUAMOSA PROBINTER BINDING PROTEIN-SIKE(SPL)蛋白得以表达[89],SPL是一个促进发育转变的转录因子家族[90]。其次,在检测到高含量蔗糖时,上调表达的T6P同样可以通过抑制miR156而增加SPL的转录水平来加速开花[90]。值得注意的是,由海藻糖-6-磷酸合成酶1 (trehalose-6-phosphate synthase 1, TPS1)活性和T6P信号转导组成的T6P途径在很大程度上独立于FLOWERING LOCUS T(FT),FT是一种长距离蛋白信号(植物色素),被运输至分生组织以促进开花[91]。

糖信号在根发育中也有重要作用。例如,葡萄糖通过使E2Fa(进入细胞周期S期所需的转录因子)部分磷酸化以驱动TOR激酶信号,从而激活拟南芥RAM[92]。有趣的是,蔗糖在促进RAM活性方面与葡萄糖具有相同的作用[92],这与蔗糖通过韧皮部输入(图1)以及从子叶传递的信号可以促进拟南芥幼苗的初生根生长相一致[93]。但是,蔗糖在库器官(例如根)中的作用很好地反映了葡萄糖的功能,因为在库器官中,蔗糖可以被包括RAM在内的INV轻易地水解(图5)。鉴于库器官中的INV活性通常比源器官中的高得多,因此,蔗糖可能通过库器官中的己糖传递信号,但在源器官中可能不依赖于己糖发挥其信号转导作用[94]。

3.2 糖代谢酶的信号转导机制

糖代谢酶的不同生化特性和亚细胞定位(图1)表明,它们可能通过不同的机制来调节发育和信号转导。马铃薯中异源表达酵母SUC2基因(编码酵母非原生质体INV)后,转基因植株叶片中CWIN活性增强,蔗糖、葡萄糖和果糖含量增加,且对低温胁迫具有更强的抗性[95]。尽管组织中糖水平的升高程度相同,但增强的CIN表达并未增强抗逆性[95]。同样,拟南芥SAM中CWIN和CIN的表达分别促进和抑制了开花和花序分枝[30]。玉米ZmGIF1 (来自玉米的细胞壁转化酶基因)高表达的株系中,CWIN活性较高,并增加了谷物产量[96],而异位表达拟南芥和水稻CWIN编码基因的玉米植株不仅产量增加,还改善了籽粒的营养品质[97]。相比之下,过表达OsINV2的水稻株系产量则低于野生型[98]。CWIN和CIN亚细胞定位的不同(图1)表明,细胞外和细胞内糖信号转导之间存在根本差异,但这种差异的性质尚待确定。由于CWIN和VIN在粗糙内质网上合成并在高尔基体中加工,分别以细胞壁和液泡为靶向,因此推测CWIN和VIN介导的糖感知可能通过分泌途径起作用,而这种假设并不适用于CIN[95]。总体而言,CWINs负责产生质外体葡萄糖,被G蛋白信号调节因子1 (regulator of G-protein signaling 1, RGS1)感知并与G蛋白偶联,进而激活细胞分裂等过程。而CIN活性的改变可通过两种方式引起不同的响应,一种是直接改变细胞质的葡萄糖稳态,另一种是影响CIN在细胞内的定位。

4 展望

蔗糖是光合作用CO2固定的主要产物,不仅参与碳代谢和运输,为植物生长提供能量和底物,还介导了信号转导过程,以调节植物发育进程以及响应多种非生物胁迫。尽管目前对于蔗糖在植物体内的代谢、运输和信号转导等方面的研究已经取得了较大进展,但是由于植物体内物质和能量代谢的复杂性,且各种信号途径之间的交叉和互作的机制并不十分清楚,仍需要很多具体的研究来进一步阐明其调控机制和网络。未来的研究可以从以下几个方向开展:(1) 糖信号分子(蔗糖、葡萄糖和T6P)调控不同的糖代谢酶的表达和活性的方式,并在适当的时间和位置产生这些信号分子来调节分生组织的发育;(2) 植物细胞通过感应细胞外的糖调节生长的机制。质体葡萄糖可能由与G蛋白偶联的RGS1的复合物感知,而RGS1是否结合葡萄糖或其他糖,以及这种潜在的感应机制如何与CWIN和糖转运蛋白的活性整合尚待确定;(3) 糖的代谢和信号调节可能与生长素的生物合成和运输、ROS稳态、防御和PCD结合,需要进一步研究以剖析潜在的分子途径和信号转导级联反应;(4) 根据现有研究,蔗糖可能通过库器官中的己糖传递信号,但在源器官中可能不依赖于己糖发挥其信号转导作用,需要进一步研究以区分蔗糖信号和己糖信号。

{{custom_citation.doi}7}

=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.doi}6}{{custom_citation.doi}5}[1]

邓舒雅. 无籽蜜柚糖累积及组分转化相关基因的鉴定及其在发育过程中的调控机制[D]. 海口: 海南大学, 2019

{{custom_citation.doi}4}https://doi.org/{{custom_citation.doi}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}0}{{custom_citation.pmid}8}本文引用 [{{custom_citation.pmid}3}]摘要{{custom_citation.pmid}2}[2]Ruan Y L

,

Patrick J W

,

Bouzayen M

,

Osorio S

,

Fernie A R

. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 2012, 17(11):656-665

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.pmid}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}7}{{custom_citation.pmid}5}本文引用 [{{custom_citation.pmid}0}]摘要{{custom_citation.url}9}[3]O'Hara L E

,

Paul M J

,

Wingler A

. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate[J]. Molecular Plant, 2013, 6(2):261-274

Plant growth and development are tightly controlled in response to environmental conditions that influence the availability of photosynthetic carbon in the form of sucrose. Trehalose-6-phosphate (T6P), the precursor of trehalose in the biosynthetic pathway, is an important signaling metabolite that is involved in the regulation of plant growth and development in response to carbon availability. In addition to the plant's own pathway for trehalose synthesis, formation of T6P or trehalose by pathogens can result in the reprogramming of plant metabolism and development. Developmental processes that are regulated by T6P range from embryo development to leaf senescence. Some of these processes are regulated in interaction with phytohormones, such as auxin. A key interacting factor of T6P signaling in response to the environment is the protein kinase sucrose non-fermenting related kinase-1 (SnRK1), whose catalytic activity is inhibited by T6P. SnRK1 is most likely involved in the adjustment of metabolism and growth in response to starvation. The transcription factor bZIP11 has recently been identified as a new player in the T6P/SnRK1 regulatory pathway. By inhibiting SnRK1, T6P promotes biosynthetic reactions. This regulation has important consequences for crop production, for example, in the developing wheat grain and during the growth of potato tubers.

