首页 > 分享 > Advances in Active Polysaccharides in Medicinal Plants of Orchidaceae

Advances in Active Polysaccharides in Medicinal Plants of Orchidaceae

[1]

CHASE M W, CAMERON K M, FREUDENSTEIN J V, et al. An updated classification of Orchidaceae[J]. Bot J Linn Soc, 2015, 177(2): 151-174. DOI:10.1111/boj.12234

[2]

LI J H, ZHANG L H. Application of tissue culture and mycorrhizal technology of medicinal orchid plants for seedling production[J]. Seed, 2015, 34(8): 133-134.
李景蕻, 张丽华. 药用兰科植物组培苗菌根化技术在种苗生产中的应用[J]. 种子, 2015, 34(8): 133-134. DOI:10.16590/j.cnki.1001-4705.2015.08.133

[3]

TANG H. DNA barcoding identification and ecological suitability of important medicinal plants of Orchidaceae[D]. Yaan: Sichuan Agricul- tural University, 2016: 9.
汤欢.兰科重要药用植物DNA条形码鉴定及其生态适宜性[D].雅安: 四川农业大学, 2016: 9. http://cdmd.cnki.com.cn/Article/CDMD-10626-1018071191.htm

[4]

LIU H D, PAN L L, ZHOU X, et al. Research progress on chemical constituents and pharmacological activities of alkaloids in Orchidaceae plants[J]. Chin Trad Herb Drugs, 2019, 50(3): 731-744.
刘宏栋, 潘玲玲, 周翔, 等. 兰科植物生物碱类化学成分及药理活性研究进展[J]. 中草药, 2019, 50(3): 731-744. DOI:10.7501/j.issn.0253-2670.2019.03.029

[5]

PRAJAPATI V D, JANI G K, MORADIYA N G, et al. Galactomannan: A versatile biodegradable seed polysaccharide[J]. Int J Biol Macromol, 2013, 60: 83-92. DOI:10.1016/j.ijbiomac.2013.05.017

[6]

MA L S, CHEN H X, ZHU W C, et al. Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus[J]. Food Res Int, 2013, 50(2): 633-640. DOI:10.1016/j.foodres.2011.05.005

[7]

CAKOVA V, BONTE F, LOBSTEIN A. Dendrobium: Sources of active ingredients to treat age-related pathologies[J]. Aging Dis, 2017, 8(6): 827-849. DOI:10.14336/AD.2017.0214

[8]

DUAN J, DUAN Y P. High-efficient Cultivation Techniques for Dendrobium officinale[M]. Fujian: Fujian Science and Technology Press, 2013: 1.
段俊, 段毅平. 铁皮石斛高效栽培技术[M]. 福建: 福建科学技术出版社, 2013: 1.

[9]

DENG Y, LI M, CHEN L X, et al. Chemical characterization and immunomodulatory activity of acetylated polysaccharides from Dendrobium devonianum[J]. Carbohydr Polym, 2018, 180: 238-245. DOI:10.1016/j.carbpol.2017.10.026

[10]

XING X H, CUI S W, NIE S P, et al. A review of isolation process, structural characteristics, and bioactivities of water-soluble polysac- charides from Dendrobium plants[J]. Bioact Carbohydr Diet Fibre, 2013, 1(2): 131-147. DOI:10.1016/j.bcdf.2013.04.001

[11]

FAN H R, MENG Q R, XIAO T C, et al. Partial characterization and antioxidant activities of polysaccharides sequentially extracted from Dendrobium officinale[J]. J Food Meas Charact, 2018, 12(2): 1054-1064. DOI:10.1007/s11694-018-9721-8

[12]

PAULY M, GILLE S, LIU L F, et al. Hemicellulose biosynthesis[J]. Planta, 2013, 238(4): 627-642. DOI:10.1007/s00425-013-1921-1

[13]

HSIEH Y S Y, CHIEN C, LIAO S K S, et al. Structure and bioactivity of the polysaccharides in medicinal plant Dendrobium huoshanense[J]. Bioorg Med Chem, 2008, 16(11): 6054-6068. DOI:10.1016/j.bmc.2008.04.042

[14]

YAN C Q, ZOU K. Advances in research on plant polysaccharides of Liliaceae[J]. J China Three Gorges Univ (Nat Sci), 2009, 31(2): 96-100.
晏传奇, 邹坤. 百合科植物多糖研究进展[J]. 三峡大学学报(自然科学版), 2009, 31(2): 96-100. DOI:10.3969/j.issn.1672-948X.2009.02.025

[15]

