首页 > 分享 > CRISPR/Cas基因编辑系统在植物抗病毒防御中的应用

CRISPR/Cas基因编辑系统在植物抗病毒防御中的应用

参考文献

[1] NICAISE V. Crop immunity against viruses: outcomes and future challenges [J]. Frontiers in Plant Science, 2014, 5:660.
[2] LU H, XU R, WANG H Z, et al. Research progress of plant virus test and prevention (in Chinese) [J]. Jiangsu Agricultural Science (江苏农业科学), 2017, 45(24):25-31.
[3] LANGNER T, KAMOUN S, BELHAJ K. CRISPR crops: plant genome editing toward disease resistance [J]. Annual Review of Phytopathology, 2018, 56:479-512.
[4] SHEPHERD D N, MARTIN D P, THOMSON J A. Transgenic strategies for developing crops resistant to geminiviruses [J]. Plant Science, 2009, 176:1-11.
[5] GREEN J C, HU J S. Editing plants for virus resis-tance using CRISPR-Cas [J]. Acta Virologica, 2017, 61:138-142.
[6] GARNEAU J E, DUPUIS M E, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468:67-71.
[7] ZAIDI SSEA, TASHKANDI M, MANSOOR S, et al. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance [J]. Frontiers in Plant Science, 2016, 7:1673.
[8] MAHAS A, MAHFOUZ M. Engineering virus resis-tance via CRISPR-Cas systems [J]. Current Opinion in Virology, 2018, 32:1-8.
[9] WOLTER F, PUCHTA H. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists [J]. Plant Journal, 2018, 94:767-775.
[10] WANG B J, MA L L, LIANG Z. Research progress on CRISPR/Cas9 genome editing technology and its application in crop genetic improvement (in Chinese) [J]. Shanxi Agricultural Science (山西农业科学) , 2021, 49(12): 1383-1392.
[11] GAO H Y, RAN Q B, HU X, et al. DNA-free genome editing (in Chinese) [J]. Chinese Science Bulletin (科学通报) , 2021, 66: 1408-1422.
[12] MAKAROVA K S, ZHANG F, KOONIN E V. SnapShot: class 1 CRISPRCas systems [J]. Cell, 2017a, 168:946-946.
[13] MAKAROVA K S, ZHANG F, KOONIN E V. SnapShot: class 2 CRISPRCas systems [J]. Cell, 2017b, 168:328-328.
[14] MARRAFFINI L A, SONTHEIMER E J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea [J]. Nature Reviews Genetics, 2010, 11:181-190.
[15] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337:816-821.
[16] ARORA L, NARULA A. Gene editing and crop improvement using CRISPR-cas9 system [J]. Frontiers in Plant Science, 2017, 8:1932.
[17] NISHIMASU H. Crystal structure of Cas9 in complex with guide RNA and target DNA [J]. Cell, 2014, 156(5):935-949.
[18] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering [J]. Cell, 2014, 157(6):1262-1278.
[19] MENG X, HU X, LIU Q, et al. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice [J]. Science China. Life sciences, 2018, 61:122-125.
[20] EAST-SELETSKY A, O'CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection [J]. Nature, 2016, 538(7624):270-273.
[21] PRICE A, SAMPSON T, RATNER H, et al. Cas9-mediated targeting of viral RNA in eukaryotic cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:6164-6169.
[22] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J]. Science, 2016, 353(6299):aaf5573.
[23] LENKA B, SATAPATHY S N, SENAPATI M. Engineering plant virus resistance: gene silencing to genome editing [J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(10):3086-3096.
[24] LORIATO V A, MARTINS L G, EUCLYDES N C, et al. Engineering resistance against geminiviruses: A review of suppressed natural defenses and the use of RNAi and the CRISPR/Cas system [J]. Plant Science, 2020, 292:110410.
[25] JI X, ZHANG H, ZHANG Y, et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants [J]. Nature Plants, 2015, 1(10):1-4.
[26] BALTES N J, HUMMEL A W, KONECNA E, et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system [J]. Nature Plants, 2015, 1(10):1-4.
[27] ALI Z, ABULFARAJ A, IDRIS A, et al. CRISPR/Cas9-mediated viral interference in plants [J]. Genome Biology, 2015, 16(1):1-11.
[28] MEHTA D, STURCHLER A, ANJANAPPA R B, et al. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses [J]. Genome Biology, 2019, 20(1):1-10.
[29] ZHANG T, ZHENG Q, YI X, et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system [J]. Plant Biotechnology Journal, 2018, 16(8):1415-1423.
[30] AMAN R, ALI Z, BUTT H, et al. RNA virus interference via CRISPR/Cas13a system in plants [J]. Genome Biology, 2018a, 19(1):1-9.
[31] AMAN R, MAHAS A, BUTT H, et al. Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis [J]. Viruses, 2018b, 10:732.