{{custom_citation.url}8}https://doi.org/{{custom_citation.url}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}4}{{custom_citation.url}2}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}6}[4]Boyer J S

. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010, 3(6):942-955

{{custom_citation.url}5}https://doi.org/{{custom_citation.url}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}1}{{custom_ref.citedCount>0}9}本文引用 [{{custom_ref.citedCount>0}4}]摘要{{custom_ref.citedCount>0}3}[5]Xiang L

,

Roy K L

,

Bolouri-Moghaddam M R

,

Vanhaecke M

,

Lammens W

,

Rolland F

,

Ende W V

. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2011, 62(11):3849-3862

Over the past decades, considerable advances have been made in understanding the crucial role and the regulation of sucrose metabolism in plants. Among the various sucrose-catabolizing enzymes, alkaline/neutral invertases (A/N-Invs) have long remained poorly studied. However, recent findings have demonstrated the presence of A/N-Invs in various organelles in addition to the cytosol, and their importance for plant development and stress tolerance. A cytosolic (At-A/N-InvG, At1g35580) and a mitochondrial (At-A/N-InvA, At1g56560) member of the A/N-Invs have been analysed in more detail in Arabidopsis and it was found that At-A/N-InvA knockout plants show an even more severe growth phenotype than At-A/N-InvG knockout plants. The absence of either A/N-Inv was associated with higher oxidative stress defence gene expression, while transient overexpression of At-A/N-InvA and At-A/N-InvG in leaf mesophyll protoplasts down-regulated the oxidative stress-responsive ascorbate peroxidase 2 (APX2) promoter. Moreover, up-regulation of the APX2 promoter by hydrogen peroxide or abscisic acid could be blocked by adding metabolizable sugars or ascorbate. A hypothetical model is proposed in which both mitochondrial and cytosolic A/N-Invs can generate glucose as a substrate for mitochondria-associated hexokinase, contributing to mitochondrial reactive oxygen species homeostasis.

{{custom_ref.citedCount>0}2}https://doi.org/{{custom_ref.citedCount>0}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}6}本文引用 [{{custom_citationIndex}1}]摘要{{custom_citationIndex}0}[6]O'Hara I M

. The Sugarcane Industry, Biofuel, and Bioproduct Perspectives[M]. Hoboken: John Wiley & Sons, Inc, 2016

{{custom_ref.citationList}9}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}5}{{custom_ref.citationList}3}本文引用 [{{custom_ref.id}8}]摘要{{custom_ref.id}7}[7]

刘炳清, 许嘉阳, 黄化刚, 杨永霞, 杨双剑, 连培康, 许自成. 不同海拔下烤烟碳氮代谢相关酶基因的表达差异分析[J]. 植物生理学报, 2015, 51(2):183-188

{{custom_ref.id}6}https://doi.org/{{custom_ref.id}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}2}{{custom_ref.id}0}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_ref.citedCount}4}[8]Albi T

,

Ruiz M T

,

Reyes P

,

Valverde F

,

Romero J M

. Characterization of the sucrose phosphate phosphatase (SPP) isoforms from Arabidopsis thaliana and role of the S6PPc domain in dimerization[J]. PLoS One, 2016, 11(11):e0166308

{{custom_ref.citedCount}3}https://doi.org/{{custom_ref.citedCount}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}9}{{custom_citation.annotation}7}本文引用 [{{custom_citation.annotation}2}]摘要{{custom_citation.annotation}1}[9]Huber S C

,

Huber J L

. Role and regulation of sucrose phosphate synthase in higher plants[J]. Annual Review of Plant Biology, 1996, 47:431-444

{{custom_citation.annotation}0}https://doi.org/{{custom_citation.content}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}6}{{custom_citation.content}4}本文引用 [{{custom_citation.doi}9}]摘要{{custom_citation.doi}8}[10]Durand M

,

Porcheron B

,

Hennion N

,

Maurousset L

,

Lemoine R

,

Pourtau N

. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots[J]. Plant Physiology, 2016, 170(3):1460-1470

{{custom_citation.doi}7}https://doi.org/{{custom_citation.doi}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}1}本文引用 [{{custom_citation.doi}6}]摘要{{custom_citation.doi}5}[11]Maloney V J

,

Ji-Young P

,

Faride U

,

Mansfield S D

. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation[J]. Journal of Experimental Botany, 2015, 66(14):4383-4394

{{custom_citation.doi}4}https://doi.org/{{custom_citation.doi}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}0}{{custom_citation.pmid}8}本文引用 [{{custom_citation.pmid}3}]摘要{{custom_citation.pmid}2}[12]Seger M

,

Gebril S

,

Tabilona J

,

Peel A

,

Sengupta-Gopalan C

. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco[J]. Planta, 2015, 241(1):69-81