SINGH S, SINGH G, ARYA S K. Mannans: An overview of properties and application in food products[J]. Int J Biol Macromol, 2018, 119: 79-95. DOI:10.1016/j.ijbiomac.2018.07.130

[16]

TESTER R F, AL-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan[J]. J Sci Food Agric, 2016, 96(10): 3283-3291. DOI:10.1002/jsfa.7571

[17]

GAN X N, XU Y, XU H, et al. Improvement in determination for polysaccharide and mannose in dendrobii officinalis caulis and its comparation with dendrobii devoniani caulis[J]. Drug Stand China, 2014, 15(4): 276-279.
甘小娜, 徐英, 徐红, 等. 铁皮石斛中多糖和甘露糖含量测定方法的改进及与齿瓣石斛的比较研究[J]. 中国药品标准, 2014, 15(4): 276-279. DOI:10.19778/j.chp.2014.04.011

[18]

GONZALEZ P S, O'PREY J, CARDACI S, et al. Mannose impairs tumour growth and enhances chemotherapy[J]. Nature, 2018, 563(7733): 719-723. DOI:10.1038/s41586-018-0729-3

[19]

WANG J H, ZHA X Q, LUO J P, et al. An acetylated galactoman- noglucan from the stems of Dendrobium nobile Lindl。[J]. Carbohydr Res, 2010, 345(8): 1023-1027. DOI:10.1016/j.carres.2010.03.005

[20]

LI Q, XIE Y, SU J W, et al. Isolation and structural characterization of a neutral polysaccharide from the stems of Dendrobium densiflorum[J]. Int J Biol Macromol, 2012, 50(5): 1207-1211. DOI:10.1016/j.ijbiomac.2012.03.005

[21]

LUO A X, HE X J, ZHOU S D, et al. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts[J]. Int J Biol Macromol, 2009, 45(4): 359-363. DOI:10.1016/j.ijbiomac.2009.07.008

[22]

WANG J H, LUO J P, ZHA X Q. Structural features of a pectic polysaccharide from the stems of Dendrobium nobile Lindl.[J]. Carbo- hydr Polym, 2010, 81(1): 1-7. DOI:10.1016/j.carbpol.2010.01.040

[23]

WANG J H, LUO J P, YANG X F, et al. Structural analysis of a rham- noarabinogalactan from the stems of Dendrobium nobile Lindl.[J]. Food Chem, 2010, 122(3): 572-576. DOI:10.1016/j.foodchem.2010.03.012

[24]

PAN L H, FENG B J, WANG J H, et al. Structural characterization and anti-glycation activity in vitro of a water-soluble polysaccharide from Dendrobium huoshanense[J]. J Food Biochem, 2013, 37(3): 313-321. DOI:10.1111/j.1745-4514.2011.00633.x

[25]

XIE S Z, GE J C, LI F, et al. Digestive behavior of Dendrobium huo- shanense polysaccharides in the gastrointestinal tracts of mice[J]. Int J Biol Macromol, 2018, 107: 825-832. DOI:10.1016/j.ijbiomac.2017.09.047

[26]

ZHANG M, WU J W, HAN J J, et al. Isolation of polysaccharides from Dendrobium officinale leaves and anti-inflammatory activity in LPS- stimulated THP-1 cells[J]. Chem Cent J, 2018, 12(1): 109. DOI:10.1186/s13065-018-0480-8

[27]

TIAN C C, ZHA X Q, PAN L H, et al. Structural characterization and antioxidant activity of a low-molecular polysaccharide from Dendrobium huoshanense[J]. Fitoterapia, 2013, 91: 247-255. DOI:10.1016/j.fitote.2013.09.018

[28]

GE J C, ZHA X Q, NIE C Y, et al. Polysaccharides from Dendrobium huoshanense stems alleviates lung inflammation in cigarette smoke- induced mice[J]. Carbohydr Polym, 2018, 189: 289-295. DOI:10.1016/j.carbpol.2018.02.054

[29]

XI X J, XIAO S Z, TANG F, et al. Monosaccharide analysis of Dendro- bium moniliforme polysaccharides by high performance liquid chromato- graphy/electrospray ionization mass spectrometry[J]. Amer J Agric For, 2016, 4(6): 156-162. DOI:10.11648/j.ajaf.20160406.13

[30]

XING S P, ZHANG X F, KE H N, et al. Physicochemical properties of polysaccharides from Dendrobium officinale by fractional precipitation and their preliminary antioxidant and anti-HepG2 cells activities in vitro[J]. Chem Cent J, 2018, 12(1): 100. DOI:10.1186/s13065-018-0468-4