[32] CHANDRASEKARAN J, BRUMIN M, WOLF D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology [J]. Molecular Plant Pathology, 2016, 17(7):1140-1153.
[33] PYOTT DE, SHEEHAN E, MOLNAR A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants [J]. Molecular Plant Pathology, 2016, 17:1276-1288.
[34] GAUFFIER C, LEBARON C, MORETTI A. et al. A TILLING approach to generate broad-spectrum resis-tance to potyviruses in tomato is hampered by eIF4E gene redundancy [J]. The Plant Journal, 2016, 85(6):717-729.
[35] SUN H, SHEN L, QIN Y, et al. CLC-Nt1 affects Potato Virus Y infection via regulation of endoplasmic reticulum luminal Ph [J]. New Phytollogist, 2018, 220:539-552.
[36] ZHANG P, DU H, WANG J, et al. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus [J]. Plant Biotechnology Journal, 2019a, 18:1384-1395.
[37] MAKHOTENKO A V, KHROMOV A V, SNIGIR E A, et al. Functional analysis of coilin in virus resis-tance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing [J]. In Doklady Bioche-mistry and Biophysics, 2019, 484(1):88-91.
[38] HELM M, Qi M, SARKAR S, et al. Engineering a decoy substrate in soybean to enable recognition of the soybean mosaic virus NIa protease [J]. Molecular Plant-Microbe Interactions, 2019, 32(6):760-769.
[39] WANG T, DENG Z Q, ZHANG X, et al. Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV [J]. Horticulture Research, 2018, 5:1-14.
[40] LUDMAN, M, BURGYáN, J, FáTYOL, K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses [J]. Scientific Reports, 2017, 7(1):1-12.
[41] PRAMANIK D, SHELAKE R M, PARK J, et al. CRISPR/Cas9-mediated generation of pathogen resis-tant tomato against tomato yellow leaf curl virus and powdery mildew [J]. International Journal of Molecular Sciences, 2021, 22:1878.
[42] KAN J, CAI Y, CHENG C, et al. Simultaneous editing of host factor gene TaPDIL5-1 homoeoalleles confers wheat yellow mosaic virus resistance in hexaploid wheat [J]. New Phytologist, 2022, 234(2):340-344.
[43] van SCHIE C C N. TAKKEN FLW. Susceptibility genes 101: How to be a good host [J]. Annual Review of Phytopathology,2014, 52:551-581.
[44] HASHIMOTO M, NERIYA Y, YAMAJI Y, et al. Recessive resistance to plant viruses: potential resis-tance genes beyond translation initiation factors [J]. Frontiers in Microbiology, 2016, 7:1695.
[45] SANFAçON H. Plant translation factors and virus resistance [J]. Viruses, 2015, 7:3392-3419.
[46] GAO Z, JOHANSEN E, EYERS S, et al. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking [J]. The Plant Journal, 2004, 40(3):376-385.
[47] TRUNIGER V,ARANDA M A. Recessive resistance to plant viruses [J]. Advances in Virus Research, 2009, 75:119-159.
[48] BASTET A, ROBAGLIA C, GALLOIS J L. eIF4E resistance: natural variation should guide gene editing [J]. Trends in Plant Science, 2017, 22(5):411-419.
[49] WANG A. Krishnaswamy S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement [J]. Mole-cular Plant Pathology, 2012, 13:795-803.
[50] GOMEZ M A, LIN Z D, MOLL T, et al. Simulta-neous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence [J]. Plant Biotechnology Journal, 2019, 17(2):421-434.
[51] MACOVEI A, SEVILLA N R, CANTOS C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus [J]. Plant Biotechnology Journal, 2018, 16(11):1918-1927.
[52] BASTET A, ZAFIROV D, GIOVINAZZO N, et al. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses [J]. Plant Biotechnology Journal, 2019, 17(9):1736-1750.
[53] KUROIWA K, THENAULT C, NOGUé F, et al. CRISPR-based knock-out of eIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus [J]. Plant Science, 2022, 316:111160.
[54] KUMAR S, ABEBIE B, KUMARI R, et al. Development of PVY resistance in tomato by knockout of host eukaryotic initiation factors by CRISPR-Cas9 [J]. Phytoparasitica, 2022, 1-14.
[55] ALI Z, ALI S, TASHKANDI M, et al. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion [J]. Scientific Reports, 2016, 6(1):1-13.
[56] TASHKANDI M, ALI Z, ALJEDAANI F, et al. Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato [J]. Plant Signaling & Behavior, 2018, 13(10):e1525996.
[57] KIS A, HAMAR É, THOLT G, et al. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system [J]. Plant Biotechnology Journal, 2019, 17:1004-1006.