The outcome of simultaneously increasing SPS and GS activities in transgenic tobacco, suggests that sucrose is the major determinant of growth and development, and is not affected by changes in N assimilation. Carbon (C) and nitrogen (N) are the major components required for plant growth and the metabolic pathways for C and N assimilation are very closely interlinked. Maintaining an appropriate balance or ratio of sugar to nitrogen metabolites in the cell, is important for the regulation of plant growth and development. To understand how C and N metabolism interact, we manipulated the expression of key genes in C and N metabolism individually and concurrently and checked for the repercussions. Transgenic tobacco plants with a cytosolic soybean glutamine synthetase (GS1) gene and a sucrose phosphate synthase (SPS) gene from maize, both driven by the CaMV 35S promoter were produced. Co-transformants, with both the transgenes were produced by sexual crosses. While GS is the key enzyme in N assimilation, involved in the synthesis of glutamine, SPS plays a key role in C metabolism by catalyzing the synthesis of sucrose. Moreover, to check if nitrate has any role in this interaction, the plants were grown under both low and high nitrogen. The SPS enzyme activity in the SPS and SPS/GS1 co-transformants were the same under both nitrogen regimens. However, the GS activity was lower in the co-transformants compared to the GS1 transformants, specifically under low nitrogen conditions. The GS1/SPS transformants showed a phenotype similar to the SPS transformants, suggesting that sucrose is the major determinant of growth and development in tobacco, and its effect is only marginally affected by increased N assimilation. Sucrose may be functioning in a metabolic capacity or as a signaling molecule.

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.pmid}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}7}{{custom_citation.pmid}5}本文引用 [{{custom_citation.pmid}0}]摘要{{custom_citation.url}9}[13]Foyer C H

,

Ferrario S

. Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved biomass production[J]. Biochemical Society Transactions, 1994, 22(4):909-915

{{custom_citation.url}8}https://doi.org/{{custom_citation.url}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}4}{{custom_citation.url}2}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}6}[14]Ishimaru K

,

Hirotsu N

,

Kashiwagi T

,

Madoka Y

,

Nagasuga K

,

Ono K

,

Ohsugi R

. Overexpression of a maize (Zea mays) SPS gene improves yield characters of potato (Solanum tuberosum) under field conditions[J]. Plant Production Science, 2008, 11(1):104-107

{{custom_citation.url}5}https://doi.org/{{custom_citation.url}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}1}{{custom_ref.citedCount>0}9}本文引用 [{{custom_ref.citedCount>0}4}]摘要{{custom_ref.citedCount>0}3}[15]Li X

,

Du J

,

Guo J J

,

Wang H Y

,

Ma S

,

Lyu J G

,

Sui X L

,

Zhang Z X

. The functions of cucumber sucrose phosphate synthases 4 (CsSPS4) in carbon metabolism and transport in sucrose- and stachyose-transporting plants[J]. Journal of Plant Physiology, 2018, 228:150-157

{{custom_ref.citedCount>0}2}https://doi.org/{{custom_ref.citedCount>0}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}6}本文引用 [{{custom_citationIndex}1}]摘要{{custom_citationIndex}0}[16]

叶红霞, 吕律, 王同林, 海睿, 汪炳良. 不同变种甜瓜糖分积累及蔗糖代谢酶活性动态变化[J]. 核农学报, 2019, 33(10):1959-1966

{{custom_ref.citationList}9}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}5}{{custom_ref.citationList}3}本文引用 [{{custom_ref.id}8}]摘要{{custom_ref.id}7}[17]Abid M

,

Tian Z

,

Hu J

,

Ullah A

,

Dai T

. Activities of carbohydrate-metabolism enzymes in pre-drought primed wheat plants under drought stress during grain filling: Carbohydrate metabolism in drought primed wheat plants[J]. Journal of Integrative Plant Biology, 2017, 46(4):783-795

{{custom_ref.id}6}https://doi.org/{{custom_ref.id}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}2}{{custom_ref.id}0}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_ref.citedCount}4}[19]Chen S

,

Hajirezaei M R

,

Peisker M

,

Tschiersch H

,

Sonnewald U

,

Brnke F

. Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynjournal, alters carbohydrate partitioning, and reduces growth[J]. Planta, 2005, 221(4):479-492

{{custom_ref.citedCount}3}https://doi.org/{{custom_ref.citedCount}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}9}{{custom_citation.annotation}7}本文引用 [{{custom_citation.annotation}2}]摘要{{custom_citation.annotation}1}[20]Chen S

,

Hajirezaei M R

,

Zanor M I

,

Hornyik C

,

Debast S

,

Lacomme C

,

Fernie A R

,

Sonnewald U

,

Börnke F

. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation[J]. Plant Cell and Environment, 2007, 31(1):165-176

{{custom_citation.annotation}0}https://doi.org/{{custom_ref.label}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.label}6}{{custom_ref.label}4}本文引用 [{{custom_citation.content}9}]摘要{{custom_citation.content}8}[21]Cheng W H

,

Chourey P S

. Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize[J]. Theoretical and Applied Genetics, 1999, 98(3/4):485-495

{{custom_citation.content}7}https://doi.org/{{custom_citation.content}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}3}{{custom_citation.content}1}本文引用 [{{custom_citation.doi}6}]摘要{{custom_citation.doi}5}[22]Bansal R

. Cell wall invertase and sucrose synthase regulate sugar metabolism during seed development in isabgol (Plantago ovata Forsk.)[J]. Proceedings of the National Academy of Sciences India, 2018, 88(1):73-78

{{custom_citation.doi}4}https://doi.org/{{custom_citation.doi}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}0}{{custom_citation.doi}8}本文引用 [{{custom_citation.doi}3}]摘要{{custom_citation.doi}2}[23]Hoermiller I I

,

Naegele T

,

Augustin H

,

Stutz S

,

Heyer A G

. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana[J]. Plant Cell and Environment, 2016, 40(5):602-610

{{custom_citation.doi}1}https://doi.org/{{custom_citation.pmid}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}7}{{custom_citation.pmid}5}本文引用 [{{custom_citation.pmid}0}]摘要{{custom_citation.pmid}9}[24]Ruan Y L

. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65(1):33-67

{{custom_citation.pmid}8}https://doi.org/{{custom_citation.pmid}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}4}{{custom_citation.pmid}2}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}6}[25]Wan H J

,

Wu L M

,

Yang Y J

,

Zhou G Z

,

Ruan Y L

. Evolution of sucrose metabolism: The dichotomy of invertases and beyond[J]. Trends in Plant Science, 2017, 23(2):163-177