[31]

WANG J H, ZUO S R, LUO J P. Structural analysis and immuno- stimulating activity of an acidic polysaccharide from the stems of Dendrobium nobile Lindl.[J]. Molecules, 2017, 22(4): 611. DOI:10.3390/molecules22040611

[32]

HUANG K W, LI Y R, TAO S C, et al. Purification, characterization and biological activity of polysaccharides from Dendrobium officinale[J]. Molecules, 2016, 21(6): 701. DOI:10.3390/molecules21060701

[33]

DENG Y, CHEN L X, HAN B X, et al. Qualitative and quantitative analysis of specific polysaccharides in Dendrobium huoshanense by using saccharide mapping and chromatographic methods[J]. J Pharm Biomed Anal, 2016, 129: 163-171. DOI:10.1016/j.jpba.2016.06.051

[34]

SI H Y, CHEN N F, CHEN N D, et al. Structural characterisation of a water-soluble polysaccharide from tissue-cultured Dendrobium huoshanense C. Z. Tang et S. J. Cheng[J]. Nat Prod Res, 2018, 32(3): 252-260. DOI:10.1080/14786419.2017.1350670

[35]

ZHANG Y, WANG H X, GUO Q B, et al. Structural characterization and conformational properties of a polysaccharide isolated from Dendrobium nobile Lindl. [J/OL]. Food Hydrocoll, 2019, (2019-01-22). doi: 10.1016/j.foodhyd.2019.01.044.

[36]

LI X L, XIAO J J, ZHA X Q, et al. Structural identification and sulfated modification of an antiglycation Dendrobium huoshanense polysaccharide[J]. Carbohydr Polym, 2014, 106: 247-254. DOI:10.1016/j.carbpol.2014.02.029

[37]

HE T B, HUANG Y P, YANG L, et al. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale[J]. Int J Biol Macromol, 2016, 83: 34-41. DOI:10.1016/j.ijbiomac.2015.11.038

[38]

YANG L C, HSIEH C C, WEN C L, et al. Structural characterization of an immunostimulating polysaccharide from the stems of a new medicinal Dendrobium species: Dendrobium Taiseed Tosnobile[J]. Int J Biol Macromol, 2017, 103: 1185-1193. DOI:10.1016/j.ijbiomac.2017.05.185

[39]

YU W X, REN Z Y, ZHANG X F, et al. Structural characterization of polysaccharides from Dendrobium officinale and their effects on apoptosis of HeLa cell line[J]. Molecules, 2018, 23(10): 2484. DOI:10.3390/molecules23102484

[40]

ZHA X Q, DENG Y Y, LI X L, et al. The core structure of a Dendro- bium huoshanense polysaccharide required for the inhibition of human lens epithelial cell apoptosis[J]. Carbohydr Polym, 2017, 155: 252-260. DOI:10.1016/j.carbpol.2016.08.087

[41]

YUE H, LIU Y Q, QU H H, et al. Structure analysis of a novel hetero- xylan from the stem of Dendrobium officinale and anti angiogenesis activities of its sulfated derivative[J]. Int J Biol Macromol, 2017, 103: 533-542. DOI:10.1016/j.ijbiomac.2017.05.097

[42]

LI F, CUI S H, ZHA X Q, et al. Structure and bioactivity of a polysac- charide extracted from protocorm-like bodies of Dendrobium huoshan- ense[J]. Int J Biol Macromol, 2015, 72: 664-672. DOI:10.1016/j.ijbiomac.2014.08.026

[43]

WEI W, FENG L, BAO W R, et al. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendro- bium officinale[J]. J Agric Food Chem, 2016, 64(4): 881-889. DOI:10.1021/acs.jafc.5b05180

[44]

TOMODA M, NAKATSUKA S, TAMAI M, et al. Plant mucilages. Ⅷ. Isolation and characterization of a mucous polysaccharide, "Bletilla- glucomannan, " from Bletilla striata Tubers[J]. Chem Pharm Bull, 1973, 21(12): 2667-2671. DOI:10.1248/cpb.21.2667

[45]

YUE L, WANG W, WANG Y, et al. Bletilla striata polysaccharide inhibits angiotensin Ⅱ-induced ROS and inflammation via NOX4 and TLR2 pathways[J]. Int J Biol Macromol, 2016, 89: 376-388. DOI:10.1016/j.ijbiomac.2016.05.002

[46]

WANG Y, LIU D, CHEN S J, et al. A new glucomannan from Bletilla striata: Structural and anti-fibrosis effects[J]. Fitoterapia, 2014, 92: 72-78. DOI:10.1016/j.fitote.2013.10.008