[58] LIU H, SOYARS CL, LI J, et al. CRISPR/Cas9-mediated resistance to cauliflower mosaic virus [J]. Plant Direct, 2018, 2(3):e00047.
[59] TRIPATHI JN, NTUI VO, RON M, et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding [J]. Commun Biology, 2019, 2:46.
[60] YIN K, HAN T, XIE K, et al. Engineer complete resistance to cotton leaf curl multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana [J]. Phytopatholoy Research, 2019, 1:9.
[61] ALI Z, EID A, ALI S, et al. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis [J]. Virus Research, 2018, 244:333-337.
[62] ROY A, ZHAI Y, ORTIZ J, et al. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development [J]. PLoS One, 2019, 14(10):e0223765.
[63] KHAN MZ, HAIDER S, MANSOOR S, et al. Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a [J]. Trends in Biotechnology, 2019, 37(8):800-804.
[64] JIAO B, HAO X, LIU Z, et al. 2022. Engineering CRISPR immune systems conferring GLRaV-3 resistance in grapevine [J]. Horticulture Research, 9:uhab023.
[65] ZHANG T, ZHAO Y, YE J, et al. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants [J]. Plant Biotechnology Journal, 2019b, 17(7):1185-1187.
[66] ZHAN X, ZHANG F, ZHONG Z, et al. Generation of virus-resistant potato plants by RNA genome targeting [J]. Plant Biotechnology Journal, 2019, 17(9):1814-1822.
[67] MAHAS A, AMAN R, MAHFOUZ M. CRISPR-Cas13d mediates robust RNA virus interference in plants [J]. Genome Biology, 2019, 20:263.
[68] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336):438-442.
[69] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 [J]. Science, 2018, 360:439-444.
[70] ZHANG Y, QIAN L, WEI W, et al. Paired design of dcas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains [J]. ACS Synthetic Biology, 2017, 6(2):211-216.
[71] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387):436-439.
[72] KAMINSKI M M, ABUDAYYEH O O, GOOTENBERG J S, et al. CRISPR-based diagnostics [J]. Nature Biomedical Engineering, 2021, 5:643-656.
[73] JIAO J, KONG K, HAN J, et al. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay [J]. Plant Biotechnology Journal, 2021, 19(2):394-405.
[74] MAHAS A, HASSAN N, AMAN R, et al. LAMP-coupled crispr-cas12a module for rapid and sensitive detection of plant dna viruses [J]. Viruses, 2021, 13(3):466.
[75] MA H, TU LC, NASERI A, et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPR rainbow [J]. Nature Biotechnology, 2016, 34(5):528-530.
[76] ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13 [J]. Nature, 2017, 550(7675):280-284.
[77] ZHU Z, Li R, ZHANG H, et al. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosensors and Bioelectronics [J]. 2022, 204:114076.
[78] BARRANGOU R, HORVATH P. A decade of disco-very: CRISPR functions and applications [J]. Nature Microbiology, 2017, 2:17092.
[79] KALININA N O, KHROMOV A, LOVE A J, et al. CRISPR applications in plant virology: virus resistance and beyond [J]. Phytopathology, 2020, 110:1828.
[80] GOSAVI G, YAN F, REN B, et al. Applications of CRISPR technology in studying plant-pathogen interactions: Overview and perspective [J]. Phytopathology Research, 2020, 2:1-9.
[81] CAO Y, ZHOU H, ZHOU X, et al. Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity [J]. Frontiers in Microbiology, 2020, 11:2613.
[82] KHAN Z, KHAN S H, AHMAD A, et al. CRISPR/dCas9-mediated inhibition of replication of begomovi-ruses [J]. International Journal of Agricultural and Biological Engineering, 2019, 21:711-718.
[83] STERNBERG S H, RICHTER H, CHARPENTIER E, et al. Adaptation in CRISPR-Cas systems [J]. Mole-cular Cell, 2016, 61(6):797-808.

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

安康学院高层次人才启动专项(2021AYQDZR13);安康市科技计划项目(AK2021-NY-15)

{{custom_fund}}

相关知识

CRISPR/Cas9基因编辑技术在家畜育种新材料创制中的研究进展
植物病毒互作研究及基因编辑技术在抗病育种中的应用进展
花粉自清除CRISPR/Cas创制系列同型株高变异品种
DeepTech发布生命科学十大技术趋势,基因编辑在列
农业大学教授、副教授主讲!植物基因编辑核心技术都在这里了
基因编辑技术在花卉育种中应用的研究进展
CRISPR技术在改良植物抗病性中的应用
Adv. Sci | 华中农大棉花遗传育种团队利用高通量基因编辑系统创建棉花抗虫基因突变体库并鉴定到广谱抗虫基因GhMLP423
兰花病毒病分子生物学及抗病毒基因工程研究进展
基因编辑育种技术全球开花!正以前所未有的速度重塑全球种业格局

网址: CRISPR/Cas基因编辑系统在植物抗病毒防御中的应用 https://m.huajiangbk.com/newsview417566.html

所属分类:花卉
上一篇: 我校油菜黒胫病防控团队发现病毒在
下一篇: 红火蚁的危害及防治措施