{{custom_citation.url}5}https://doi.org/{{custom_citation.url}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}1}{{custom_citation.url}9}本文引用 [{{custom_citation.url}4}]摘要{{custom_citation.url}3}[26]Bledsoe S W

,

Henry C

,

Griffiths C A

,

Paul M J

,

Feil R

,

Lunn J E

,

Stitt M

,

Lagrimini L M

. The role of Tre6P and SnRK1 in maize earlynkernel development and events leading to stress-induced kernel abortion[J]. BMC Plant Biology, 2017, 17(1):74

Background: Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. Results: A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol.g(-1) FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA. 3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014): 1-13, 2015). Conclusions: The impact of kernel excision from the ear triggers a cascade of events starting with the precipitous drop in Tre6P levels. It is proposed that the removal of Tre6P suppression of SnRK1 activity results in transcription of putative SnRK1 target genes, and the metabolic transition from biosynthesis to catabolism. This highlights the importance of Tre6P in the metabolic response to starvation. We also present evidence that sugars can mediate the activation of SnRK1. The precipitous drop in Tre6P corresponds to a large increase in transcription of ZmTPPA. 3, indicating that this specific enzyme may be responsible for the de-phosphorylation of Tre6P. The high levels of Tre6P in the immature embryo are likely important for preventing kernel abortion.

{{custom_citation.url}2}https://doi.org/{{custom_citation.url}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}8}{{custom_ref.citedCount>0}6}本文引用 [{{custom_ref.citedCount>0}1}]摘要{{custom_ref.citedCount>0}0}[27]Wang E T

,

Wang J J

,

Zhu X D

,

Hao W

,

Wang L Y

,

Li Q

,

Zhang L X

,

He W

,

Lu B R

,

Lin H X

. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11):1370-1374

{{custom_citationIndex}9}https://doi.org/{{custom_citationIndex}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}5}{{custom_citationIndex}3}本文引用 [{{custom_ref.citationList}8}]摘要{{custom_ref.citationList}7}[28]Zanor M Ⅰ

,

Osorio S

,

Nunes-Nesi A

,

Carrari F

,

Lohse M

,

Usadel B

,

Kuhn C

,

Bleiss W

,

Giavalisco P

,

Willmitzer L

. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility[J]. Plant Physiology, 2009, 150(3):1204-1218

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}2}{{custom_ref.citationList}0}本文引用 [{{custom_ref.id}5}]摘要{{custom_ref.id}4}[29]Shen S

,

Ma S

,

Liu Y H

,

Liao S J

,

Ruan Y L

. Cell wall invertase and sugar transporters are differentially activated in tomato styles and ovaries during pollination and fertilization[J]. Frontiers in Plant Science, 2019, 10:506

Flowering plants depend on pollination and fertilization to activate the transition from ovule to seed and ovary to fruit, namely seed and fruit set, which are key for completing the plant life cycle and realizing crop yield potential. These processes are highly energy consuming and rely on the efficient use of sucrose as the major nutrient and energy source. However, it remains elusive as how sucrose imported into and utilizated within the female reproductive organ is regulated in response to pollination and fertilization. Here, we explored this issue in tomato by focusing on genes encoding cell wall invertase (CWIN) and sugar transporters, which are major players in sucrose phloem unloading, and sink development. The transcript level of a major CWIN gene,, and CWIN activity were significantly increased in style at 4 h after pollination (HAP) in comparison with that in the non-pollination control, and this was sustained at 2 days after pollination (DAP). In the ovaries, however, CWIN activity and expression did not increase until 2 DAP when fertilization occurred. Interestingly, a CWIN inhibitor gene was repressed in the pollinated style at 2 DAP. In response to pollination, the style exhibited increased expressions of genes encoding hexose transporters,,,, and sucrose transporters,, and from 4 HAP to 2 DAP. Upon fertilization, and and, but not, were also stimulated in fruitlets at 2 DAP. Together, the findings reveal that styles respond promptly and more broadly to pollination for activation of CWIN and sugar transporters to fuel pollen tube elongation, whereas the ovaries do not exhibit activation for some of these genes until fertilization occurs. Expression of genes encoding cell wall invertases and sugar transporters was stimulated in pollinated style and fertilized ovaries in tomato.

{{custom_ref.id}3}https://doi.org/{{custom_ref.id}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}9}{{custom_ref.citedCount}7}本文引用 [{{custom_ref.citedCount}2}]摘要{{custom_ref.citedCount}1}[30]Heyer A G

,

Raap M

,

Schroeer B

,

Marty B

,

Willmitzer L

. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana[J]. Plant Journal, 2004, 39(2):161-169

Resource allocation is a major determinant of plant fitness and is influenced by external as well as internal stimuli. We have investigated the effect of cell wall invertase activity on the transition from vegetative to reproductive growth, inflorescence architecture, and reproductive output, i.e. seed production, in the model plant Arabidopsis thaliana by expressing a cell wall invertase under a meristem-specific promoter. Increased cell wall invertase activity causes accelerated flowering and an increase in seed yield by nearly 30%. This increase is caused by an elevation of the number of siliques, which results from enhanced branching of the inflorescence. On the contrary, as cytosolic enzyme, the invertase causes delayed flowering, reduced seed yield, and branching. This demonstrates that invertases not only are important in determining sink strength of storage organs but also play a role in regulating developmental processes.