[47]

DONG L, XIA S H, LUO Y, et al. Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-α[J]. J Control Release, 2009, 134(3): 214-220. DOI:10.1016/j.jconrel.2008.11.013

[48]

PENG Q, LI M, XUE F, et al. Structure and immunobiological activity of a new polysaccharide from Bletilla striata[J]. Carbohydr Polym, 2014, 107: 119-123. DOI:10.1016/j.carbpol.2014.02.042

[49]

WANG Y R, HAN S W, LI R F, et al. Structural characterization and immunological activity of polysaccharides from the tuber of Bletilla striata[J]. Int J Biol Macromol, 2019, 122: 628-635. DOI:10.1016/j.ijbiomac.2018.10.201

[50]

LIAO Z C, ZENG R, HU L L, et al. Polysaccharides from tubers of Bletilla striata: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer[J]. Int J Biol Macromol, 2019, 122: 1035-1045. DOI:10.1016/j.ijbiomac.2018.09.050

[51]

WANG B, XU S, HUANG L J, et al. Isolation, purification and structural characterization of a polysaccharide fraction from stem tuber of Bletilla striata, named BSPI-A[J]. Food Sci, 2010, 31(17): 120-123.
王博, 徐莎, 黄琳娟, 等. 白芨多糖BSPI-A的分离纯化及结构研究[J]. 食品科学, 2010, 31(17): 120-123.

[52]

LIU J Y, WANG H C, YIN Y, et al. Controlled acetylation of water- soluble glucomannan from Bletilla striata[J]. Carbohydr Polym, 2012, 89(1): 158-162. DOI:10.1016/j.carbpol.2012.02.065

[53]

WU X G, XIN M, CHEN H, et al. Novel mucoadhesive polysaccharide isolated from Bletilla striata improves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis[J]. J Pharm Pharmacol, 2010, 62(9): 1152-1157. DOI:10.1111/j.2042-7158.2010.01137.x

[54]

ZHANG M S, SUN L, ZHAO W C, et al. Cholesteryl-modification of a glucomannan from Bletilla striata and its hydrogel properties[J]. Molecules, 2014, 19(7): 9089-9100. DOI:10.3390/molecules19079089

[55]

WANG C, LUO W F, LI P W, et al. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges[J]. Carbohydr Polym, 2017, 174: 432-442. DOI:10.1016/j.carbpol.2017.06.112

[56]

YU X L, LIN S E, ZHANG J Q, et al. Purification of polysaccharide from artificially cultivated Anoectochilus roxburghii (Wall.) Lindl. by high-speed counter current chromatography and its antitumor activity[J]. J Sep Sci, 2017, 40(22): 4338-4346. DOI:10.1002/jssc.201700340

[57]

ZHANG X H. Structural analysis and antidiabetic activities of polysac- charides from Anoectochilus roxburghii[D]. Shantou: Shantou University, 2011: 21-27.
张晓辉.金线莲多糖结构分析及抗糖尿病活性研究[D].汕头: 汕头大学, 2011: 21-27.

[58]

WU Y B, ZHANG X C, YI J, et al. Determination of the monosaccharide composition in Anoectochilus roxburghii polysaccharide from different origins by pre-column derivatization HPLC method[J]. China Pharm, 2015, 26(15): 2116-2119.
吴岩斌, 张秀才, 易骏, 等. 柱前衍生化HPLC法测定不同基源金线莲多糖的单糖组成[J]. 中国药房, 2015, 26(15): 2116-2119. DOI:10.6039/j.issn.1001-0408.2015.15.37

[59]

YANG Z G, ZHANG X H, YU J. Primary study on the characterization of polysaccharides from Anoectochilus roxburghii[J]. China J Pharm Econ, 2015, 10(S1): 36-37.
杨振国, 张晓辉, 余杰. 金线莲多糖结构的初步分析[J]. 中国药物经济学, 2015, 10(S1): 36-37.

[60]

ZHANG J Q. The purification and the structure representation of polysac- charides from Anoectochilu roxburghii (Wall) Lindl. and the anti-tumor activities research[D]. Fuzhou: Fujian Medical University, 2010: 4.
张锦雀.金线莲多糖的分离纯化、结构表征及其抗肿瘤活性[D].福州: 福建医科大学, 2010: 4. http://cdmd.cnki.com.cn/Article/CDMD-10392-2010169360.htm

[61]

LIN S E, HUANG L Y, YU X L. Analyze monosaccharide composition of polysaccharide in artificial cultivated Anoectochilus roxburghii by pre-column derivatization HPLC[J]. J Fujian Med Univ, 2016, 50(3): 148-154.
林守二, 黄丽英, 俞晓玲. 柱前衍生化HPLC法分析人工栽培金线莲中多糖的单糖组成[J]. 福建医科大学学报, 2016, 50(3): 148-154.

[62]

LI S L. Studies on the content changes, structural characteristics and pharmacological activities of Anoectochilus roxburghii polysaccharides[D]. Hangzhou: Zhejiang Agricultural and Forestry University, 2018: 31.
李帅玲.金线莲多糖的含量变化、结构表征及药理活性研究[D].杭州: 浙江农林大学, 2018: 31.

[63]

YANG Z G, ZHANG X H, YANG L W, et al. Protective effect of Anoectochilus roxburghii polysaccharide against CCl4-induced oxidative liver damage in mice[J]. Int J Biol Macromol, 2017, 96: 442-450. DOI:10.1016/j.ijbiomac.2016.12.039

[64]

CHEN L, ZHANG Y P, JIN L X. Preparation, characterization and anti- ageing activity of Gastrodia elata blume polysaccharide[J]. Acta Aliment, 2018, 47(2): 210-219. DOI:10.1556/066.2018.47.2.10

[65]

CHEN X, CAO D X, ZHOU L, et al. Structure of a polysaccharide from Gastrodia elata Bl., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities[J]. Carbohydr Polym, 2011, 86(3): 1300-1305. DOI:10.1016/j.carbpol.2011.06.029

[66]

MING J, LIU J, WU S R, et al. Structural characterization and hypolipidemic activity of a polysaccharide PGEB-3H from the fruiting bodies of Gastrodia elata Blume[J]. Procedia Eng, 2012, 37: 169-173. DOI:10.1016/j.proeng.2012.04.221

[67]

LIN P C, WU D T, XIE J, et al. Characterization and comparison of bioactive polysaccharides from the tubers of Gymnadenia conopsea[J]. Food Hydrocoll, 2015, 43: 199-206. DOI:10.1016/j.foodhyd.2014.05.015

[68]

FANG Y K, NING A H, LI S, et al. Polysaccharides extracted from Rhizoma pleionis have antitumor properties in vitro and in an H22 mouse hepatoma ascites model in vivo[J]. Int J Mol Sci, 2018, 19(5): 1386. DOI:10.3390/ijms19051386

[69]

YANG H H, WU Y J, GAN C J, et al. Characterization and antioxidant activity of a novel polysaccharide from Pholidota chinensis Lindl.[J]. Carbohydr Polym, 2016, 138: 327-334. DOI:10.1016/j.carbpol.2015.11.071

[70]

LUO D H, WANG Z J, LI Z M, et al. Structure of an entangled heteropolysaccharide from Pholidota chinensis Lindl. and its anti- oxidant and anti-cancer properties[J]. Int J Biol Macromo, 2018, 112: 921-928. DOI:10.1016/j.ijbiomac.2018.02.051

[71]

XIE J Z, ZOU L H, LUO X, et al. Structural characterization and immunomodulating activities of a novel polysaccharide from Nervilia fordii[J]. Int J Biol Macromol, 2018, 114: 520-528. DOI:10.1016/j.ijbiomac.2018.03.124

[72]

WANG H L, YEH K W, CHEN P R, et al. Isolation and characteri- zation of a pure mannan from Oncidium (cv. Gower Ramsey) current pseudobulb during initial inflorescence development[J]. Biosci Biotechnol Biochem, 2006, 70(2): 551-553. DOI:10.1271/bbb.70.551

[73]

BARRETO D W, PARENTE J P. Chemical properties and biological activity of a polysaccharide from Cyrtopodium cardiochilum[J]. Carbohydr Polym, 2006, 64(2): 287-291. DOI:10.1016/j.carbpol.2005.11.038

[74]

MENG L Z, LV G P, HU D J, et al. Effects of polysaccharides from different species of Dendrobium (Shihu) on macrophage function[J]. Molecules, 2013, 18(5): 5779-5791. DOI:10.3390/molecules18055779

[75]

HUANG Y P, HE T B, CUAN X D, et al. 1, 4-β-D-glucomannan from Dendrobium officinale activates NF-кB via TLR4 to regulate the immune response[J]. Molecules, 2018, 23(10): 2658. DOI:10.3390/molecules23102658

[76]

XIE S Z, LIU B, ZHANG D D, et al. Intestinal immunomodulating activity and structural characterization of a new polysaccharide from stems of Dendrobium officinale[J]. Food Funct, 2016, 7(6): 2789-2799. DOI:10.1039/C6FO00172F