{{custom_ref.citedCount}0}https://doi.org/{{custom_citation.annotation}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}6}{{custom_citation.annotation}4}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]Sergeeva L Ⅰ

,

Keurentjes J J B

,

Bentsink L

,

Vonk J

,

Plas L H W

,

Koornneef M

,

Vreugdenhil D

. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis[J]. Proceedings of the National Academy of Sciences, 2006, 103(8):2994-2999

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]Wang L

,

Li X R

,

Lian H

,

Ni D A

,

He Y k

,

Chen X Y

,

Ruan Y L

. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively[J]. Plant Physiology, 2010, 154(2):744-756

Vacuolar invertase (VIN) has long been considered as a major player in cell expansion. However, direct evidence for this view is lacking due, in part, to the complexity of multicellular plant tissues. Here, we used cotton (Gossypium spp.) fibers, fast-growing single-celled seed trichomes, to address this issue. VIN activity in elongating fibers was approximately 4-6-fold higher than that in leaves, stems, and roots. It was undetectable in fiberless cotton seed epidermis but became evident in initiating fibers and remained high during their fast elongation and dropped when elongation slowed. Furthermore, a genotype with faster fiber elongation had significantly higher fiber VIN activity and hexose levels than a slow-elongating genotype. By contrast, cell wall or cytoplasmic invertase activities did not show correlation with fiber elongation. To unravel the molecular basis of VIN-mediated fiber elongation, we cloned GhVIN1, which displayed VIN sequence features and localized to the vacuole. Once introduced to Arabidopsis (Arabidopsis thaliana), GhVIN1 complemented the short-root phenotype of a VIN T-DNA mutant and enhanced the elongation of root cells in the wild type. This demonstrates that GhVIN1 functions as VIN in vivo. In cotton fiber, GhVIN1 expression level matched closely with VIN activity and fiber elongation rate. Indeed, transformation of cotton fiber with GhVIN1 RNA interference or overexpression constructs reduced or enhanced fiber elongation, respectively. Together, these analyses provide evidence on the role of VIN in cotton fiber elongation mediated by GhVIN1. Based on the relative contributions of sugars to sap osmolality in cotton fiber and Arabidopsis root, we conclude that VIN regulates their elongation in an osmotic dependent and independent manner, respectively.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[33]Toledo L E T

,

García D M

,

Cruz E P

,

Intriago L M R

,

Pérez J N

,

Chanfrau J M P

. Fructosyltransferases and Invertases: Useful Enzymes in the Food and Feed Industries[M]. London: Academic Press, 2019

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[34]Dong S Y

,

Beckles D M

. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response[J]. Journal of Plant Physiology, 2019, 234- 235:80-93

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[35]Qin G Z

,

Zhu Z

,

Wang W H

,

Cai J H

,

Chen Y

,

Li L

,

Tian S P

. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening[J]. Plant Physiology, 2016, 172(3):1596-1611

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[36]Estornell L H

,

Pons C

,

Martínez A

,

O’Connor J E

,

Orzaez D

,

Granell A

. A VIN1 GUS:GFP fusion reveals activated sucrose metabolism programming occurring in interspersed cells during tomato fruit ripening[J]. Journal of Plant Physiology, 2013, 170(12):1113-1121

The tomato is a model for fleshy fruit development and ripening. Here we report on the identification of a novel unique cell autonomous/cellular pattern of expression that was detected in fruits of transgenic tomato lines carrying a GFP GUS driven by the fruit specific vacuolar invertase promoter VIN1. The VIN1 promoter sequence faithfully reproduced the global endogenous VIN expression by conferring a biphasic pattern of expression with a second phase clearly associated to fruit ripening. A closer view revealed a salt and pepper pattern of expression characterized by individual cells exhibiting a range of expression levels (from high to low) surrounded by cells with no expression. This type of pattern was detected across different fruit tissues and cell types with some preferences for vascular, sub-epidermal layer and the inner part of the fruit. Cell ability to show promoter activity was neither directly associated with overall ripening - as we find VIN+ and - VIN- cells at all stages of ripening, nor with cell size. Nevertheless the number of cells with active VIN-driven expression increased with ripening and the activity of the VIN promoter seems to be inversely correlated with cell size in VIN+ cells. Gene expression analysis of FACS-sorted VIN+ cells revealed a transcriptionally distinct subpopulation of cells defined by increased expression of genes related to sucrose metabolism, and decreased activity in protein synthesis and chromatin remodeling. This finding suggests that local micro heterogeneity may underlie some aspects (i.e. the futile cycles involving sucrose metabolism) of an otherwise more uniform looking ripening program. Copyright © 2013 Elsevier GmbH. All rights reserved.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[37]

阮美颖, 万红建, 杨有新, 周国治, 王荣青, 叶青静, 姚祝平, 杨悦俭, 程远, 李志邈. 辣椒细胞质雄性不育系和保持系蔗糖转化酶活性与相关基因表达分析[J]. 农业生物技术学报, 2018, 26(12):2036-2046

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[38]Xu Z R

,

Cai S W

,

Huang W X

,

Liu R X

,

Xiong Z T

. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations ofRumex dentatus under copper stress[J]. Ecotoxicology and Environmental Safety, 2018, 147:17-25

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[39]Barratt D H P

,

Derbyshire P

,

Findlay K

,

Pike M

,

Wellner N

,

Lunn J

,

Feil R

,

Simpson C

,

Maule A J

,

Smith A M

. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences, 2009, 106(31):13124-13129

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[40]Jia L Q

,

Zhang B T

,

Mao C Z

,

Li J H

,

Wu Y R

,

Wu P

,

Wu Z C

. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.)[J]. Planta, 2008, 228(1):51-59

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[41]Welham T

,

Pike J

,

Horst Ⅰ

,

Flemetakis E

,

Katinakis P

,

Kaneko T

,

Sato S

,

Tabata S

,

Perry J

,

Parniske M

,

Wang T L

. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus[J]. Journal of Experimental Botany, 2009, 60(12):3353-3365

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[42]Handa M H

. Genes for alkaline/neutral invertase in rice: Alkaline/neutral invertases are located in plant mitochondria and also in plastids[J]. Planta, 2007, 225(5):1193-1203

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[43]Ji X M

,

Ende W V D

,

Laere A V

,

Cheng S H

,

Bennett J

. Structure, evolution, and expression of the two invertase gene families of rice[J]. Journal of Molecular Evolution, 2005, 60(5):615-634

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[44]Wang L

,

Ruan Y L

. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns ofGhCWIN1 in cotton[J]. Plant Physiology, 2013, 160(1):777-787

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[45]Xu S M

,

Brill E

,

Llewellyn D J

,

Furbank R T

,

Ruan Y L

. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production[J]. Molecular Plant, 2012, 5(2):430-441