[77]

LUO D D, QU C, LIN G S, et al. Character and laxative activity of polysaccharides isolated from Dendrobium officinale[J]. J Funct Foods, 2017, 34: 106-117. DOI:10.1016/j.jff.2017.04.024

[78]

XIE S Z, LIU B, YE H Y, et al. Dendrobium huoshanense polysac- charide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice[J]. Carbohydr Polym, 2019, 206: 149-162. DOI:10.1016/j.carbpol.2018.11.002

[79]

PAN L H, WANG J, YE X Q, et al. Enzyme-assisted extraction of polysaccharides from Dendrobium chrysotoxum and its functional properties and immunomodulatory activity[J]. LWT-Food Sci Technol, 2015, 60(2): 1149-1154. DOI:10.1016/j.lwt.2014.10.004

[80]

LUO A X, FAN Y J. Immune stimulating activity of water-soluble polysaccharide fractions from Dendrobium nobile Lindl.[J]. Afr J Pharm Pharmacol, 2011, 5(5): 625-631. DOI:10.5897/AJPP11.169

[81]

WANG Y, LIU J J, LI Q, et al. Two natural glucomannan polymers, from Konjac and Bletilla, as bioactive materials for pharmaceutical applications[J]. Biotechnol Lett, 2015, 37(1): 1-8. DOI:10.1007/s10529-014-1647-6

[82]

CHEN Z Y, CHENG L Z, HE Y C, et al. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review[J]. Int J Biol Macromol, 2018, 120: 2076-2085. DOI:10.1016/j.ijbiomac.2018.09.028

[83]

CHEN J C, TIAN S, SHU X Y, et al. Extraction, characterization and immunological activity of polysaccharides from Rhizoma gastrodiae[J]. Int J Mol Sci, 2016, 17(7): 1011. DOI:10.3390/ijms17071011

[84]

FERREIRA S S, PASSOS C P, MADUREIRA P, et al. Structure- function relationships of immunostimulatory polysaccharides: A review[J]. Carbohydr Polym, 2015, 132: 378-396. DOI:10.1016/j.carbpol.2015.05.079

[85]

LUO Q L, TANG Z H, ZHANG X F, et al. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale[J]. Int J Biol Macromol, 2016, 89: 219-227. DOI:10.1016/j.ijbiomac.2016.04.067

[86]

ZENG B Y, SU M H, CHEN Q X, et al. Antioxidant and hepato- protective activities of polysaccharides from Anoectochilus roxburghii[J]. Carbohydr Polym, 2016, 153: 391-398. DOI:10.1016/j.carbpol.2016.07.067

[87]

ZHAO Y P, SON Y O, KIM S S, et al. Antioxidant and anti-hypergly- cemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl.[J]. J Biochem Mol Biol, 2007, 40(5): 670-677. DOI:10.5483/BMBRep.2007.40.5.670

[88]

PAN L H, LI X F, WANG M N, et al. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species[J]. Int J Biol Macromol, 2014, 64: 420-427. DOI:10.1016/j.ijbiomac.2013.12.024

[89]

FENG C Z, CAO L, LUO D, et al. Dendrobium polysaccharides atte- nuate cognitive impairment in senescence-accelerated mouse prone 8 mice via modulation of microglial activation[J]. Brain Res, 2019, 1704: 1-10. DOI:10.1016/j.brainres.2018.09.030

[90]

ZHOU B H, TAN J, ZHANG C, et al. Neuroprotective effect of polysaccharides from Gastrodia elata Blume against corticosterone- induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress-mediated pathway[J]. Mol Med Rep, 2018, 17(1): 1182-1190. DOI:10.3892/mmr.2017.7948

[91]

BURTON R A, FARROKHI N, BACIC A, et al. Plant cell wall polysaccharide biosynthesis: Real progress in the identification of participating genes[J]. Planta, 2005, 221(3): 309-312. DOI:10.1007/s00425-005-1495-7

[92]

DOMOZYCH D S, CIANCIA M, FANGEL J U, et al. The cell walls of green algae: A journey through evolution and diversity[J]. Front Plant Sci, 2012, 3: 82. DOI:10.3389/fpls.2012.00082

[93]

HOCH G. Cell wall hemicelluloses as mobile carbon stores in non- reproductive plant tissues[J]. Funct Ecol, 2007, 21(5): 823-834. DOI:10.1111/j.1365-2435.2007.01305.x

[94]

FRANZ G. Metabolism of reserve polysaccharides in tubers of Orchis morio L.[J]. Planta Med, 1979, 36(5): 68-73. DOI:10.1055/s-0028-1097242

[95] [96]

VOINICIUC C, DAMA M, GAWENDA N, et al. Mechanistic insights from plant heteromannan synthesis in yeast[J]. Proc Natl Acad Sci USA, 2019, 116(2): 522-527. DOI:10.1073/pnas.1814003116

[97]

CHUA M, HOCKING T J, CHAN K, et al. Temporal and spatial regulation of glucomannan deposition and mobilization in corms of Amorphophallus konjac (Araceae)[J]. Amer J Bot, 2013, 100(2): 337-345. DOI:10.3732/ajb.1200547

[98]

CRANG R, LYONS-SOBASKI S, WISE R. Plant Anatomy: A Concept- based Approach to the Structure of Seed Plants[M]. Cham: Springer, 2018: 182. DOI:10.1007/978-3-319-77315-5

[99]

HE C M, WU K L, ZHANG J X, et al. Cytochemical localization of polysaccharides in Dendrobium officinale and the involvement of DoCslA6 in the synthesis of mannan polysaccharides[J]. Front Plant Sci, 2017, 8: 173. DOI:10.3389/fpls.2017.00173

[100]

DOBLIN M S, PETTOLINO F, BACIC A. Plant cell walls: The skeleton of the plant world[J]. Funct Plant Biol, 2010, 37(5): 357-381. DOI:10.1071/FP09279

[101]

LIEPMAN A H, WILKERSON C G, KEEGSTRA K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases[J]. Proc Natl Acad Sci USA, 2005, 102(6): 2221-2226. DOI:10.1073/pnas.0409179102

[102]

VERBANČIČ J, LUNN J E, STITT M, et al. Carbon supply and the regulation of cell wall synthesis[J]. Mol Plant, 2018, 11(1): 75-94. DOI:10.1016/j.molp.2017.10.004

[103]

ORELLANA A, MORAGA C, ARAYA M, et al. Overview of nucleo- tide sugar transporter gene family functions across multiple species[J]. J Mol Biol, 2016, 428(16): 3150-3165. DOI:10.1016/j.jmb.2016.05.021

[104]

BRETON C, ŠNAJDROVÁ L, JEANNEAU C, et al. Structures and mechanisms of glycosyltransferases[J]. Glycobiology, 2006, 16(2): 29R-37R. DOI:10.1093/glycob/cwj016

[105]

DAVIS J, BRANDIZZI F, LIEPMAN A H, et al. Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orien- tations in the golgi membrane[J]. Plant J, 2010, 64(6): 1028-1037. DOI:10.1111/j.1365-313X.2010.04392.x

[106]

BUCHANAN M, BURTON R A, DHUGGA K S, et al. Endo-(1, 4)- β-glucanase gene families in the grasses: Temporal and spatial co- transcription of orthologous genes [J/OL]. BMC Plant Biol, 2012, 12: 235. doi: 10.1186/1471-2229-12-235.

[107]

SANDHU A P S, RANDHAWA G S, DHUGGA K S. Plant cell wall matrix polysaccharide biosynthesis[J]. Mol Plant, 2009, 2(5): 840-850. DOI:10.1093/mp/ssp056

[108]

GOUBET F, BARTON C J, MORTIMER J C, et al. Cell wall gluco- mannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis[J]. Plant J, 2009, 60(3): 527-538. DOI:10.1111/j.1365-313X.2009.03977.x

[109]

DHUGGA K S, BARREIRO R, WHITTEN B, et al. Guar seed β- mannan synthase is a member of the cellulose synthase super gene family[J]. Science, 2004, 303(5656): 363-366. DOI:10.1126/science.1090908

[110]

GILLE S, CHENG K, SKINNER M E, et al. Deep sequencing of voodoo lily (Amorphophallus konjac): An approach to identify rele- vant genes involved in the synthesis of the hemicellulose glucomannan[J]. Planta, 2011, 234(3): 515-526. DOI:10.1007/s00425-011-1422-z

[111]

VERHERTBRUGGEN Y, YIN L, OIKAWA A, et al. Mannan synthase activity in the CSLD family[J]. Plant Sign Behav, 2011, 6(10): 1620-1623. DOI:10.4161/psb.6.10.17989

[112]

WANG Y, MORTIMER J C, DAVIS J, et al. Identification of an additional protein involved in mannan biosynthesis[J]. Plant J, 2013, 73(1): 105-117. DOI:10.1111/tpj.12019

[113]

GAO F, CAO X F, SI J P, et al. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation[J/OL]. Genet Mol Res, 2016, 15(2): gmr. 15027647. doi: 10.4238/gmr.15027647.