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[46]Yao D

,

Gonzales-Vigil E

,

Mansfield S D

. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem[J]. Journal of Experimental Botany, 2020, 71(6):1858-1869

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[47]Shu X M

,

Livingston D P

,

Franks R G

,

Boston R S

,

Woloshuk C P

,

Payne G A

. Tissue-specific gene expression in maize seeds during colonization by A spergillus flavus and Fusarium verticillioides[J]. Molecular Plant Pathology, 2015, 16(7):662-674

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[48]Slugina M A

,

Boris K V

,

Kakimzhanova A A

,

Kochieva E Z

. Intraspecific polymorphism of the sucrose synthase genes in Russian and Kazakhstan potato cultivars[J]. Genetika, 2015, 50(6):677-682

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[49]Mukhtar A

,

Ali S A

,

Sidra A

,

Ayesha L

,

Ud D S

,

Ma F

,

Rao A Q

,

Bilal S M

,

Tayyab H

,

Wang X

. Sucrose synthase genes: A way forward for cotton fiber improvement[J]. Biologia, 2018, 73(7):703-713

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[50]Ruan Y L

,

Llewellyn D J

,

Liu Q

,

Xu S M

,

Wu L M

,

Wang L

,

Furbank R T

. Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton[J]. Functional Plant Biology, 2008, 35(5):382-393

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[51]Wei Z G

,

Qu Z S

,

Zhang L J

,

Zhao S J

,

Bi Z H

,

Ji X H

,

Wang X W

,

Wei H R

. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height[J]. PLoS One, 2015, 10(3):e0120669

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[52]Sadat M S

,

Kourosh M

,

Ji K S

. Characterization of cellulose synjournal in plant cells[J]. The Scientific World Journal, 2016, 2016:1-8

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[53]Weber H

,

Borisjuk L

,

Wobus U

. Controlling seed development and seed size in Vicia faba: A role for seed coat-associated invertases and carbohydrate state[J]. Plant Journal, 1996, 10(5):823-834

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[54]Anh N Q

,

Sheng L

,

Wi S G

,

Bae H

,

Lee D S

,

Bae H J

. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway[J]. Frontiers in Plant Science, 2016, 6:1216

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[55]Kumar A

,

Singh H P

,

Batish D R

,

Kaur S

. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism[J]. Protoplasma, 2016, 253:1043-1049

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[56]Batth R

,

Singh K

,

Kumari S

,

Mustafiz A

. Transcript profiling reveals the presence of abiotic stress and developmental stage specific ascorbate oxidase genes in plants[J]. Frontiers in Plant Science, 2017, 8:198

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[57]Poór P

,

Patyi G

,

Takács Z

,

Szekeres A

,

Bódi N

,

Bagyánszki M

,

Tari Ⅰ

. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.)[J]. Journal of Plant Research, 2019, 132(2):273-283

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[58]Oury V

,

Caldeira C F

,

Prodhomme D

,

Pichon J P

,

Gibon Y

,

Tardieu F

,

Turc O

. Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering?[J]. Plant Physiology, 2016, 171(2):997-1008

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[59]Islam M R

,

Feng B

,

Chen T

,

Fu W

,

Fu G

. Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum, 2019, 165(3):644-663

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[60]Tanotra S

,

Zhawar V K

,

Sharma S

. Regulation of antioxidant enzymes and invertases by hydrogen peroxide and nitric oxide under aba and water-deficit stress in wheat[J]. Agricultural Research, 2019, 8:441-451

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[61]Nunes C

,

O'Hara L E

,

Primavesi L F

,

Delatte T L

,

Schluepmann H

,

Somsen G W

,

Silva A B

,

Fevereiro P S

,

Wingler A

,

Paul M J

. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation[J]. Plant Physiology, 2013, 162(3):1720-1732

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[62]Khalid M

,

Khalid Z

,

Gul A

,

Amir R

,

Ahmad Z

. Characterization of wheat cell wall invertase genes associated with drought tolerance in synthetic-derived wheat[J]. International Journal of Agriculture and Biology, 2018, 20(12):2677-2684

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[63]Lee S K

,

Kim H

,

Cho J I

,

Nguyen C D

,

Jeon J S

. Deficiency of rice hexokinase HXK5 impairs synjournal and utilization of starch in pollen grains and causes male sterility[J]. Journal of Experimental Botany, 2019, 71(1):10

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[64]

丁梦秋, 闻诗文, 陆卫平, 陆大雷. 结实期弱光胁迫对甜玉米籽粒灌浆和叶片衰老的影响[J]. 核农学报, 2017, 31(5):964-971

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[65]

戴忠民, 张秀玲, 张红, 李勇, 王振林. 不同灌溉模式对小麦籽粒蛋白质及其组分含量的影响[J]. 核农学报, 2015, 29(9):1797-1798

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[66]

王凤, 廖乐, 华淼源, 余泽新, 林立昊, 惠宏杉, 郑许光, 齐军仓. 人工老化处理对啤酒大麦籽粒淀粉酶和麦芽品质的影响[J]. 核农学报, 2017, 31(2):288-297

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[67]Kiran A

,

Kumar S

,

Nayyar H

,

Sharma K D

. Low temperature induced aberrations in male and female reproductive organ development cause flower abortion in Chickpea[J]. Plant Cell and Environment, 2019, 42(7):2075-2089

Chickpea (Cicer arietinum L.) is susceptible to low temperature (LT) at reproductive stage. LT causes flower abortion and delays pod set in chickpea until terminal drought becomes an issue, thereby decreasing yield potential. In chickpea, flower and anther/pollen development as well as LT-induced abnormalities on anther and pollen development are described inadequately. In the present manuscript, we report flower development stages, anther development stages, and aberrations in male gamete formation in chickpea under LT. Flower length was linearly correlated to flower and anther stages and can be used to predict these stages in chickpea. LT affected male gamete development in a flower/anther age-dependent manner where outcome ranged from no pollen formation to pollen sterility or no anther dehiscence to delayed dehiscence. In anthers, LT inhibited microsporogenesis, microgametogenesis, tapetum degeneration, breakage of septum and stomium, and induced pollen sterility. Whereas disruption of male function was the prime cause of abortion in flowers below vacuolated pollen stage, flower abortion was due to a combination of male and female reproductive functions in flowers with mature pollen. The study will help in elucidating mechanisms governing flower development, anther and pollen development, and tolerance/susceptibility to LT.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[68]Ido G

,

Guadalupe D P

,

Zvia K

,

Doron S I

,

Fernando C

,

Dudy B Z

,

Sara A

. Tomato abscisic acid stress ripening (ASR) gene family revisited[J]. PLoS One, 2014, 9(10):e107117

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[69]Sun P G

,

Miao H X

,

Yu X M

,

Jia C H

,

Liu J H

,

Zhang J B

,

Wang J Y

,

Zhuo W

,

Wang A B

,

Xu B Y

,

Jin Z Q

. A novel role for banana MaASR in the regulation of fowering time in transgenic Arabidopsis[J]. PLoS One, 2016, 11(8):e0160690

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[70]Liang Y N

,

Jiang Y L

,

Du M

,

Li B Y

,

Wu J D

. ZmASR3 from the maize ASR gene family positively regulates drought tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 2019, 20(9):2278

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[71]Zhang J

,

Zhu Q S

,

Yu H J

,

Li L

,

Zhang G Q

. Comprehensive analysis of the cadmium tolerance of abscisic acid, stress and ripening induced proteins (ASRs) in maize[J]. International Journal of Molecular Sciences, 2019, 20(1):133

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[72]Li X Y

,

Li L J

,

Zuo S Y

,

Li J

,

Wei S

. Differentially expressed ZmASR genes associated with chilling tolerance in maize (Zea mays) varieties[J]. Functional Plant Biology, 2018, 45(12):1173

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[73]Chen J Y

,

Liu D J

,

Jiang Y M

,

Zhao M L

,

Shan W

,

Kuang J F

,

Lu W J

. Molecular characterization of a strawberry FaASR gene in relation to fruit ripening[J]. PLoS One, 2011, 6:e24649

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[74]Wei J X

,

Hu F

,

Jiang W B

,

Chen H M

. Functional analysis of abscisic acid-stress ripening transcription factor in Prunus persica f. atropurpurea[J]. Journal of Plant Growth Regulation, 2018, 37:85-100

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[75]Liang J

,

He J X

. Protective role of anthocyanins in plants under low nitrogen stress[J]. Biochemical and Biophysical Research Communications, 2018, 498(4):946-953

Nitrogen (N) is a major nutrient of plants but often a limiting factor for plant growth and crop yield. To adapt to N deficiency, plants have evolved adaptive responses including accumulation of anthocyanins. However, it is still unclear whether the accumulated anthocyanins are part of the components of plant tolerance under low N stress. Here, we demonstrate that low N-induced anthocyanins contribute substantially to the low N tolerance of Arabidopsis thaliana. pap1-1, a mutant defective in MYB75 (PAP1), a MYB-type transcription factor that positively regulates anthocyanin biosynthesis in Arabidopsis, was found to have significantly decreased survival rate to low N stress compared to its wild-type plants. Similarly, tt3, a mutant with severe deficiency in dihydroflavonol 4-reductase (DFR), a key enzyme in anthocyanin biosynthesis, also showed much lower survival rate under low N stress. These results indicate that anthocyanins are substantial contributors of plant tolerance to low N stress. Furthermore, a metabolomics analysis using LC-MS revealed changes in flavonoid profile in the pap1-1 and tt3 plants, which established a causal relationship between plant adaptation to low N stress and these compounds including anthocyanins. Our results showed an important role of anthocyanins rather than flavonols in conferring plant tolerance to low N stress. Copyright © 2018 Elsevier Inc. All rights reserved.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[76]Afzal M

,

Redha A

,

AlHasan R

. Anthocyanins potentially contribute to defense against alzheimer's disease[J]. Molecules, 2019, 24(23):4255

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[77]Ma Z H

,

Li W F

,

Mao J

,

Li W

,

Zuo C W

,

Zhao X

,

Dawuda M M

,

Shi X Y

,

Chen B H

. Synjournal of light-inducible and light-independent anthocyanins regulated by specific genes in grape 'Marselan' (V. vinifera L.)[J]. Peer J, 2019, 7:e6521

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[78]Federica G

,

Chiara P

,

Ilaria F

,

Lorenzo L

,

Nicola B

,

Diego T

. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.)[J]. Scientific Reports, 2018, 8(1):8719

Climate change is a major concern in grape production worldwide. Nights have been warming much faster than the days, raising attention on the effect of night temperatures on grape and wine composition. In this study we evaluated the effect of night temperatures on grape coloration in the cv. Corvina (Vitis vinifera L.). In 2015 and 2016 potted plants were cooled overnight (10-11 degrees C) during two berry ripening phases, veraison (TV) or post-veraison (TPV), and compared to control vines (C) grown at ambient night temperature (15-20 degrees C on average). Cooling treatment around veraison (TV) hastened berry anthocyanin accumulation, while the same treatment applied after veraison (TPV) was ineffective. Molecular analysis revealed an increased transcription of four key genes in anthocyanin biosynthesis (CHS3, F3H1, MYBA1 and UFGT) in TV treatment. These results suggest that the anthocyanin biosynthesis capacity was enhanced by cool nights during veraison. However, since the gene expression was not always temporally correlated to the increase in anthocyanin concentration, we speculate on the presence of mechanisms, such as enzymatic regulation or anthocyanin transport, which may contribute in determining the anthocyanin accumulation under low night temperatures.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[79]Meng L S

,

Xu M K

,

Wan W

,

Yu F

,

Li C

,

Wang J Y

,

Wei Z Q

,

Lv M J

,

Cao X Y

,

Li Z Y

,

Jiang J H

. Sucrose signaling regulates anthocyanin biosynjournal through a MAPK cascade in Arabidopsis thaliana[J]. Genetics, 2018, 210(2):607