[114]

WAN R L, SUN J, HE T, et al. Cloning cDNA and functional charac- terization of UDP-glucose pyrophosphorylase in Dendrobium officinale[J]. Biol Plant, 2016, 61(1): 147-154. DOI:10.1007/s10535-016-0645-z

[115]

HE C M, YU Z M, TEIXEIRA DA SILVA J A, et al. DoGMP1 from Dendrobium officinale contributes to mannose content of water- soluble polysaccharides and plays a role in salt stress response[J/OL]. Sci Rep, 2017, 7: 41010. doi: 10.1038/srep41010.

[116]

HE C M, ZENG S J, TEIXEIRA da S J A, et al. Molecular cloning and functional analysis of the phosphomannomutase (PMM) gene from Dendrobium officinale and evidence for the involvement of an abiotic stress response during germination[J]. Protoplasma, 2017, 254(4): 1693-1704. DOI:10.1007/s00709-016-1044-1

[117]

YU Z M, HE C M, TEIXEIRA da S J A, et al. Molecular cloning and functional analysis of DoUGE related to water-soluble polysac- charides from Dendrobium officinale with enhanced abiotic stress tolerance[J]. Plant Cell Tiss Org Cult, 2017, 131(3): 579-599. DOI:10.1007/s11240-017-1308-2

[118]

HE C M, ZHANG J X, LIU X C, et al. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis[J]. Plant Mol Biol, 2015, 88(3): 219-231. DOI:10.1007/s11103-015-0316-z

[119]

HE C M, WU K L, ZHANG J X, et al. Cytochemical localization of polysaccharides in Dendrobium officinale and the involvement of DoCslA6 in the synthesis of mannan polysaccharides[J]. Front Plant Sci, 2017, 8: 173. DOI:10.3389/fpls.2017.00173

[120]

ZHANG G Q, XU Q, BIAN C, et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Sci Rep, 2016, 6: 19029. DOI:10.1038/srep19029

[121]

ZHANG G Y, NIE S P, HUANG X J, et al. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): 7. Improving effects on colonic health of mice[J]. J Agric Food Chem, 2016, 64(12): 2485-2491. DOI:10.1021/acs.jafc.5b03117

[122]

TEIXEIRA da S J A, DOBRÁNSZKI J, CARDOSO J C, et al. Methods for genetic transformation in Dendrobium[J]. Plant Cell Rep, 2016, 35(3): 483-504. DOI:10.1007/s00299-015-1917-3

[123]

TEIXEIRA da S J A, JIN X H, DOBRÁNSZKI J, et al. Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding[J]. Mol Phylogenet Evol, 2016, 95: 196-216. DOI:10.1016/j.ympev.2015.10.012

[124]

TEKINŞEN K K, GÜNER A. Chemical composition and physico- chemical properties of tubera salep produced from some Orchidaceae species[J]. Food Chem, 2010, 121(2): 468-471. DOI:10.1016/j.foodchem.2009.12.066

[125]

HARIJATI N, MASTUTI R, CHAIRIYAH N, et al. Effects of seeding material age, storage time, and tuber tissue zone on glucomannan content of Amorphophallus muelleri Blume[J]. Int J Plant Biol, 2018, 9(1): 34-38. DOI:10.4081/pb.2018.7626

[126]

SING H S, SINGH G, ARYA S K. Mannans: An overview of properties and application in food products[J]. Int J Biol Macromol, 2018, 119: 79-95. DOI:10.1016/j.ijbiomac.2018.07.130

相关知识

胡光万
Advances in research on the mechanism of DNA methylation in plants
紫草科植物的化学成分及药理作用研究进展 Advances in Studies on the Chemical Compositions and Pharmacological Activities of the Plants of the Boraginaceae Plants
Research progress in boswellic acids from medicinal plants in Boswellia Roxb. ex Colebr. and their pharmacological action as well as mechanisms
花粉超低温保存研究进展
中国野生兰科植物资源与保护利用现状*
生物农药对河西灌区枸杞白粉病防治效果研究
高江云研究员
植物花器官发育的研究 Advances in Floral Organ Development in Plants
Research progress in antibacterial and anti

网址: Advances in Active Polysaccharides in Medicinal Plants of Orchidaceae https://m.huajiangbk.com/newsview433579.html

所属分类:花卉
上一篇: 兰科植物花最独特的结构在于( )
下一篇: 血叶兰图片