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[80]Koch K E

. Carbohydrate-modulated gene expression in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1):509-540

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[81]Zheng T

,

Tan W R

,

Yang H

,

Zhang L E

,

Li T T

,

Liu B H

,

Zhang D W

,

Lin H H

,

Qu L J

. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression[J]. Plos Genetics, 2019, 15(3):e1007993

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[82]Ai T N

,

Naing A H

,

Arun M

,

Lim S H

,

Kim C K

. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors[J]. Plant Science, 2016, 252:144-150

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[83]Solfanelli C

,

Poggi A

,

Loreti E

,

Alpi A

,

Perata P

. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiology, 2006, 140(2):637-646

Sugars act as signaling molecules, whose signal transduction pathways may lead to the activation or inactivation of gene expression. Whole-genome transcript profiling reveals that the flavonoid and anthocyanin biosynthetic pathways are strongly up-regulated following sucrose (Suc) treatment. Besides mRNA accumulation, Suc affects both flavonoid and anthocyanin contents. We investigated the effects of sugars (Suc, glucose, and fructose) on genes coding for flavonoid and anthocyanin biosynthetic enzymes in Arabidopsis (Arabidopsis thaliana). The results indicate that the sugar-dependent up-regulation of the anthocyanin synthesis pathway is Suc specific. An altered induction of several anthocyanin biosynthetic genes, consistent with in vivo sugar modulation of mRNA accumulation, is observed in the phosphoglucomutase Arabidopsis mutant accumulating high levels of soluble sugars.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[84]Shor E

,

Potavskaya R

,

Kurtz A

,

Paik Ⅰ

,

Huq E

,

Green R

. PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent[J]. Genes, 2018, 9(12):628

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[85]Wei Z Y

,

Yuan T

,

Tarkowská D

,

Kim J

,

Nam H G

,

Novák O

,

He K

,

Gou X P

,

Li J

. Brassinosteroid biosynjournal is modulated via a transcription factor cascade of COG1, PIF4 and PIF5[J]. Plant Physiology, 2017, 174(2):1260-1273

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[86]Shor E

,

Paik Ⅰ

,

Kangisser S

,

Green R

,

Huq E

. PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis[J]. New Phytologist, 2017, 215(1):217-228

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[87]Cho L H

,

Pasriga R

,

Yoon J

,

Jeon J S

,

An G

. Roles of sugars in controlling flowering time[J]. Journal of Plant Biology, 2018, 61(3):121-130

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[88]

陈清帅. 拟南芥糖信号快速响应的机理研究[D]. 泰安: 山东农业大学, 2019

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[89]Xu M L

,

Hu T Q

,

Zhao J F

,

Mee-Yeon P

,

Earley K W

,

Gang W

,

Li Y

,

Scott P R

,

Miltos T

. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(8):e1006263

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[90]Yin H B

,

Hong G J

,

Li L Y

,

Zhang X Y

,

Kong Y Z

,

Sun Z T

,

Li J M

,

Chen J P

,

He Y Q

. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana[J]. Phytopathology, 2019, 109(4):632-642

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[91]Wahl V

,

Ponnu J

,

Schereth A

,

Arrivault S

,

Langenecker T

,

Fronke A

,

Feil R

,

Lunn J G

,

Stitt M

,

Schmid M

. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120):704-707

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[92]Jamsheer M K

,

Sharma M

,

Singh D

,

Mannully C T

,

Laxmi A

. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis[J]. Plant Journal for Cell and Molecular Biology, 2018, 94(2):232-245

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[93]Kelly C

,

Michael T

,

A O H

,

Nijat Ⅰ

,

A D M

. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth[J]. Journal of Experimental Botany, 2019, 70(15):3955-3967

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[94]Durand M

,

Mainson D

,

Porcheron B

,

Maurousset L

,

Lemoine R

,

Pourtau N

. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters[J]. Planta an International Journal of Plant Biology, 2018, 247(3):587-611

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[95]Deryabin A N

,

Trunova Т Ⅰ

. The physiological and biochemical mechanisms providing the increased constitutive cold resistance in the potato plants, expressing the yeast SUC2 gene encoding apoplastic invertase[J]. Journal of Stress Physiology and Biochemistry, 2016, 12(2):39

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[96]Bi Y J

,

Sun Z C

,

Zhang J

,

Liu E Q

,

Shen H M

,

Lai K L

,

Zhang S

,

Guo X T

,

Sheng Y T

,

Yu C Y

,

Qiao X Q

,

Li B

,

Zhang H X

. Manipulating the expression of a cell wall invertase gene increases grain yield in maize[J]. Plant Growth Regulation, 2018, 84:37-43

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[97]Guo X T

,

Duan X G

,

Wu Y Z

,

Cheng J S

,

Zhang J

,

Zhang H X

,

Li B

. Genetic engineering of maize (Zea mays L.) with improved grain nutrients[J]. Journal of Agricultural and Food Chemistry, 2018, 66(7):1670-1677

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[98]Morey S R

,

Hirose T

,

Hashida Y

,

Miyao A

,

Hirochika H

,

Ohsugi R

,

Yamagishi J

,

Aoki N

. Characterisation of a rice vacuolar invertase isoform, OsINV2, for growth and yield-related traits[J]. Functional Plant Biology, 2019, 46:777-785

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

相关知识

中国科学院战略性先导科技专项“植物特化性状形成及定向发育调控”研究任务招标指南
植物的生物节律与环境响应.pptx
科学网—植物激素的全新信号转导之路
【中国科学报】植物激素的全新信号转导之路
植物逆境应对与抗性培育.pptx
植物的生物节律与植物生理学.pptx
植物的生物节律与季节变化
调节植物响应光周期开花的分子机制阐明
植物响应非生物胁迫的分子机制
不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究

网址: 蔗糖代谢及信号转导在植物发育和逆境响应中的作用 https://m.huajiangbk.com/newsview414153.html

所属分类:花卉
上一篇: 不同围压下草本植物根系对土体加筋
下一篇: 一种植物栽培用抗压型槽式培养结构